Supporting Information

Eu_{0.56}Ta₂O₇: A New Nanosheet Phosphor with the High Intrananosheet-Site Photoactivator Concentration

Tadashi C. Ozawa,*[†] Katsutoshi Fukuda,[†] Kosho Akatsuka,[†] Yasuo Ebina,[†] Takayoshi Sasaki,^{†‡} Keiji Kurashima,[§] and Kosuke Kosuda[§]

[†] Nanoscale Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan

^{*} International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan

[§] Materials Analysis Station, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan

Experimental Procedures

Materials. The first precursor $Li_2Eu_{0.56}Ta_2O_7$ was prepared by the solid state reaction of 2:0.667:2 Li_2CO_3 : Eu_2O_3 : Ta_2O_5 with a 10% excess of Li_2CO_3 , which compensate for its loss by evaporation during the heating reaction. This ratio of starting materials was used because the reaction was originally intended to synthesize $Li_2Eu_{2/3}Ta_2O_7$ which is the exact Eu analog of $Li_2La_{2/3}Ta_2O_7$ without any extra vacancies in the Ln site.¹ In addition, this ratio of the staring materials yielded the least amount of impurity phases. These materials are mixed thoroughly in an agate mortar, placed in a capped Pt crucible which is enclosed in a capped alumina crucible, heated up to 1600 °C at 30 °C/min, dwelled for 1 min, and furnace-cooled to room temperature.

Second, $Li_2Eu_{0.56}Ta_2O_7$ was protonated by a method similar to that for $H_2La_{2/3}Ta_2O_7$ and $H_2SrTa_2O_7$ with some modifications.¹⁻⁵ 1.9 g of $Li_2Eu_{0.56}Ta_2O_7$ was ground and reacted with 190 mL of 2 M HNO₃ for 3 days at room temperature under vigorous shaking in order to exchange Li^+ of with H^+ .

Finally, 1.5 g of this protonated precursor was reacted with 375 mL of an approximately 3-fold excess TBAOH aqueous solution. After 1 week of vigorous shaking, a translucent white colloidal nanosheet suspension was obtained. This nanosheet suspension was centrifuged at 2500 rpm for 5 min in order to separate the unexfoliated residue from the nanosheet suspension for the characterizations.

Characterizations. The elemental compositions of the bulk precursors were analyzed by EPMA on JEOL JXA-8500F using the acceleration voltage of 15 kV. The powder XRD (X-ray diffraction) patterns of the bulk precursors were obtained using Cu *K* α radiation on a Rigaku RINT2200V/PC diffractometer. The diffraction peaks were indexed, and the lattice parameters were refined using APPLEMAN software.⁶ The structural data of the previously reported Li₂La_{2/3}Ta₂O₇ was used as starting parameters for these processes.¹ TEM and SAED were performed on a JEOL JEM-1010 transmission electron microscope at an acceleration voltage of 100 kV. The specimen for this characterization was prepared by dropping and drying diluted nanosheet suspension on a carbon microgrid. The in-plane XRD pattern of Eu_{0.56}Ta₂O₇ nanosheets, deposited on a Si substrate by the Langmuir-Blodgett (LB) method,⁷ was obtained using the synchrotron radiation ($\lambda = 0.11973(9)$ nm) of Photon Factory BL-3A at High Energy Accelerator Research Organization (KEK). The morphology analysis was performed by AFM using a Seiko Instruments SPA-400 AFM system with a Si tip cantilever (20 N m⁻¹) in the DFM mode. Finally, photoluminescence excitation and emission properties of Eu_{0.56}Ta₂O₇ nanosheets were characterized on a HITACHI F-4500 fluorescence spectrometer at room temperature. The excitation spectrum was corrected for the spectral distribution of the lamp intensity by the Rhodamine B method, and the emission spectrum was corrected for the spectral response of the instrument using a substandard light source.

References and Notes

(1) Crosnier-Lopez, M. P.; Le Berre, F.; Fourquet, J. L. Z. Anorg. Allg. Chem. 2002, 628, 2049.

(2) Shimizu, K. I.; Itoh, S.; Hatamachi, T.; Kitayama, Y.; Kodama, T. J. Mater. Chem.2006, 16, 773.

(3) Le Berre, F.; Crosnier-Lopez, M. P.; Fourquet, J. L. Mater. Res. Bull. 2006, 41, 825.

(4) Bhuvanesh, N. S. P.; Crosnier-Lopez, M. P.; Duroy, H.; Fourquet, J. L. J. Mater. Chem.2000, 10, 1685.

(5) Crosnier-Lopez, M. P.; Le Berre, F.; Fourquet, J. L. J. Mater. Chem. 2001, 11, 1146.

(6) Appleman, D. E.; Evans, H. T. J., Indexing and least-squares refinement of powder diffraction data (Job 9214).U.S.Geological Survey Computer Contribution No.20; PB NationalTechnical Information, Spring-field, VA 22151: **1973**; p. 60.

(7) Muramatsu, M.; Akatsuka, K.; Ebina, Y.; Wang, K.; Sasaki, T.; Ishida, T.; Miyake, K.; Haga, M. *Langmuir* **2005**, *21*, 6590.