Authors:

Lance E. Christensen, Benjamin Brunner, Kasey N. Truong, Randall E. Mielke, Christopher R. Webster, Max Coleman

Affiliation:

The Jet Propulsion Laboratory, Pasadena, California, 91109, USA

Title:

Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO₂

Abstract:

The following is supplemental information pertaining to the paper. It consists of Table S-1 which lists modeled line parameters of ${}^{32}SO_2$ and ${}^{34}SO_2$ for the spectral region investigated. Also included are three figures. Figure S-1 which demonstrates that modeled line parameters agree with experimental results. Figure S-2 which describes the correction needed to W_x to correct for the Beer-Lambert Law. Figure S-3 which shows an Allan-variance plot of W_x and $\delta^{34}S$ for sample E2.

Supplemental Table S-1. Line parameters of ${}^{32}SO_2$ and ${}^{34}SO_2$ rovibrational transitions in the spectral window in which measurements were taken.

Iso	$v_{\eta\eta'}$	$S_{\eta\eta'}(296\mathrm{K})^{\dagger}$	$E^{\prime\prime}$	vib.	rot.
	(cm^{-1})	(cm molec ⁻¹)	(cm^{-1})	trans.	trans.
32	1351.6668	2.2×10 ⁻²⁰	176	001-000	$13_{8,5}$ - $14_{8,6}$
34	1351.6708	2.4×10^{-20}	123	001-000	127,6-117,5
34	1351.6755	4.0×10 ⁻²⁰	61	001-000	$11_{4,7}$ - $10_{4,6}$
34	1351.6948	1.6×10 ⁻²⁰	183	001-000	139,4-129,3
34*	1351.7136	5.2×10 ⁻²⁰	34	001-000	$11_{0,11}$ - $10_{0,10}$
32	1351.7416	4.2×10 ⁻²⁰	119	001-000	145,10-155,11
34	1351.7657	7.1×10 ⁻²¹	303	001-000	$15_{12,3}$ - $14_{12,2}$
32^{*}	1351.7730	5.5×10 ⁻²²	626	011-010	77,0-87,1
32^{*}	1351.7741	2.7×10 ⁻²¹	575	011-010	84.5-94.6

* Denotes transitions used for isotopic analysis.

[†] $S_{\eta\eta'}$ not scaled by isotopic abundance.

Supplemental Figure S-1.

Figure S.1. Experimental spectra of gas samples containing ~95% ${}^{32}SO_2$ (top half) and ~90% ${}^{34}SO_2$ (bottom half) compared with modeled linestrengths. In the top half, thick vertical lines are positions and linestrengths for 001-000 of ${}^{32}SO_2$ from HITRAN and thin lines with arrows are modeled lines for 011-010 of ${}^{32}SO_2$. In the bottom half, vertical lines are modeled lines for 001-000 of ${}^{34}SO_2$.

Supplemental Figure S-2.

Figure S-2. Correction needed, Γ_x , so that $\Gamma_x = \gamma \cdot \alpha_x / W_x$. Values of α_x and W_x were acquired from numerically modeled spectra using a Voigt profile for direct absorption at 1.0 mbar, 298.0 K, 30.0 MHz HWHM Gaussian laser linewidth, $\gamma_{self}(296 \text{ K}) = 0.400 \text{ cm}^{-1} \text{ atm}^{-1}$ (only considered self-broadening), n = 0.50, modulation amplitude = 0.0040 cm⁻¹. Mixing-ratio was varied to vary α_x . The value of γ was determined from a linear fit of W_x versus α_x for fractional absorption < 1×10⁻⁴.

Supplemental Figure S-3.

Figure S-3. Allan variance plot of data from sample E2. Dark and light grey lines are for W_{34} and W_{32} signals, respectively, both scaled by 10⁻¹². Black line is δ^{34} S signal. Sample E2 was chosen because it was typical of other measurements.