Supporting Information

Bismethylene Triphosphate Nucleotides of Uridine-4-Phosphate

Analogues - A New Class of Anionic-Pyrimidine Nucleotide

Analogues

Scott D. Taylor, ${ }^{1 *}$ Farzad Mirzaei, ${ }^{1}$ and Stephen L. Bearne ${ }^{2}$
${ }^{1}$ Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON Canada.
${ }^{2}$ Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada

Table of Contents

General experimental information S3
Characterization data for compounds $\mathbf{1 3}, \mathbf{1 4}, \mathbf{2 2}, \mathbf{2 4}, \mathbf{2 5}, 28,34, \mathbf{3 5}, \mathbf{3 8}, \mathbf{4 5}$, and S4-S9
49.
References S9
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound $\mathbf{1 2}$ S10-S12
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound $\mathbf{1 3}$ S13-S15
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 14 S16-S18
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 22 S19-S21
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compound 24 S22,S23
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{31} \mathrm{P}$ NMR for compound 25 S24-S26
${ }^{1}$ H NMR, ${ }^{13}$ C NMR, ${ }^{31}$ P NMR and ${ }^{19}$ F NMR spectra for compound 26 S27-S32
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 27 S33-S35
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 28 S36-S38
${ }^{1} \mathrm{H}$ NMR for compound 34 S39
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compound 35 S40,S41
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 36 S42-S44
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 37 S45-S47
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 38 S48-S50
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 42 S51-S53
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 43 S54-S56
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 44 S57-S59
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 45 S60-S65
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 46 S66-S71
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound 47 S72-S78
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra for compound 48 S79-S85
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31}$ P NMR spectra and analytical HPLC for compound 49 S86-S89
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR spectra and analytical HPLC for compound $\mathbf{5 0}$ S90-S93
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra for compound $\mathbf{5 1}$ (with app. 15\% 52) S94-S96
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31}$ P NMR, ${ }^{19}$ F NMR spectra and analytical HPLC for S97-S105compound 53${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{31} \mathrm{P}$ NMR spectra for compound 56S106-S111
${ }^{1} \mathrm{H}$ NMR, ${ }^{31}$ P NMR spectra and analytical HPLC for compound 57 (with app. S112-S114$3 \%$ by ${ }^{1} \mathrm{H}$ NMR of compound 58).

General. All starting materials and reagents were obtained commercially and used without further purification with the exception of TMSBr and trimethylphosphite which were distilled under Ar and stored under Ar in a Schlenk tube. Tetrahydrofuran (THF) was distilled from sodium metal in the presence of benzophenone under argon. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride under nitrogen. DMF was distilled under aspirator pressure from CaH and stored under Ar. Methanol was dried by refluxing over magnesium metal and distilled under Ar and stored over $4 \AA$ molecular sieves. Silica gel flash chromatography (flash chromatography) was performed using silica gel $60 \AA$ (230-400 mesh). CDCl_{3} was used as the solvent for all NMR experiments unless stated otherwise. For ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}, chemical shifts (δ) are reported in ppm relative to tetramethylsilane ($\delta 0.0$, internal standard). For ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{3} \mathrm{OD}$, chemical shifts are reported in ppm relative to the solvent residual peak (δ 3.31, central peak). For ${ }^{1} \mathrm{H}$ NMR in $\mathrm{D}_{2} \mathrm{O}$, chemical shifts are reported in ppm relative to the solvent residual peak ($\delta 4.79$). For ${ }^{1} \mathrm{H}$ NMR in $\mathrm{DMSO}_{6} d_{6}$, chemical shifts are reported in ppm relative to the solvent residual peak ($\delta 2.49$). For ${ }^{13} \mathrm{C} \mathrm{NMR}$ in CDCl_{3}, chemical shifts are reported in ppm relative to CDCl_{3} ($\delta 77.0$ for the central peak). For ${ }^{13} \mathrm{C}$ NMR spectra run in $\mathrm{CD}_{3} \mathrm{OD}$, chemical shifts are reported in ppm relative to the solvent residual peak ($\delta 49.00$, central peak). For ${ }^{13} \mathrm{C}$ NMR in DMSO- d_{6}, chemical shifts are reported in ppm relative to $\mathrm{DMSO}-d_{6}$, ($\delta 39.5$ for the central peak). For ${ }^{13} \mathrm{C}$ NMR spectra run in $\mathrm{D}_{2} \mathrm{O}$, chemical shifts are reported in ppm relative to $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{D}_{2} \mathrm{O}$ ($\delta 49.5$, external standard). All ${ }^{31} \mathrm{P}$ NMR spectra chemicals shifts are reported in ppm relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta 0.0$, external standard). All ${ }^{19} \mathrm{~F}$ spectra chemical shifts are reported in ppm relative to an external trichlorofluoromethane standard ($\delta 0.0$, Cflash chromatographyl ${ }_{3}$). Melting points are uncorrected. Semi-preparative and analytical HPLC were performed using C-18 columns.
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-Tri-O-acetyl-3-deazacytidine 4-N-[O,O-Bis(2-cyanoethyl)phosphoramidate] (13). The same procedure as for compound $\mathbf{1 2}$ was employed except the following quantities were used: $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O -acetyl-3-deazacytidine $\left(\mathbf{1 0}^{1}, 0.775 \mathrm{~g}, 2.1 \mathrm{mmol}\right)$ in dry THF $(10 \mathrm{~mL})$, tetrazole $(0.297 \mathrm{~g}, 4.2 \mathrm{mmol})$, phosphoramidate $\mathbf{1 5}(1.14 \mathrm{~g}, 4.2 \mathrm{mmol})$ in dry THF (5 mL), tert-butyl hydroperoxide ($1.25 \mathrm{~mL}, 12.6$ mmol). Purification was achieved using flash chromatography ($4 \% \mathrm{MeOH}-96 \% \mathrm{EtOAc}$ then 10% $\mathrm{MeOH}-90 \% \mathrm{EtOAc})$ to give 13 as a white foam $(0.785 \mathrm{~g}, 68 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.83(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=8.0,1.9,1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.39 (overlapping dd, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (overlapping dd, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20-4.39 (m, $7 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.12$ (three overlapping singlets, 9 H$) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 170.4,169.6$, $169.5,162.7,150.7,133.6,116.7,102.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 101.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 88.5,79.2,73.8,69.6$, 62.8, 62.01, $61.99(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 20.8,20.5,20.4,19.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (121 MHz): $\delta 1.7$; LR ${ }^{+}$ESIMS m/z (relative intensity) 555.1 ($\mathrm{M}+1,100$), 297.1 (41), 259.1 (35); $\operatorname{HR}^{+}{ }^{\text {ESIMS }} \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}(\mathrm{M}+1)$: 555.1481 , found 555.1492 .
$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-Tri-O-benzoyl-3-deazacytidine $4-\mathrm{N}-[\mathrm{O}, \mathrm{O}$-Bis(2-cyanoethyl)phosphoramidate] (14). Same procedure as for compound $\mathbf{1 2}$ except the following quantities were used: $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoyl-3deazacytidine ($11,{ }^{1} 1.70 \mathrm{~g}, 3.07 \mathrm{mmol}$) in dry THF (20 mL), tetrazole ($0.430 \mathrm{~g}, 6.14 \mathrm{mmol}$), phosphoramidate $15(1.67 \mathrm{~g}, 6.14 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$, tert-butyl hydroperoxide ($3.1 \mathrm{~mL}, 30.7$ mmol). Purification was achieved using flash chromatography (EtOAc then 2\% MeOH-98\% EtOAc) to give 14 as a white foam $(1.82 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.95(\mathrm{~m}$, 4H), 7.10-7.60 (m, 10 H$), 7.12$, (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (s overlapping with d, 2H), 5.79-5.87 (m, 2H), 4.65-4.82 (m, 3H), 4.20-4.369 (m, 4H), 2.71-2.81 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}): \delta 166.1,165.24,165.17,162.7,150.9,134.1,133.66,133.60,133.4,129.8,129.75,129.71$, 129.4, 128.73, 128.70, 128.57, 128.;53, 128.44, 116.80, $102.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 101.28(\mathrm{~d}, J=8.4 \mathrm{~Hz})$, 89.8, 79.7, 74.8, 70.1, 63.7, 62.0
(d, $J=3.6 \mathrm{~Hz}), 19.6,(\mathrm{~d}, J=7.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (121 MHz): $\delta 1.72 ;$ LR $^{+}$ESIMS m / z (relative intensity) $741.2(\mathrm{M}+1,97), 445.2(100)$; HR^{+}ESIMS m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}(\mathrm{M}+1): 741.1962$, found 741.1945.

\{1-[3,4-bis-(acetoyloxy)-5-acetoyloxymethyltetrahydro-furan-2-yl]-2-oxo-1,2-dihydro-pyridin-4-

 ylmethyl\}phosphonic acid dimethyl ester (22). (2-Hydroxypyridin-4-ylmethyl)phosphonic acid dimethyl ester ${ }^{2}(0.330 \mathrm{~g}, 1.52 \mathrm{mmol})$ and acetyl 2,3,5-tri-O-acetyl- β-D-ribofuranose $(0.484 \mathrm{~g}, 1.52$ mmol) were suspended in dry $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ under Ar at $0{ }^{\circ} \mathrm{C}$ (ice bath). After addition of bis(trimethylsilyl)trifluoroacetamide $(0.606 \mathrm{~mL}, 2.25 \mathrm{mmol})$ to the suspension, the ice bath was removed and the solution stirred for 1 h . Trimethylsilyltriflate $(0.412 \mathrm{~mL}, 2.25 \mathrm{mmol})$ was added and the solution stirred for 2 h . The reaction was diluted with EtOAc (200 mL) and ether (100 mL) and washed with sat. NaHCO_{3} and sat. brine. The organic layer was dried and concentrated and the residue purified by flash chromatography ($5 \% \mathrm{MeOH}-95 \% \mathrm{EtOAc}$ then $10 \% \mathrm{MeOH}-90 \% \mathrm{EtOAc}$) which gave pure compound 22 as a white foam $(0.450 \mathrm{~g}, 62 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.37(\mathrm{~s}, 1 \mathrm{H}), 6.24$ (s overlapping with d, 2 H), 5.35 (overlapping dd, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30 (overlapping $\mathrm{dd}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.40(\mathrm{~m}, 3 \mathrm{H}), \delta 3.72(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.51(\mathrm{~d}, J$ $=36.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08, (three overlapping singlets, 9 H) ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 170.1,169.4,169.3$, $161.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 145.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 132.0,120.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 108.34(\mathrm{~d}, J=4.5 \mathrm{~Hz})$, 88.1, 79.3, 73.8, 69.6, 62.7, $52.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 32.21(\mathrm{~d}, J=136.2 \mathrm{~Hz}), 20.6,20.3 ;{ }^{31} \mathrm{P}$ NMR (121 MHz): $\delta 27.6 ;$ LR $^{+}$ESIMS m / z (relative intensity) $476.1(\mathrm{M}+1,100) ;$ HR $^{+}$ESIMS m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{11} \mathrm{P}(\mathrm{M}+1)$: 476.1322, found 476.1321.1-(2', 3'-Di-O-acetyl- β-D-ribofuranosyl)-2-oxo-1,2-dihydropyridine (24). Prepared from compound 21 as a white foam in 75% yield $(90 \%$ EtOAc-10\% hexane) using the general deacetylation procedure described in the experimental section. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}$,
$1 \mathrm{H}), 6.32(\mathrm{~d}, ~ J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.39(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{bs}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 169.7,169.3,162.5,140.3,133.8$, 120.1, 106.8, 87.8, 83.1, 73.9, 70.4, 60.8, 20.4, 20.2; LREIMS m / z (relative intensity) $311.1(\mathrm{M}+, 14)$, 217.1 (100), 162.1 (17), 127.1 (40), 85 (37); HREIMS m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{7}: 311.1005$, found 311.1004

\{1-[3,4-bis-(acetoyloxy)-5-hydroxymethyltetrahydro-furan-2-yl]-2-oxo-1,2-dihydro-pyridin-4-

 ylmethyl $\}$ phosphonic acid dimethyl ester (25). Prepared from compound 22 as a white foam in 87% yield $\left(5 \% \mathrm{MeOH}-90 \% \mathrm{CHCl}_{3}\right)$ using the general deacetylation procedure described in the experimental section. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.40(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=11.43 \mathrm{~Hz}, 3 \mathrm{H}), 2.87(\mathrm{~d}, J=22.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}$, $3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 170.0,169.6,162.13(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 145.49(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, $133.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 120.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 108.73(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 87.7,83.5,74.1,70.8,61.2,53.20$ (d, $J=6.9 \mathrm{~Hz}), 53.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 32.2(\mathrm{~d}, J=136.9 \mathrm{~Hz}), 20.7,20.5 .{ }^{31} \mathrm{P}$ NMR (121 MHz): $\delta 28.0$; LR^{+}ESIMS m / z (relative intensity) $434.1(\mathrm{M}+1,100), 217(25)$; HR^{+}ESIMS m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{10} \mathrm{P}(\mathrm{M}+1): 434.1216$, found 434.1216.$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}-\mathrm{Di}-\mathrm{O}$-acetyl-3-deazacytidine $4-\mathrm{N}-[\mathrm{O}, \mathrm{O}-\mathrm{Bis}(2$-cyanoethyl)phosphoramidate] (28). Prepared from compound 13 as a white foam in 84% yield ($10 \% \mathrm{MeOH}-95 \% \mathrm{EtOAc}$) using the general deacetylation procedure described in the experimental section. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.54(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 5 \mathrm{H}), 3.96(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.07,2.09$ (two overlapping singlets, 6 H);
${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 170.1,169.8,163.2,151.1,135.4,117.0,102.2(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 101.4(\mathrm{~d}, J=9.6$ $\mathrm{Hz}), 89.2,83.2,73.6,70.4,62.2(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 61.1,20.6,20.5,19.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (121 $\mathrm{MHz}): \delta 1.6 ; \mathrm{LR}^{+}$ESIMS m / z (relative intensity) $513.1(\mathrm{M}+1,100), \mathrm{HR}^{+}$ESIMS m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P}: 513.1387$, found 513.1406.
$\mathbf{2}^{\prime}, \mathbf{3}$ '-Di-O-benzoyluridine (34). Prepared from compound 29 as a white solid in 81% yield (70\% EtOAc- 30% hexane) using the general debenzoylation procedure described in the experimental section. Mp (EtOAc) 195-197 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $^{3} \mathrm{mp} 194-196{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.15(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.37-7.67(\mathrm{~m}, 6 \mathrm{H}), 6.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-$ $5.88(\mathrm{~m}, 3 \mathrm{H}), 4.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-4.01(\mathrm{~m}, 2 \mathrm{H})$.

1-(2',3'-Di-O-benzoyl- β-D-ribofuranosyl)-2-oxo-1,2-dihydropyridine (35). Prepared from compound 30 using the general debenzoylation procedure described in the experimental section. Purification was achieved by re-crystallation from MeOH which gave 35 as a white solid in 84% yield. Mp 203-204 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.\mathrm{d}_{6}-\mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.50(\mathrm{~m}$, 2H), 7.28-7.36 (m, 4H), $6.57(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (overlapping dd, $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.66-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{bt}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\left.d_{6}-\mathrm{CDCl}_{3}\right): \delta 165.0,164.7,161.9,140.2,134.1,133.6,129.6,129.5,129.1,128.8,128.6$, $128.5,120.2,106.2,86.7,83.7,75.0,71.7,60.9 ;$ LR $^{+}$ESIMS $m z$ (relative intensity) $436.1(M+1,100)$, 341.1 (75), 183.0 (30); HR^{+}ESIMS m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{7}: 436.1396(\mathrm{M}+1)$, found 436.1396.
$\mathbf{2 '}^{\prime}, \mathbf{3}^{\prime}, \mathbf{5}^{\prime}-\mathrm{Di}-\mathrm{O}$-acetyl-3-deazacytidine 4-N-[O,O-Bis(2-cyanoethyl)phosphoramidate] (38). Catalyst 20 ($30 \mathrm{~mol} \%$) was added to a solution of the nucleoside $\mathbf{1 4}$ ($200 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dry MeOH-dry THF (8 $\mathrm{mL}, 1: 1$) and the resulting solution was stirred at $48{ }^{\circ} \mathrm{C}$ (oil bath). After 48 h , an additional $16 \mathrm{~mol} \%$ catalyst was added and the reaction stirred for an additional 24 h at $48{ }^{\circ} \mathrm{C}$. The solution was concentrated and the resulting residue purified using flash chromatography ($4 \% \mathrm{MeOH}-96 \% \mathrm{EtOAc}$) to give nucleoside 38
as a white foam ($95.8 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}$ $1 \mathrm{H}), 7.48 .7 .55(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 5 \mathrm{H}), 6.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}$, 1 H), 5.98 (overlapping dd, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (overlapping dd, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47 (d, $J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.06(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=5.9 \mathrm{~Hz}$, 4H), $1.63(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 165.7,165.4,163.3,151.0,135.9,133.7(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}$), 129.92, 129.86, 129.0, 128.9, 128.6, $102.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 101.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 90.7,83.7,74.6,71.2$, $62.1(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 61.5,19.7(\mathrm{~d}, J=7.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $(121 \mathrm{MHz}): \delta 1.67 ; \mathrm{LR}^{+} \mathrm{ESIMS} m z$ (relative intensity): $637.1(M+1,100), 341.1(23) ; \quad \mathrm{HR}^{+} \mathrm{ESIMS} m / z$ calculated for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P}(\mathrm{M}+1)$: 637.1700, found 637.1687.

1-(2',3'-Di-O-acetyl-5'-(bis-[(benzyloxyphosphorylmethyl)benzyloxyphosphorylmethyl]-

 methyloxyphosphoryl)- β-D-ribofuranosyl)-2-oxo-1,2-dihydropyridine (45). Prepared from compound 35 as a white foam in 64% yield ($100 \% \mathrm{EtOAc}$ then $5 \% \mathrm{MeOH}-95 \% \mathrm{EtOAc}$) using the general procedure described in the experimental section. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}): \delta 7.94-7.85(\mathrm{~m}, 4 \mathrm{H})$, 7.67-7.76 (m, 1H), 7.48-7.53 (m, 2H), 7.20-7.35 (m, 20H), 6.60-6.70 (m, 1H), $6.49(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.17-6.25 (m, 1H), 5.91 (overlapping dd, $J=5.3 \mathrm{~Hz}, 0.4 \mathrm{H}$), 5.79 (overlapping dd, $J=5.3 \mathrm{~Hz}, 0.6 \mathrm{H}$), 5.63-5.73 (m, 1H), 4.90-5.20 (m, 6H), 4.37-4.69 (m, 3H), $3.81(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.68-3.12(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 165.1,165.04,165.00,164.9,162.1,162.03,162.00$, $139.8,139.72,139.68,135.68,135.66,135.58,135.55,135.49,133.40,133.37,13.31,133.15,133.07$, $132.95,132.92,129.7,129.6,128.6,128.52,128.48,128.4,128.3,128.2,128.00,127.91,127.87$, $127.82,127.80,120.86,120.82,120.75,106.5,106.30,106.27,87.5,87.3,87.2,86.9,81.01,80.95$, 80.91, 80.86, 74.51, 74.47, 74.44, 70.55, 70.49, 70.44, 70.40, 68.04, 67.98,1 67.92, 67.86, 67.81, 67.76, $67.08,67.03,67.00,66.93,66.88,65.45,65.41,65.17,65.12,65.07,65.00,53.47,53.43,53.21,53.18$, 53.16, 53.14, 52.84, 52.80, 26.78-29.49 (m); ${ }^{31} \mathrm{P}$ NMR (121 MHz): $\delta 39.73-39.80(\mathrm{~m}), 39.37-39.50(\mathrm{~m})$, 23.74-23.84 (m), 23.29-23.43(m), 21.74-21.85 (m); LR ${ }^{+}$ESIMS m/z (relative intensity): $956(\mathrm{M}+1)$; HR^{+}ESIMS $\quad m / z$ calculated for $\quad \mathrm{C}_{48} \mathrm{H}_{49} \mathrm{NO}_{14} \mathrm{P}_{3}: \quad 956.2350$, found 956.2366 .\{1-[3,4-Bis-(hydroxy)-5-\{[(dihydroxyphosphorylmethyl)hydroxyphosphorylmethyl]-hydroxyphosphoryl\}tetrahydro-furan-2-yl]- 2-oxo-1,2-dihydropyridine tetrasodium salt (49). Prepared from compound $45(0.100 \mathrm{~g}, 0.105 \mathrm{mmol})$ using the general procedure described in the experimental section. The following solvent system was used for preparative HPLC: solvent A: 100 mM TEAA, pH 7.0 , solvent $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$. The following elution profile was used: $0-13 \mathrm{~min}: 99 \% \mathrm{~A}-1 \%$ B; 13-50 min: linear gradient of $99 \% \mathrm{~A}-1 \% \mathrm{~B}$ to $93 \% \mathrm{~A}-7 \% \mathrm{~B}$. Flow rate $=8 \mathrm{~mL} / \mathrm{min} . \mathrm{t}_{\mathrm{r}}=23.36 \mathrm{~min}$. The tetrasodium salt of nucleotide 49, generated using a Dowex $50 \mathrm{Wx} 8 \mathrm{Na}^{+}$ion exchange column, was a white powder ($27.8 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (overlapping dd, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.51 (overlapping dd, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$, $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.28(\mathrm{~m}, 5 \mathrm{H}), 1.93-2.35(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 164.0,142.4$, $133.3,118.8,109.4,89.3,82.8(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 75.0,68.9,62.7,30.5-32.6(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (121 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 28.4\left(\mathrm{P}_{\beta}\right), 18.2\left(\mathrm{P}_{\alpha}\right), 15.5\left(\mathrm{P}_{\gamma}\right) ;$ LRESIMS m / z (relative intensity) $462\left(\mathrm{M}-4 \mathrm{Na}+3 \mathrm{H}^{+}, 100\right)$.

HR ${ }^{-}$ESIMS m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{12} \mathrm{P}_{3}\left(\mathrm{M}-4 \mathrm{Na}+3 \mathrm{H}^{+}\right): 462.0120$, found 462.0123. The analytical HPLC chromatogram of 49 (elution profile: linear gradient of $99 \% \mathrm{~A}-1 \% \mathrm{~B}$ to $93 \% \mathrm{~A}-7 \% \mathrm{~B}$ over 50 minutes) indicated 49 to be greater than 99.8% pure (flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{r}}=13.46 \mathrm{~min}$).

References

1. Cook, P. D.; Day, R. T.; Robins, R. K. J. Heterocyclic Chem. 1997, 14, 1295.
2. Taylor, S. D.; Mirzaei, F.; Bearne, S. L. J Org Chem. 2006, 71, 9420.
3. Lohrmann, R.; Khorana, H. G. J. Am. Chem. Soc. 1964, 86, 4188.

${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}$

${ }^{13} \mathrm{C}$ (expanded)

${ }^{13} \mathrm{C}$ (expanded)

${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}$

$\mathrm{MeO}-\stackrel{\mathrm{O}}{\mathrm{O}} \stackrel{\mathrm{O}}{\mathrm{O}} \stackrel{\mathrm{O}}{\mathrm{O}}$
 OMe OBn OBn
 $43\left(\mathrm{CDCl}_{3}\right)$
 ${ }^{31} \mathrm{P}$

${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}$

${ }^{13} \mathrm{C}$ (expanded)

${ }^{13} \mathrm{C}$ (expanded)

$46\left(\mathrm{CDCl}_{3}\right)$
${ }^{13} \mathrm{C}$ (expanded)

${ }^{13} \mathrm{C}$ (expanded)

${ }^{13} \mathrm{C}$ (expanded)

${ }^{19} \mathrm{~F}$

${ }^{1} \mathrm{H}$

49
Analytical HPLC

\%
m
㘳 紫

The analytical HPLC chromatogram of 49. . The following solvents were used: solvent A: 100 mM TEAA, pH 7.0 , solvent $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$. The following elution profile was used: linear gradient of $99 \% \mathrm{~A}-$ 1% B to 93% A-7\% B over 50 minutes. Flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda_{\text {detector }}=260 \mathrm{nM}$.

50
Analytical HPLC

Analytical HPLC chromatogram of compound 50. The following solvent system were used: solvent A: 100 mM TEAA, pH 7.0 , solvent $\mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$. The following elution profile was used: $0-15 \mathrm{~min}: 99 \% \mathrm{~A}-$ $1 \% \mathrm{~B} ; 15-50 \mathrm{~min}$: linear gradient of $99 \% \mathrm{~A}-1 \% \mathrm{~B}$ to $94 \% \mathrm{~A}-6 \% \mathrm{~B}$. Flow rate $=1 \mathrm{~mL} / \mathrm{min} . \lambda_{\text {detector }}=$ 260 nM .

$51\left(\mathrm{D}_{2} \mathrm{O}\right)$
52 (app. 15%)

${ }^{13} \mathrm{C}$ (expanded)

${ }^{13} \mathrm{C}$ (expanded)

53
Analytical HPLC

Analytical HPLC chromatogram of compound 53. The following solvents were used: solvent A: 100 mM TEAA, pH 7.0 , solvent B: $\mathrm{CH}_{3} \mathrm{CN}$. The following elution profile was used: linear gradient of 99% A-1\% B to 93% A-7\% B over 40 minutes. Flow rate $=1 \mathrm{~mL} / \mathrm{min} . \lambda_{\text {detector }}=260 \mathrm{nM}$.

${ }^{13} \mathrm{C}$ (expanded)

TTT| $\left.\right|_{172}$

${ }^{13} \mathrm{C}$ (expanded)

Analytical HPLC

Analytical HPLC chromatogram of compound 57. The following elution profile was used: 100 mM TEAA, pH 9.0 for 30 min . Flow rate $=1 \mathrm{~mL} / \mathrm{min} . \lambda_{\text {detector }}=260 \mathrm{nM}$.

