Authors:

Lance E. Christensen, Benjamin Brunner, Kasey N. Truong, Randall E. Mielke, Christopher R. Webster, Max Coleman

Affiliation:

The Jet Propulsion Laboratory, Pasadena, California, 91109, USA

Title:
Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO_{2}

Abstract

: The following is supplemental information pertaining to the paper. It consists of Table S-1 which lists modeled line parameters of ${ }^{32} \mathrm{SO}_{2}$ and ${ }^{34} \mathrm{SO}_{2}$ for the spectral region investigated. Also included are three figures. Figure S-1 which demonstrates that modeled line parameters agree with experimental results. Figure S-2 which describes the correction needed to W_{x} to correct for the Beer-Lambert Law. Figure S-3 which shows an Allan-variance plot of W_{x} and $\delta^{34} \mathrm{~S}$ for sample E2.

Supplemental Table S-1. Line parameters of ${ }^{32} \mathrm{SO}_{2}$ and ${ }^{34} \mathrm{SO}_{2}$ rovibrational transitions in the spectral window in which measurements were taken.

Iso	$v_{\eta \eta^{\prime}}$ $\left(\mathrm{cm}^{-1}\right)$	$S_{\eta \eta^{\prime}}(296 \mathrm{~K})^{\dagger}$ $\left(\mathrm{cm} \mathrm{molec}^{-1}\right)$	$E^{\prime \prime}$ $\left(\mathrm{cm}^{-1}\right)$	vib. trans.	rot. trans.
32	1351.6668	2.2×10^{-20}	176	$001-000$	$13_{8,5}-14_{8,6}$
34	1351.6708	2.4×10^{-20}	123	$001-000$	$12_{7,6}-11_{7,5}$
34	1351.6755	4.0×10^{-20}	61	$001-000$	$11_{4,7}-10_{4,6}$
34	1351.6948	1.6×10^{-20}	183	$001-000$	$13_{9,4}-12_{9,3}$
34^{*}	1351.7136	5.2×10^{-20}	34	$001-000$	$11_{0,11}-10_{0,10}$
32	1351.7416	4.2×10^{-20}	119	$001-000$	$14_{5,10}-15_{5,11}$
34	1351.7657	7.1×10^{-21}	303	$001-000$	$15_{12,3-}-14_{12,2}$
32^{*}	1351.7730	5.5×10^{-22}	626	$011-010$	$7_{7,0}-87,1$
32^{*}	1351.7741	2.7×10^{-21}	575	$011-010$	$8_{4,5-9}-9_{4,6}$

[^0]
Supplemental Figure S-1.

Figure S.1. Experimental spectra of gas samples containing $\sim 95 \%{ }^{32} \mathrm{SO}_{2}$ (top half) and $\sim 90 \%$ ${ }^{34} \mathrm{SO}_{2}$ (bottom half) compared with modeled linestrengths. In the top half, thick vertical lines are positions and linestrengths for 001-000 of ${ }^{32} \mathrm{SO}_{2}$ from HITRAN and thin lines with arrows are modeled lines for 011-010 of ${ }^{32} \mathrm{SO}_{2}$. In the bottom half, vertical lines are modeled lines for 001000 of ${ }^{34} \mathrm{SO}_{2}$.

Supplemental Figure S-2.

Figure S-2. Correction needed, Γ_{x}, so that $\Gamma_{\mathrm{x}}=\gamma \cdot \alpha_{\mathrm{x}} / W_{\mathrm{x}}$. Values of α_{x} and W_{x} were acquired from numerically modeled spectra using a Voigt profile for direct absorption at 1.0 mbar , $298.0 \mathrm{~K}, 30.0 \mathrm{MHz}$ HWHM Gaussian laser linewidth, $\gamma_{\text {self }}(296 \mathrm{~K})=0.400 \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$ (only considered self-broadening), $n=0.50$, modulation amplitude $=0.0040 \mathrm{~cm}^{-1}$. Mixing-ratio was varied to vary α_{x}. The value of γ was determined from a linear fit of W_{x} versus α_{x} for fractional absorption $<1 \times 10^{-4}$.

Supplemental Figure S-3.

Figure S-3. Allan variance plot of data from sample E2. Dark and light grey lines are for W_{34} and W_{32} signals, respectively, both scaled by 10^{-12}. Black line is $\delta^{34} \mathrm{~S}$ signal. Sample E2 was chosen because it was typical of other measurements.

[^0]: * Denotes transitions used for isotopic analysis.
 ${ }^{\dagger} S_{\eta \eta^{\prime}}$ not scaled by isotopic abundance.

