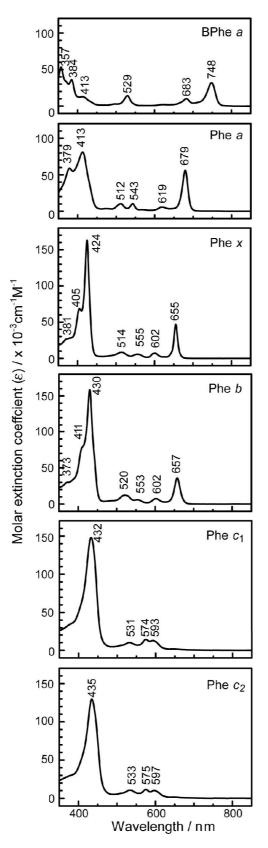
Supporting Information

Dependence of Photocurrent and Conversion Efficiency of Titania-Based Solar Cell on the Q_y Absorption and One Electron-Oxidation Potential of Pheophorbide Sensitizer

Xiao-Feng Wang,[†] Yasushi Koyama,^{*,†} Hiroyoshi Nagae,[‡] Yuji Wada,[§] Shin-ichi Sasaki,^{||} and Hitoshi Tamiaki ^{||}

Department of Chemistry, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan Kobe City University of Foreign Studies, Gakuen Higashimachi, Nishiku, Kobe 651-2187, Japan Department of Applied Chemistry, Tokyo Institute of Technology, Oh-okayama 2-12-1-S1-43, Meguro-ku, Tokyo 152-8552, Japan Department of Bioscience and Biotechnology, Ritsumeikan University, Kusatsu, Shiga 528-8577, Japan


S-1. Preparation of 3-devinyl-3-ethyl-8-deethyl-8-carboxy-pyropheophorbide a (Phe x)

To a solution of methyl 3-devinyl-3-ethyl-8-deethyl-8-formyl-pyropheophorbide a (110 mg, 0.20 mmol) in THF (15 mL) and 2-methyl-2-butene (8 mL) added was a solution of NH₂SO₃H (120 mg, 1.2 mmol) in H₂O (1.5 mL), and the mixture was stirred for 5 min at room temperature. NaClO₂ (100 mg, 1.1 mmol) in H₂O (1 mL) was added dropwise and the disappearance of 8-formyl-chlorin was checked by TLC. The mixture was poured into H₂O, extracted with CH₂Cl₂, and concentrated in vacuo. The product was purified by silica-gel chromatography (MeOH-CH₂Cl₂, 1:9) followed by GPC column (CHCl₃) and HPLC (acetone/1,2-dichloroethane = 1:5, t_R 11 min) to give Phe x (16 mg, 14%) as a black solid: VIS (CH₂Cl₂) λ_{max} 655 (relative intensity, 25%), 601 (5), 564 (4), 517 (5), 427 nm (100); ¹H-NMR δ = 10.09 (1H, s, 10-H), 9.05 (1H, s, 5-H), 8.49 (1H, s, 20-H), 5.18, 5.04 (each 1H, d, J = 18 Hz, 13^{1} -CH₂), 4.47 (1H, dq, J = 2, 8 Hz, 18-H), 4.25 (1H, br-d, J = 10 Hz, 17-H), 3.72 (2H, q, J = 8 Hz, 3-CH₂), 3.66 (3H, s, COOCH₃), 3.54 (3H, s, 7-CH₃), 3.47 (3H, s, 12-CH₃), 3.28 (3H, s, 2-CH₃), 2.71, 2.26 (each 1H, m, 17-CH₂), 2.61, 2.36 (each 1H, m, 17^{1} -CH₂), 1.89 (3H, d, J = 8 Hz, 18-CH₃), 1.70 (3H, t, J = 8 Hz, 3¹-CH₃), -0.54, -2.33 (each 1H, s, NH); ¹³C-NMR $\delta = 196.0, 173.5, 172.2,$ 171.1, 162.3, 150.0, 149.5, 149.0, 147.5, 142.8, 142.4, 138.2, 135.3, 131.8, 130.8, 130.7, 127.2, 108.4, 105.0, 97.0, 92.5, 51.9, 51.8, 49.8, 47.9, 31.1, 29.7, 23.1, 19.3, 16.9, 13.8, 12.1, 10.9; HRMS (FAB) found *m/z* 567.2628. Calcd for C₃₃H₃₅N₄O₅: MH⁺, 567.2607.

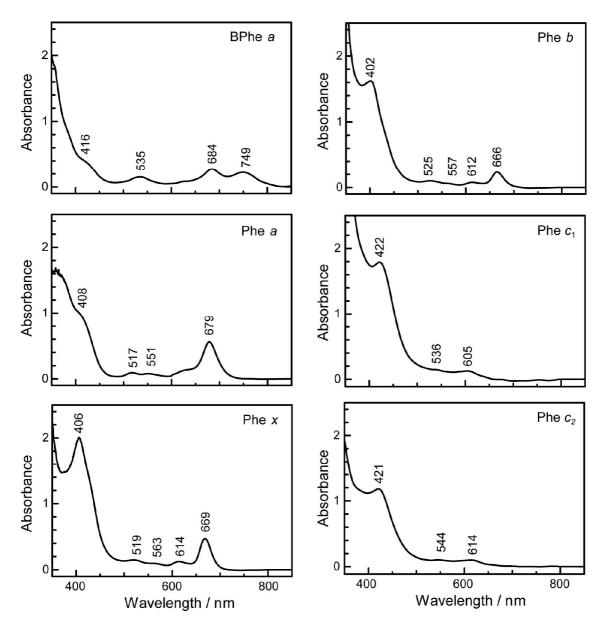
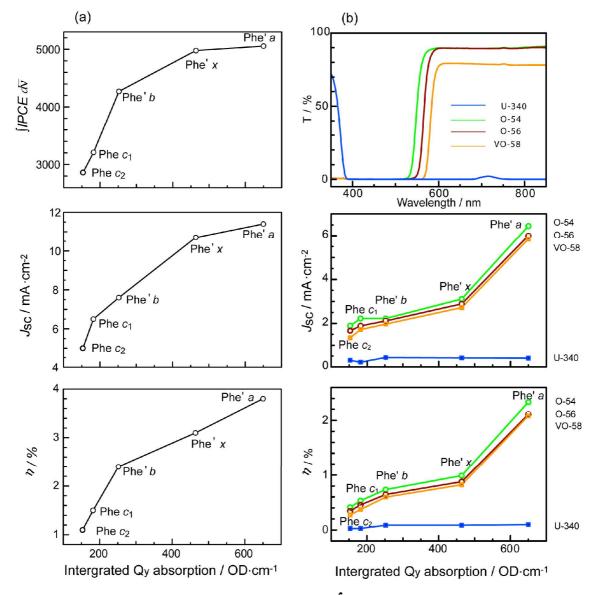

S-2. Electronic-Absorption Spectra of Sensitizers in Solution and Bound to TiO_2

Figure S-1 shows the electronic-absorption spectra of BPhe *a*, Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 in tetrahydrofuran (THF) solution, the ordinate scale being the molar extinction coefficient (ε). The spectra can be characterized as follows: (i) The spectral profiles of BPhe *a*, Phe *a*, Phe c_1 and Phe c_2 are broader than those of Phe *x* and Phe *b*. We suspect that the former pheophorbides may be dimeric and the latter ones monomeric in THF solution, because the pheophorbide molecules having conjugated macrocycles can aggregate even in such a polar solvent. (ii) The relative intensity of the Soret vs. Q_y absorption is rather comparable in BPhe *a* and Phe *a*, but the former absorption is much higher than the latter in Phe *x*, Phe *b*, Phe c_1 and Phe c_2 : The higher relative intensity in Phe *x* and Phe *b* may be ascribable to the chlorin skeleton having slightly lower symmetry (pseudo C_{2h}). In Phe c_1 and c_2 , the relative intensity becomes much larger because of the porphyrin ring having approximate D_{4h} symmetry. (iii) The Q_y absorption of BPhe *a* is substantially shifted to the near-infrared region in comparison to those of Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 . This is ascribable to the bacteriochlorin macrocycle. (iv) All the observed single (or split) peaks can be assigned to the Soret, Q_x and Q_y absorptions, appearing systematically from the shorter- to the longer-wavelength region.


Figure S-2 exhibits the electronic-absorption spectra of BPhe *a*, Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 that are adsorbed on the TiO₂ layer. They can be characterized as follows: (i) In the shortest-wavelength region, weak shoulders on the strong TiO₂ absorption in the spectra of BPhe *a* and Phe *a* (416 and 408 nm) as well as distinct strong peaks partially overlapped with the TiO₂ absorption in the spectra of Phe *x*, Phe *b*, Phe c_1 and Phe c_2 (406, 402, 422 and 421 nm, respectively) can be assigned to the Soret absorption of pheophorbides. The relative intensities of the Soret, Q_x and Q_y absorption bands roughly correspond to those in the spectra free in solution (Figure S-1). Unique difference originates from the very strong contributions of the TiO₂ absorption in the shortest-wavelength region. (ii) All the Q_y absorptions become much broader when bound to the TiO₂ layer, suggesting that the aggregates of pheophorbides are formed on the surface of the TiO₂ layer. (iii) The relative intensities of the split Q_y absorptions are changed in BPhe *a* possibly due to partial degradation upon binding to TiO₂. The relative intensities between the Soret and the Q_y absorption vary depending on the structure of sensitizers just like in solution.

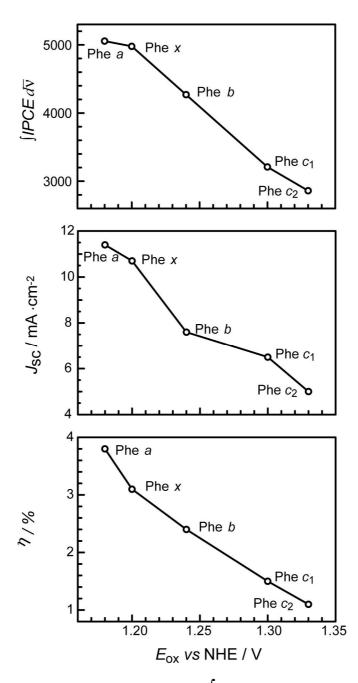
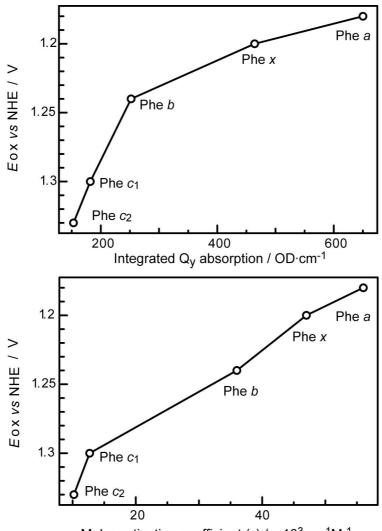

Figure S-1. Electronic-absorption spectra of BPhe *a*, Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 in THF solution.

Figure S-2. Electronic-absorption spectra of BPhe *a*, Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 adsorbed on the TiO₂ layer.

Figure S-3. (a) Correlations between the values of $\int IPCEd \overline{v}$, J_{sc} and η of DSSCs and the values of the integrated Q_y absorption for the sensitizers including BPhe *a*, Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 . (b) The J_{sc} and η values when the UV absorption of TiO₂ or the Q_y absorption of each pheophorbide sensitizer was selectively excited by the use of filters whose spectra are shown in the top panel.


Figure S-4. Correlations between the values of $\int IPCEd\overline{v}$, J_{sc} and η of DSSCs and the E_{ox} values of the sensitizers including Phe *a*, Phe *x*, Phe *b*, Phe c_1 and Phe c_2 , (see also Table 1 in the text).

S-4. The Results of Fitting Trials to Photocurrent (J_{sc}) as Functions of Q_y Absorption and One Electron-Oxidation Potential

TABLE S-1: Fitting Results for an Empirical Equation Assuming Different Models:Photocurrent (J_{sc}) as a Function of the Qy Absorption and the OneElectron-Oxidation Potential

Electron-Oxidation 1 otent	ι α 1				
(a) $J_{sc} = A + B = 0.004$	$6Q_y$ absorpt	$ion + 16.7982 ex_{1}$	$p[-\{2.05-2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$	$\frac{-(2.86 - E_{ox})\}^2}{2.05 \times 0.1}$]	
Pheophorbide sensitizer	Obs	Fit	Δ	2Δ/Obs+Fit (%)	
Phe <i>a</i>	11.4	11.7	0.3	3	
Phe <i>x</i>	10.7	10.2	-0.5	5	
Phe b	7.6	8.0	0.4	5	
Phe c_1	6.5	6.1	-0.4	6	
Phe c_2	5.0	5.2	0.2	4	
(b) $\eta = A + B = 0.0049$	$5Q_y\varepsilon + 0.04$	849exp[1.7166>	$<(2.86-E_{a})$		
Pheophorbide sensitizer	Obs	Fit	Δ	2Δ/Obs+Fit (%)	
Phe a	3.8	3.6	-0.2	5	
Phe <i>x</i>	3.1	3.2	0.1	3	
Phe b	2.4	2.6	0.2	8	
Phe c_1	1.5	1.3	-0.2	14	
Phe c_2	1.1	1.2	0.1	9	
(c) $J_{sc} = 0.05005 \exp\left\{ \frac{1}{2} \right\}$		$1.06094 - (Eox - 0.44)]^2 \bigg\} \times ($		Q_y absorption	
		1.06094	,	-	
Pheophorbide sensitizer	Obs	Fit	Δ	2Δ /Obs+Fit (%)	
Phe <i>a</i>	11.4	12.3	0.9	8	
Phe <i>x</i>	10.7	9.9	-0.8	8	
Phe b	7.6	6.6	-1.0	14	
Phe c_1	6.5	6.2	-0.3	5	
Phe c_2	5.0	5.8	0.8	15	
(d) $J_{sc} = 0.082971 \exp[$	(-0.050965)	$\times E_{ox} \times \sqrt{Q_y absc}$	orption]×Q	Q _y absorption	
Pheophorbide sensitizer	Obs	Fit	Δ	2Δ/Obs+Fit (%)	
Phe <i>a</i>	11.4	11.6	0.2	2	
Phe <i>x</i>	10.7	10.3	-0.4	4	
Phe b	7.6	7.7	0.1	1	
Phe c_1	6.5	6.2	-0.3	5	
Phe c_2	5.0	5.5	0.5	10	

S-5. Possible Correlations of Two Physical Parameters, i.e., Q_y Absorption vs. One Electron-Oxidation Potential

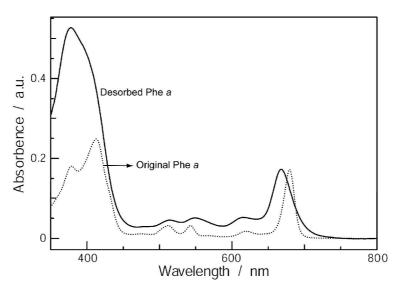

Molar extinction coefficient (ϵ) / x 10³ cm⁻¹M⁻¹

Figure S-5. Correlation of the one electron-oxidation potential (E_{ox}) with the integrated Q_y absorption and molar-extinction coefficient for pheophytins bound to TiO₂ and free in solution, respectively.

S-6. Determination of the Surface Coverage of Phe a sensitizer on TiO₂ Surface

One of the reviewers encouraged us to determine the surface coverage: The monolayer structure of the dye on the TiO_2 surface can be defined by the dye sensitizer which is chemically bound to the TiO_2 surface through the carboxyl group. We prepared a TiO_2 film on a glass plate by the doctor blade method, and cut into a piece with 0.8×0.8 cm area. The average thickness of such a film measured by a profiler (Sloan Dektak 3, Japan) was ~8 µm, and the density of the TiO₂ film (1.7 g•cm⁻³) was calculated by measuring the weight (0.8 mg) of the TiO₂ film (size 0.64 cm² × 8 µm). The surface area of the TiO₂ layer used in our experiment (solaronix Ti-nanooxide T) has a standard value of ~120 m²/g. Such a film was then dipped into a Phe *a* solution in THF for 3 hours, and washed with EtOH to remove free Phe *a* on the surface. The film with deposited dye was dipped into 5ml 1mM KOH aqueous solution, and left to stand until the color of the TiO₂ film becomes unchanged. Then, the absorption spectrum of the KOH solution of Phe *a* was measured.

The coverage (Γ) was determined by a standard method (Masatoshi Yanagida et al. Inorg. Chim. Acta, 351 (2003) 283-290) to be 3×10^{-8} mol•cm⁻². Thus, apparently a 20% of the surface of TiO₂ particles was covered (a minimum value).

Figure S-6. The absorption spectrum of Phe *a* in KOH solution desorbed from TiO_2 film and in THF solution. The Q_y peaks were normalized.

S-7. Stability of Sensitizer Phe a and Durability of Phe a-Sensitized Solar Cell.

Two of the reviewers addressed questions concerning the stability and durability of our sensitizer and DSSC: We performed a preliminary experiments to answer these questions by the use of Phe *a* giving rise to the highest conversion efficiency among the set of Phe sensitizers. (*a*) *Stability of the sensitizer*. We dipped a plate with the TiO₂ film into a THF solution of Phe *a* for 3h and dried it as a test sample. In the dark, the Q_y

absorption of this test sample decreased into 91% in 24 h, while in the light (AM 1.5 full sunlight illumination), decreased into 73% in 30 min and 56% in 60 min. The degradation of the sensitizer is obviously due to electron injection into TiO₂ and the resultant oxidation. (*b*) Durability of the Phe a-sensitized solar cell. We dipped the TiO₂ plate into the Phe *a* THF solution for 3 h, and fabricated a DSSC by the use of it. After 24 h, the J_{sc} and η values reduced to 70% and 76%, respectively. A control experiment was performed by the use of a Ru-complex N719, instead; after 24 h, the J_{sc} and η values reduced to 92 and 89%, respectively. Even under the condition of constant supply of electrons in the DSSCs, our Phe *a* sensitizer is less stable than the Ru-complex (~80%).