Modulation of Dark Conductivity over a $\mathbf{1 0}^{-12}-10^{-5} \mathrm{~S} / \mathrm{cm}$ Range Through Ancillary Group Modification in Amorphous Solids of Ethyne-Bridged (porphinato)zinc(II) Oligomers.

Paul R. Frail ${ }^{-}$, Kimihiro Susumu ${ }^{=}$,Michael Huynh ${ }^{=}$, Jennie Fong ${ }^{=}$, J. M. Kikkawa ${ }^{\ddagger *}$, Michael J. Therien ${ }^{-*}$
=Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
${ }^{\ddagger}$ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Experimental Section

Materials. All manipulations were carried out under nitrogen or argon
previously passed through an O_{2} scrubbing tower (Schweitzerhall R3-11 catalyst) and a drying tower (Linde 3-Å molecular sieves) unless otherwise stated. Air sensitive solids were handled in a Braun 150-M glove box. Standard Schlenk techniques were employed to manipulate air-sensitive solutions. Methylene Chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran (THF) were distilled from CaH_{2} and $\mathrm{K} / 4$ benzoylbiphenyl, respectively, under N_{2}. All NMR solvents were used as received. ZnCl_{2} was dried by heating under vacuum and stored under N_{2}. The catalysts $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, and tris(dibenzylideneacetone)dipalladium(0) $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right)$, copper iodide (CuI), as well as triphenylarsine $\left(\mathrm{AsPh}_{3}\right)$ were purchased from Strem Chemicals and used as received.

Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are relative to tetramethylsilane (TMS) signal in the deuterated solvent (TMS, $\delta=0.00 \mathrm{ppm})$. All J values are reported in Hertz. Flash and size exclusion column chromatographies were
performed on the bench top, using respectively silica gel (EM Science, 230-400 mesh) and Bio-Rad Bio-Beads SX-1 (THF as the eluent) as media. Mass spectra were acquired at the Mass Spectrometry Center at the University of Pennsylvania. MALDI-TOF mass spectroscopic data were obtained with a Perspective Voyager DE instrument in the Laboratory of Dr. Bill Degrado (Department of Biophysics, University of Pennsylvania). Samples were prepared as μ molar solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\bullet}$-cyano-4-hydroxy cinnamic acid (Aldrich), 1,4-Bis(5-phenyloxazol-2-yl)-benzene (Aldrich), Terthiophene (Aldrich), Anthracene (Aldrich), and TCNQ (Aldrich) were utilized as the matrix.

TGA/DTA samples were purified by silica gel chromatography, filtered and dried under vacuum for 2 days and $2-8 \mathrm{mg}$ samples were used and the temperature was increased at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. XRD data samples were purified by silica gel chromatography, filtered, and slowly dried in a vial over a stream of Nitrogen. Samples were then vacuum dried for another 2 days followed by the thick films being scraped out and loaded into capillary tubes.

Instrumentation. Electronic spectra were recorded on a Shimadzu PharmSpec UV-1700. NMR spectra were recorded on either 250 MHz AC-250, or 500 MHz AMX-500 Brüker spectrometers. TGA/DTA were measured by Dr. A. McGhie (LRSM University of Pennsylvania). XRD data were measured by Dr. P. Heiney (Physics Dept. Univesrity of Pennsylvania). For description of equipment and
facilities the reader is referred to the LRSM website, http://www.lrsm.upenn.edu/facilities/.

Purification of samples for 2- and 4-Probe measurements. All samples were purified by a combination of column chromatographies prior to measurements. Oligomers (dimers, trimers, pentamers) were first purified by size exclusion chromatography ($\bullet 61 \mathrm{~cm}$ in length), followed by silica gel chromatography using either CHCl_{3} or $\mathrm{CHCl}_{3}: \mathrm{MeOH}$ solvents as the eluent to remove excess biobeads, then a final silica gel column using THF:Hexanes as the eluent. Monomers were not subject to size exclusion chromatography. All samples were filtered through a $50 \mu \mathrm{~m}$ PPE membrane into a vial and dried with a stream of Nitrogen. To prepare press pellets samples were dried 2 days under vacuum and then scraped into solvent washed KBr pellet press. Samples were pressed at 2000 psi and maintained at that pressure for 5 min . Thin film samples were filtered through a $50 \mu \mathrm{~m}$ PPE membrane into a vial and dried with a stream of Nitrogen. Samples were prepared with either HPLC grade solvents or freshly distilled solvents at a concentration of $20-50 \mathrm{mg} / \mathrm{mL}$ (concentration depends on ancillary side chains). ESR experiments (mmol concentrations) were performed on monomer and oligomer samples that were exposed to ambient light and temperature (2-4 weeks) all registered isolated spin signals. Following the aforementioned purification procedure, samples prepared for spin casting would not registered any spin signals at maximum gain.

2- and 4-Probe measurements. Pressed pellets were purified until a constant conductivity value was reach. Pellets were pressed in a KBr hydrolic pressed equipped in a Nitrogen atmosphere glovebox. 5 mm pellets were pressed using a KBr hydrollic press equipped in nitrogen filled glovebox. The pellets were cut down to rectangles with average dimensions of $5 \times 2 \times 1 \mathrm{~mm}$, with precise dimensions obtained using a dial indicator with $1 \mu \mathrm{~m}$ resolution and microscope. Substrates were subjected to piranha and solvent wash and dried in a $200^{\circ} \mathrm{C}$ oven. Electrical contacts were made with micromanipulator electrodes equipped with gold-coated tungsten electrodes, which were cleaned by plasma or solvent wash prior to use. 2- and 4-probe measurements were taken with a Keithley 237. For high resistance samples, measurements were performed using a computercontrolled sequence of opposite polarity voltages. ${ }^{1}$ Thin film measurements were done on sapphire substrates (Meller Optics) and samples were deposited by spin coating from concentrated THF solutions, pentamer samples were spin coated from chlorobenzene solutions. Thin film thicknesses were estimated using ellipsometry and verified by RBS measurements (LRSM University of Pennsylvania) where analogous films were spin cast on silicon substrate yielding thicknesses ranging between 200-400 nm. Au contact electrodes were deposited utilizing a shadow mask, for 2-probe measurements, two pairs of electrodes with gap distances of $200 \mu \mathrm{~m}$ and 1 mm apart; 4-probe measurements used a shadow mask that produced 4 sets of electrodes 1 mm apart. All electrical measurements
on films were done under inert conditions with the samples and probe station in a glovebox continuously purged by Ar. Results with pressed pellets were done in air, as there was no observable change in results when done under inert conditions. Resistance values were determined from the linear region of the IV curves. Dark conductivity values were then calculated from the respective dimensions of individual electrode samples and film thicknesses.

Synthetic Procedures

Synthetic details for previously reported compounds refer to the references listed at the end of the synthetic procedure section. For previously reported compounds only characterization data are listed. If a different procedure was used than what is reference full experimental details are listed. The $\mathrm{PZn}_{n}-\mathrm{O} 3 \mathrm{Hex}$ synthetic procedures were identical to the $\mathrm{PZn}_{n}-\mathrm{O} 3 \mathrm{EHex}$ and only characterization data is listed then for $\mathrm{PZn}_{\mathrm{n}}-\mathrm{O} 3 \mathrm{Hex}$ series. Abbreviations for mass spectral data are as follows HR MS = High Resolution Mass Spectra, ESI MS = Low Resolution ESI Mass Spectra.

PZn-2,6(OR)Ar Series ${ }^{2}$:

10,20-di(2',6'-bis(3",3"-dimethylbutoxy)phenyl)porphinato)zinc(II) PZn-

2,6(OR)Ar.

10,20-di($2^{\prime}, 6^{\prime}-\operatorname{bis}\left(3^{\prime \prime}, 3^{\prime \prime}-\right.$ dimethylbutoxy $)$ phenyl)porphyrin ($200 \mathrm{mg}, 0.234 \mathrm{mmol}$) was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was heated to reflux and then Zn acetate dihydrate was added in excess
and the reaction was allowed to stir for 2 hrs . After cooling, the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) $\times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:4 THF:Hexanes as the eluent. Yield $=208 \mathrm{mg}(97 \%$ yield based on starting material). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.93(\mathrm{~s}, 2 \mathrm{H}), \delta 9.15(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.35 \mathrm{~Hz}), \delta 8.90(\mathrm{~d}, 4 \mathrm{H}, J=4.35 \mathrm{~Hz}), \delta 7.64(\mathrm{t}, 2 \mathrm{H}, J=8.50 \mathrm{~Hz}), \delta 6.97(\mathrm{~d}, 4 \mathrm{H}, J=$ $8.40 \mathrm{~Hz}), \delta 3.81(\mathrm{t}, 8 \mathrm{H}, J=4.65), \delta 0.68(\mathrm{t}, 8 \mathrm{H}, J=7.55), \delta 0.22(\mathrm{~s}, 36 \mathrm{H})$. Vis (THF): 410, 546, 579 nm . ESI-MS m/z: $924.70\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{56} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn} 924.4532$).

1,2-Bis[(10,20-bis[2',6'-bis(3", $3^{\prime \prime}$-dimethyl-1'-

butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne $\underline{\mathrm{PZn}}_{2} \mathbf{- 2 , 6}_{2}$ (OR)Ar.

[5-ethynyl-10,20-bis($2^{\prime}, 6^{\prime}-\operatorname{bis}\left(3^{\prime \prime}, 3^{\prime \prime}-\right.$
dimethylbutoxy)phenylporphinato]zinc(II) (200 mg , 0.211 mmol), [5-bromo-10,20-bis($2^{\prime}, 6^{\prime}$-bis($3^{\prime \prime}, 3^{\prime \prime}$-dimethylbutoxy)phenylporphinato]zinc(II) (201 mg, $0.200 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(28 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{AsPh}_{3}(78 \mathrm{mg}, 1.1 \mathrm{mmol})$ were charged into a 100 mL Schlenk flask. THF:TEA solvent mixture ($50 \mathrm{~mL}, 9: 1$) was subjected to $3 x$ freeze-pump-thaw cycles and then transferred to the reaction flask. The reaction mixture was stirred for 16 hrs at $60^{\circ} \mathrm{C}$ under Ar. After 16 hrs the reaction mixture was diluted with CHCl_{3} and washed $3 x$ with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq), organic residue was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The product was chromatographed on silica gel using 1:4_THF:hexanes the first band, brown-green, was collected. The solvent was removed via
vacuum yielding $\left.\mathbf{P Z n}_{\mathbf{2}} \mathbf{- 2 , 6 (O R}\right)$ Ar. Yield 296 mg (79% yield, based on mono bromo starting material). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.60(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.6)$, $10.08(\mathrm{~s}, 2 \mathrm{H}), 9.44(\mathrm{~d}, 4 \mathrm{H}, J=4.4), 9.35(\mathrm{~d}, 4 \mathrm{H}, J=4.5), 9.29(\mathrm{~d}, 4 \mathrm{H}, J=4.5), 8.06(\mathrm{t}$, $4 \mathrm{H}, J=8.4), 7.41(\mathrm{~d}, 8 \mathrm{H}, J=8.5), 4.16(\mathrm{t}, 16 \mathrm{H}, J=7.4), 0.97(\mathrm{t}, 16 \mathrm{H}, J=7.4), 0.36(\mathrm{~s}$, 72H). Vis (THF): 413, 480, 551, 693 nm . MS MALDI-TOF $m / z: 1872.1183$
$\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{114} \mathrm{H}_{134} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Zn}_{2}$ 1870.8908).

(5,15-bis[(10',20'-bis[2"', $6^{\prime \prime \prime}$-bis($3^{\prime \prime \prime \prime}, 3^{\prime \prime \prime \prime}$-dimethyl-1"'"-

butyloxy)phenyl]porphinato)zinc(II)ethyn-5'-yl]-10,20-bis[2',6'-bis(3",3"-

 dimethyl-1"-butyloxy)phenyllporphinato)zinc(II) $\mathbf{P Z n}_{3} \mathbf{2}_{2}, 6(\mathrm{OR}) \mathrm{Ar}$.[5-ethynyl-10,20-bis(2', 6^{\prime}-bis($3^{\prime \prime}, 3^{\prime \prime}-$
dimethylbutoxy)phenylporphinatolzinc(II) ($238 \mathrm{mg}, 0.250 \mathrm{mmol}$), [5,15-dibromo-10,20-bis(2',6'-bis(3,3-dimethylbutoxy)phenylporphinatolzinc(II) ($123 \mathrm{mg}, 0.114$ $\mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(23 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{AsPh}_{3}(98 \mathrm{mg}, 0.300 \mathrm{mmol})$ were charged into a 100 mL Schlenk flask. THF:TEA solvent mixture ($50 \mathrm{~mL}, 9: 1$) was subjected to $3 x$ freeze-pump-thaw cycles and then transferred to the reaction flask. The reaction mixture was stirred for 16 hrs at $60^{\circ} \mathrm{C}$ under Ar. After 16 hrs the reaction mixture was diluted with CHCl_{3} and washed $3 x$ with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, organic residue was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The product was chromatographed on silica gel using 3:7 THF:hexanes the first band, brown-green, was collected. The solvent was removed and the organic residue was redissolved in THF and further purified by size exclusion column. The solvent was removed via vacuum and chromatographed on silica
gel using CHCl_{3} to remove residual biobeads, the first band was collected yielding $\mathbf{P Z n}_{3} \mathbf{- 2 , 6}$. Yield 254 mg (79% yield, based on dibromo starting material).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.35(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), 10.28(\mathrm{~d}, 4 \mathrm{H}, J=4.35)$,
$9.87(\mathrm{~s}, 2 \mathrm{H}), 9.12(\mathrm{~d}, 4 \mathrm{H}, J=4.25), 9.03(\mathrm{~d}, 4 \mathrm{H}, J=4.45), 8.94(\mathrm{~d}, 4 \mathrm{H}, J=4.25), 8.87$ $(\mathrm{d}, 4 \mathrm{H}, J=4.30), 7.73(\mathrm{t}, 2 \mathrm{H}, J=8.30), 7.72(\mathrm{t}, 4 \mathrm{H}, J=8.30), 7.06(\mathrm{~d}, 4 \mathrm{H}, J=8.45)$, $7.04(\mathrm{~d}, 4 \mathrm{H}, J=8.45), 3.95(\mathrm{t}, 24 \mathrm{H}, J=7.28), 0.88(\mathrm{t}, 24 \mathrm{H}, J=7.25), 0.30(\mathrm{~s}, 108 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right)$. Vis (THF): $414,495,570,766 \mathrm{~nm}$. MS MALDI-TOF $\mathrm{m} / \mathrm{z}: 2814.7533$ [(M)+] (calcd for $\mathrm{C}_{172} \mathrm{H}_{200} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Zn}_{3}$ 2817.3283).

PZn-3,5(OR)Ar Series ${ }^{3}$:

10,20-di($3^{\prime}, 5^{\prime}$-bis($3^{\prime \prime}, 3^{\prime \prime}$-dimethylbutoxy)phenyl)porphinato)zinc(II) PZn-

3,5(OR)Ar.

10,20-di(3', 5^{\prime}-bis($3^{\prime \prime}, 3^{\prime \prime}$-dimethylbutoxy)phenyl)porphyrin (200 mg, 0.234
mmol) was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was heated to reflux and then Zn acetate dihydrate (257 mg , 1.17 mmol) was added and the reaction was allowed to stir for 2 hrs . After cooling, the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$ and the organic layer was collected and dried over CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:4 THF:Hexanes as the eluent. Yield = 205 $\mathrm{mg}\left(95 \%\right.$ yield based on starting material). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.30(\mathrm{~s}$, $2 H), \delta 9.43(\mathrm{~d}, 4 \mathrm{H}, J=4.50), \delta 9.26(\mathrm{~d}, 4 \mathrm{H}, J=4.45), \delta 7.43(\mathrm{~d}, 4 \mathrm{H}, J=2.20), \delta 6.91(\mathrm{t}$, $2 \mathrm{H}, J=2.20), \delta 4.21(\mathrm{t}, 8 \mathrm{H}, J=7.30), \delta 1.86(\mathrm{t}, 8 \mathrm{H}, J=7.35), \delta 1.01(\mathrm{~s}, 36 \mathrm{H})$. Vis
(THF): 410, 546, 579 nm . ESI-MS m/z: $924.90\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{56} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}$ 924.4532).

1,2-Bis[(10,20-bis[3',5'-bis(3",3'-dimethyl-1"-

butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne PZn $_{2}$-3,5(OR)Ar.

[5-ethynyl-10,20-bis($3^{\prime}, 5^{\prime}-\operatorname{bis}\left(3^{\prime \prime}, 3^{\prime \prime}-\right.$
dimethylbutoxy)phenylporphinato]zinc(II) ($210 \mathrm{mg}, 0.215 \mathrm{mmol}$), [5-bromo-10,20-bis($3^{\prime}, 5^{\prime}$-bis($3^{\prime \prime}, 3^{\prime \prime}$-dimethylbutoxy)phenylporphinato]zinc(II) (200 mg, $0.200 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(28 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{AsPh}_{3}(78 \mathrm{mg}, 1.1 \mathrm{mmol})$ were charged into a 100 mL Schlenk flask. THF:TEA solvent mixture ($50 \mathrm{~mL}, 9: 1$) was subjected to $3 x$ freeze-pump-thaw cycles and then transferred to the reaction flask. The reaction mixture was stirred for 16 hrs at $60^{\circ} \mathrm{C}$ under Ar. After 16 hrs the reaction mixture was diluted with CHCl_{3} and washed $3 x$ with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, organic residue was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The product was chromatographed on silica gel using 1:4 THF:hexanes the first band, brown-green, was collected. The solvent was removed via vacuum yielding $\mathrm{PZn}_{2}-3,5$. Yield 269 mg (72% yield, based on mono ethyne starting material). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.45(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), 10.06$ $(\mathrm{s}, 2 \mathrm{H}), 9.26(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), 9.24(\mathrm{~d}, 4 \mathrm{H}, J=4.4 \mathrm{~Hz}), 9.08(\mathrm{~d}, 4 \mathrm{H}, J=4.5 \mathrm{~Hz})$, $7.44(\mathrm{~d}, 8 \mathrm{H}, \mathrm{J}=2.05 \mathrm{~Hz}), 6.89(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=2.30 \mathrm{~Hz}), 4.22(\mathrm{t}, 16 \mathrm{H}, J=7.40 \mathrm{~Hz}), 1.85(\mathrm{t}$, $16 \mathrm{H}, \mathrm{J}=7.40 \mathrm{~Hz}), 0.99(\mathrm{~s}, 72 \mathrm{H})$. Vis (THF): 413, 480, 551, 698 nm. MS MALDITOF $m / z: 1871.4153\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{114} \mathrm{H}_{134} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Zn}_{2}$ 1870.8908).

(5,15-bis[(10',20'-bis[3"', $5^{\prime \prime \prime}-b i s\left(3^{\prime \prime \prime}, 3^{\prime \prime \prime \prime}-\right.$-dimethyl-1'"'-

butyloxy)phenyl]porphinato)zinc(II)ethyn-5'-yl]-10,20-bis[$3^{\prime}, 5^{\prime}-\mathrm{bis}\left(3^{\prime \prime}, 3^{\prime \prime}-\right.$ dimethyl-1"-butyloxy)phenyl]porphinato)zinc(II) $\underline{\mathrm{PZn}}_{3}-3,5(\mathrm{OR}) \mathrm{Ar}$.

5-Ethynyl-(10,20-bis[$3^{\prime}, 5^{\prime}-\operatorname{bis}\left(3^{\prime \prime}, 3^{\prime \prime}\right.$-dimethyl-1'-
butyloxy)phenyl]porphinato)zinc(II) ($248 \mathrm{mg}, 2.61 \times 10^{-4} \mathrm{~mol}$) and (5,15-
dibromo-10,20-bis[3', 5^{\prime}-bis($3^{\prime \prime}, 3^{\prime \prime}$-dimethyl- $1^{\prime \prime}$ -
butyloxy)phenyl]porphinato)zinc(II) ($135 \mathrm{mg}, 1.24 \times 10^{-4} \mathrm{~mol}$) were charged into a Schlenk Flask with $\mathrm{AsPh}_{3}\left(49 \mathrm{mg}, 1.5 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(17 \mathrm{mg}, \underline{1.9} \times 10^{-5}\right.$ mol). THF:TEA (9:1) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight under Ar. The reaction mixture was poured down a silica plug to removed catalyst and ligand. The solvent was removed via vacuum and the crude reaction mixture subjected to gravimetric size exclusion chromatography using THF as the eluent. The first band was collected, solvent stripped, and then purified by silica gel chromatography using CHCl_{3}. Yield $=$ $266 \mathrm{mg}\left(77 \%\right.$ based on dibromo starting material). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$10.45(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 10.38(\mathrm{~d}, 4 \mathrm{H}, J=4.68 \mathrm{~Hz}), \delta 10.08(\mathrm{~s}, 2 \mathrm{H}), \delta 9.27(\mathrm{~d}$, $4 \mathrm{H}, J=4.38 \mathrm{~Hz}), \delta 9.17(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.09(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 7.49(\mathrm{~d}$, $4 \mathrm{H}, J=2.10 \mathrm{~Hz}), \delta 7.45(\mathrm{~d}, 8 \mathrm{H}, J=2.23 \mathrm{~Hz}), \delta 6.91(\mathrm{~m}, 6 \mathrm{H}), \delta 4.24(\mathrm{~m}, 24 \mathrm{H}), \delta 1.87$ $(\mathrm{m}, 24 \mathrm{H}), \delta 1.00(\mathrm{~s}, 108 \mathrm{H})$. Vis (THF): 410, 490, 770 nm. MALDI-TOF MS m/z: $2821.2821\left[(\mathrm{M})^{+}\right]$(calcd for $\left.\mathrm{C}_{172} \mathrm{H}_{200} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Zn}_{3} 2823.6716\right)$.

PZn-3,5(PEG)Ar Series ${ }^{2}$:

5,15-bis[$3^{\prime}, 5^{\prime}$-bis($9^{\prime \prime}$-methoxy- $1^{\prime \prime}, 4^{\prime \prime}, 7^{\prime \prime}$-trioxanonyl)phenyl]porphinato)zinc(II)

PZn-(PEG)Ar

5,15-bis[3', 5^{\prime}-bis($9^{\prime \prime}$-methoxy- $1^{\prime \prime}, 4^{\prime \prime}, 7^{\prime \prime}$-trioxanonyl)phenyl]porphyrin ($222 \mathrm{mg}, 0.200 \mathrm{mmols}$) was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was heated to reflux and then Zn acetate dihydrate ($219 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added and the reaction was allowed to stir for 2 hrs . After cooling, the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:19 $\mathrm{MeOH}: \mathrm{CHCl}_{3}$ as the eluent. Yield $=211 \mathrm{mg}\left(90 \%\right.$ yield based on starting material). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $10.21(\mathrm{~s}, 2 \mathrm{H}), \delta 9.35(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.16(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 7.45(\mathrm{~d}, 4 \mathrm{H}, J$ $=2.20 \mathrm{~Hz}), \delta 6.92(\mathrm{t}, 2 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 4.34(\mathrm{~m}, 8 \mathrm{H}), \delta 3.96(\mathrm{~m}, 8 \mathrm{H}), \delta 3.79(\mathrm{~m}, 8 \mathrm{H})$, $\delta 3.71(\mathrm{~m}, 8 \mathrm{H}), \delta 3.64(\mathrm{~m}, 8 \mathrm{H}), \delta 3.50(\mathrm{~m}, 8 \mathrm{H}), \delta 3.32(\mathrm{~m}, 8 \mathrm{H})$. Vis (THF): 410, 546, 579 nm. ESI-MS m/z: $1174.12\left[(\mathrm{M})^{+}\right]$(calcd for $\left.\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Zn} 1174.6526\right)$.
[5,-10,20-bis[$3^{\prime}, 5^{\prime}-\mathrm{bis}\left(3^{\prime \prime}, 3^{\prime \prime}\right.$-dimethyl-1'-butyloxy)phenyl]porphinato)zinc(II)[$5^{\prime},-10^{\prime \prime}, 20^{\prime \prime}$-bis[3,5-di(9-methoxy-1,4,7trioxanonyl)phenyl]porphinato)zinc(II)]ethyne PZn $\mathbf{Z B}_{2}$-3,5(PEG)Ar
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.45(\mathrm{~m}, 4 \mathrm{H}), \delta 10.06(\mathrm{~s}, 2 \mathrm{H}), \delta 9.26(\mathrm{~m}, 4 \mathrm{H})$, $\delta 9.20(\mathrm{~d}, 2 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.10(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.04(\mathrm{~d}, 2 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta$ $7.48(\mathrm{~d}, 4 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 7.45(\mathrm{~d}, 4 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 6.96(\mathrm{t}, 2 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta$ $6.89(\mathrm{t}, 2 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 4.34(\mathrm{~m}, 8 \mathrm{H}), \delta 3.96(\mathrm{~m}, 8 \mathrm{H}), \delta 3.79(\mathrm{~m}, 8 \mathrm{H}), \delta 3.71(\mathrm{~m}$,
$8 \mathrm{H}), \delta 3.64(\mathrm{~m}, 8 \mathrm{H}), \delta 3.50(\mathrm{~m}, 8 \mathrm{H}), \delta 3.32(\mathrm{~m}, 8 \mathrm{H}), \delta 3.29(\mathrm{~m}, 8 \mathrm{H}), \delta 1.82(\mathrm{~m}, 8 \mathrm{H})$.

Vis (THF): 410, 496, 698 nm . MS MALDI-TOFF m/z: 2119.80 [(M) ${ }^{+}$] (calcd for $\mathrm{C}_{118} \mathrm{H}_{142} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{Zn}_{2}$ 2118.8923).

5,15-bis[[5',-10',2-'-bis[3,5-di(3,3-dimethyl-1-
butyloxy)phenyl]porphinato)zinc(II)]ethynyl]-10,20-bis[3,5-di[3,5-di(9-mehtoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II) PZn_{3}-3,5(PEG)3,5.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.46(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.45), \delta 10.37(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.45), \delta 10.08(\mathrm{~s}, 2 \mathrm{H}), \delta 9.29(\mathrm{~d}, 4 \mathrm{H}, J=4.45), \delta 9.27(\mathrm{~d}, 4 \mathrm{H}, J=4.45), \delta 9.13(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}$ $=4.50 \mathrm{~Hz}), \delta 9.11(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 7.53(\mathrm{~d}, 4 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 7.45(\mathrm{~d}, 8 \mathrm{H}, J=$ $2.20 \mathrm{~Hz}), \delta 6.99(\mathrm{t}, 2 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 6.91(\mathrm{t}, 4 \mathrm{H}, J=2.20 \mathrm{~Hz}), \delta 4.34(\mathrm{~m}, 8 \mathrm{H}), \delta 4.24$ $(\mathrm{t}, 16 \mathrm{H}, J=7.85 \mathrm{~Hz}), \delta 3.96(\mathrm{~m}, 8 \mathrm{H}), \delta 3.79(\mathrm{~m}, 8 \mathrm{H}), \delta 3.71(\mathrm{~m}, 8 \mathrm{H}), \delta 3.64(\mathrm{~m}, 8 \mathrm{H})$, $\delta 3.50(\mathrm{~m}, 8 \mathrm{H}), \delta 3.32(\mathrm{~m}, 8 \mathrm{H}), \delta 1.86(\mathrm{t}, 16 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 1.01(\mathrm{~s}, 72 \mathrm{H})$. Vis (THF): 413, 490, 543, 770 nm . MALDI-TOF MS m/z: $3066.44\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{176} \mathrm{H}_{208} \mathrm{~N}_{12} \mathrm{O}_{24} \mathrm{Zn}_{3}$ 3065.33).

5,15-bis[[15",-(5',-10',20'-bis[3,5-bis(3,3-dimethyl-1-
butyloxy)phenyl]porphinato)zinc(II)]-[5',-10',-20'-bis[3,5-di(9-methoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II)]ethynyl]-10,20-bis[3,5-di(9-methoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II) $\underline{\text { PZn }}_{5}-\mathbf{3}, 5$ (PEG $_{3} 3,5$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.51(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.45), \delta 10.47(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.45), \delta 10.40(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.45), \delta 10.15(\mathrm{~s}, 2 \mathrm{H}), \delta 9.34(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.45), \delta 9.31(\mathrm{~d}, 4 \mathrm{H}$, $J=4.45), \delta 9.26(\mathrm{~d}, 4 \mathrm{H}, J=4.45), \delta 9.22(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.17(\mathrm{~d}, 4 \mathrm{H}, J=$ $4.45 \mathrm{~Hz}), \delta 9.12(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.45 \mathrm{~Hz}), \delta 7.51(\mathrm{br}, 8 \mathrm{H}), \delta 7.47(\mathrm{br}, 4 \mathrm{H}), \delta 7.40(\mathrm{br}, 4 \mathrm{H})$,
$\delta 6.76(\mathrm{br}, 4 \mathrm{H}), \delta 6.66(\mathrm{br}, 4 \mathrm{H}), \delta 6.50(\mathrm{br}, 2 \mathrm{H}), \delta 4.12(\mathrm{~m}, 16 \mathrm{H}), \delta 4.04(\mathrm{~m}, 16 \mathrm{H}, \mathrm{J}$
$=7.85 \mathrm{~Hz}), \delta 3.91(\mathrm{~m}, 8 \mathrm{H}), \delta 3.52(\mathrm{~m}, 16 \mathrm{H}), \delta 3.41(\mathrm{~m}, 8 \mathrm{H}), \delta 3.64(\mathrm{~m}, 8 \mathrm{H}), \delta 3.31(\mathrm{~m}$, $16 \mathrm{H}), \delta 3.22(\mathrm{~m}, 8 \mathrm{H}), \delta 3.15(\mathrm{~m}, 16 \mathrm{H}), \delta 3.08(\mathrm{~m}, 8 \mathrm{H}), \delta 2.90(\mathrm{~m}, 16 \mathrm{H}), \delta 2.86(\mathrm{~m}$, $8 \mathrm{H}), \delta 2.72(\mathrm{~m}, 24 \mathrm{H}), \delta 2.58(\mathrm{~m}, 36 \mathrm{H}), \delta 1.76(\mathrm{t}, 16 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 0.93(\mathrm{~s}, 72 \mathrm{H})$.

Vis (THF): 413, 495, 547, 843 nm . MALDI-TOF MS m/z: $5456.89\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{176} \mathrm{H}_{208} \mathrm{~N}_{12} \mathrm{O}_{24} \mathrm{Zn}_{3} 5454.21$).

PZnDPP Series ${ }^{4}$:

ZnTPP

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.55(\mathrm{~s}, 8 \mathrm{H}), \delta 8.15(\mathrm{~m}, 8 \mathrm{H}), \delta 7.71(\mathrm{~m}, 12 \mathrm{H})$. Vis (THF): 420, 570, 590 nm . ESI MS m/z: $6776.50\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Zn}$ 676.16)

ZnDPP

${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.31(\mathrm{~s}, 2 \mathrm{H}), \delta 9.39(\mathrm{~d}, 4 \mathrm{H}, J=4.60), \delta 9.07($ $\mathrm{d}, 4 \mathrm{H}, J=4.60 \mathrm{~Hz}), \delta 8.26(\mathrm{~m}, 4 \mathrm{H}), \delta 7.80(\mathrm{~m}, 8 \mathrm{H})$. Vis (THF): 410, 536 nm . ESI MS $\mathrm{m} / \mathrm{z}: 524.50\left[(\mathrm{M})^{+}\right]$(calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Zn} 524.09\right)$.

1,2-bis[(10,20-diphenylporphinato)zinc(II)-5-yl]ethyne PZn $\underline{Z n}_{2}$-DPP.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.47(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 10.08(\mathrm{~s}, 2 \mathrm{H}), \delta$ $9.27(\mathrm{~d}, 4 \mathrm{H}, J=3.0 \mathrm{~Hz}), \delta 9.13(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 9.05(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 8.27($ $\mathrm{m}, 8 \mathrm{H}), \delta 7.78(\mathrm{~m}, 12 \mathrm{H})$. Vis (THF): 414, 480, 698 nm . MALDI-TOF MS m/z:
$1072.8606\left[\left(\mathrm{M}^{+}\right)\right]$(calcd for $\mathrm{C}_{66} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{Zn}_{2} 1070.1802$).

(5,15-bis[(10',20'-(diphenyl)porphinato)zinc(II)ethyn-5'-yl]-10,20-
 $\underline{\text { bis(diphenyl) porphinato) } z i n c(I I) ~} \underline{\text { PZn }}_{3}-$ DPP.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.47(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.50 \mathrm{~Hz}), \delta 10.42(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$
$4.40 \mathrm{~Hz}), \delta 10.09(\mathrm{~s}, 2 \mathrm{H}), \delta 9.26(\mathrm{~d}, 4 \mathrm{H}, J=3.80 \mathrm{~Hz}), \delta 9.14(\mathrm{~d}, 4 \mathrm{H}, J=4.16 \mathrm{~Hz}), \delta$
$9.04(\mathrm{~d}, 4 \mathrm{H}, J=4.20 \mathrm{~Hz}), \delta 8.96(\mathrm{~d}, 4 \mathrm{H}, J=4.32 \mathrm{~Hz}), \delta 8.27(\mathrm{~m}, 12 \mathrm{H}), \delta 7.78(\mathrm{~m}$,
18H). Vis (THF): 414, 490, 770 nm . MALDI-TOF MS m/z: 1618.2625 [(M) ${ }^{+}$] (calcd for $\mathrm{C}_{100} \mathrm{H}_{56} \mathrm{~N}_{12} \mathrm{Zn}_{3}$).

PZnO1 Series.

1-bromo-3,5,5-trimethyl-hexane (1):

Triphenylphosphine (75.5 g, 0.288 mol) and 3,5,5-trimethylhexanol (50.1 $\mathrm{mL}, 0.288 \mathrm{mols})$ were dissolved in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 1 L reaction flask and cooled to $0{ }^{\circ} \mathrm{C}$ under N_{2}. Once cooled, small portions, 5 g , of NBS (51.3 g total, $0.288 \mathrm{~mol})$ were added directly to the reaction mixture and allowed to stir for an additional 2 hr . Solvent was removed via vacuum and the solid residue was taken up in ether and sonicated for 60 min . The mixture was filtered and washed with ether. The ether was removed via vacuum and the resulting residue was taken up in cold ether and filtered again. This process was repeated until no precipitate was formed upon dissolving in ether. Compound 1 was purified by silica gel chromatography using straight pentane as the eluent. Yield $=44.32 \mathrm{~g}$ (74\% based on 3,5,5-trimethylhexanol starting material). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.42(\mathrm{~m}, 2 \mathrm{H}), \delta 1.86(\mathrm{~m}, 1 \mathrm{H}), \delta 1.69(\mathrm{~m}, 2 \mathrm{H}), \delta 1.21(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=3.34 \mathrm{~Hz}), \delta$
$1.18(\mathrm{~d}, 2 \mathrm{H}, J=3.33 \mathrm{~Hz}), \delta 0.94(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{CI} \mathrm{MS} \mathrm{m} / \mathrm{z}: 207.0788\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{Br} 207.0779$).

3-(3', 5', 5'-trimethylhexyloxy)-propane-1-ol (2):

KOH ($2.0 \mathrm{~g}, 3.6 \times 10^{-2} \mathrm{~mol}$), 1,3-propanediol ($9.68 \mathrm{~mL}, 0.121 \mathrm{~mol}$), and 50 mL DMSO were charged into a reaction flask and purged with bubbling Ar while being cooled in an ice bath for 30 min . Compound $1\left(5.0 \mathrm{~g}, 2.4 \times 10^{-2} \mathrm{~mol}\right)$ was then added drop-wise to the reaction mixture and stirred for 4 hr . Reaction was quenched with water and the organic phase diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}), \mathrm{NaHCO}_{3}(\mathrm{aq})$, and $\mathrm{NaCl}(\mathrm{aq})$ and the organic layer collected and dried with CaCl_{2}. The organic layer was then filtered and the solvent removed via vacuum leaving a pale yellow residue. Compound 2 was purified by silica gel chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The second band was collected yielding 4.76 g (98% based on Compound 1 starting material). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.77(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=5.36 \mathrm{~Hz}), \delta 3.61(\mathrm{t}, 2 \mathrm{H}, J=5.73 \mathrm{~Hz}), \delta 3.44(\mathrm{t}$, $2 \mathrm{H}, J=5.68 \mathrm{~Hz}), \delta 2.57(\mathrm{t}, 2 \mathrm{H}, J=5.32 \mathrm{~Hz}), \delta 1.82(\mathrm{p}, 1 \mathrm{H}, J=5.61 \mathrm{~Hz}), \delta 1.56(\mathrm{~m}$, $2 \mathrm{H}), \delta 1.44(\mathrm{~m}, 2 \mathrm{H}), \delta 1.24(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=3.20 \mathrm{~Hz}), \delta 1.18(\mathrm{~d}, 2 \mathrm{H}, J=3.33 \mathrm{~Hz}), \delta 0.882($ m, 9H). CI MS m/z: $203.2012\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2}$ 203.201).

3-(3', 5', 5'-trimethylhexyloxy)-propane aldehyde (3):
PCC ($\left.4.342 \mathrm{~g}, 2.013 \times 10^{-2} \mathrm{~mol}\right)$ was dissolved in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and degassed with purging Ar for 15 min while stirring at room temperature.

Compound 2 was syringed into the reaction flask causing an instant color change from pale orange to dark brown. The reaction mixture was stirred for 3 hr and
then was diluted with ethyl ether and passed through a silica gel plug. A second plug was done if oil appeared turbid. Solvent removed via vacuum leaving behind a clear oil. Yield $=3.4727 \mathrm{~g}(95 \%$ based on Compound 2 starting material). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.79(\mathrm{t}, 1 \mathrm{H}, J=1.84 \mathrm{~Hz}), \delta 3.75(\mathrm{~m}, 2 \mathrm{H}), \delta$ $3.50(\mathrm{~m}, 2 \mathrm{H}), \delta 2.66(\mathrm{~m}, 2 \mathrm{H}), \delta 1.86(\mathrm{~m}, 1 \mathrm{H}), \delta 1.56(\mathrm{~m}, 2 \mathrm{H}), \delta 1.40(\mathrm{~m}, 2 \mathrm{H}), \delta 1.20($ $\mathrm{m}, 3 \mathrm{H}), \delta 1.06(\mathrm{~m}, 2 \mathrm{H}), \delta 0.88(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{CIMS} \mathrm{m} / \mathrm{z}: 201.1848\left[(\mathrm{M}+\mathrm{H})^{+}\right](\mathrm{calcd}$ $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$ for 200.1776).

5,15-bis[2'-(3', $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl]porphyrin (4):

2,2'-dipyrrylmethane $\left(4.58 \mathrm{~g}, 3.14 \times 10^{-2} \mathrm{~mol}\right)$ and compound $3(6.34 \mathrm{~g}, 3.14$ $\times 10^{-2} \mathrm{~mol}$) were dissolved in 4 L HPLC grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purged with Ar for 1 hour before TFA ($0.6 \mathrm{~mL}, 7.78 \times 110^{-3} \mathrm{~mol}$) was added via syringe. The reaction mixture was stirred for 20 hours at room temperature. Chloranil (11.61 g, 4.72 x $10^{-2} \mathrm{~mol}$) was added to the reaction mixture and stirred for an additional 4 hours. The reaction mixture was passed through a silica plug to remove polymer and flushed with CHCl_{3} and porphyrin collected. Solvent was removed via vacuum and the dark red residue was chromatographed on silica gel using 1:4 THF:Hexanes as the eluent. Yield= $1.43 \mathrm{~g}(14 \%$ based on 2 equivalents of aldehyde). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.17(\mathrm{~s}, 2 \mathrm{H}), \delta 9.62(\mathrm{~d}, 4 \mathrm{H}, J=4.73 \mathrm{~Hz})$, $\delta 9.41(\mathrm{~d}, 4 \mathrm{H}, J=4.63 \mathrm{~Hz}), \delta 5.31(\mathrm{t}, 4 \mathrm{H}, J=13.16 \mathrm{~Hz}), \delta 4.46(\mathrm{t}, 4 \mathrm{H}, J=7.65 \mathrm{~Hz}), \delta$ $3.59(\mathrm{t}, 4 \mathrm{H}, J=9.04 \mathrm{~Hz}), \delta 1.161(\mathrm{~m}, 4 \mathrm{H}), \delta 1.53 .(\mathrm{m}, 4 \mathrm{H}), \delta 1.27(\mathrm{~m}, 4 \mathrm{H}),, \delta 1.21(\mathrm{~m}$, $6 \mathrm{H}), \delta 1.08(\mathrm{~m}, 4 \mathrm{H}), \delta 1.00(\mathrm{~m}, 2 \mathrm{H}), \delta 0.93(\mathrm{~m}, 18 \mathrm{H}), \delta-3.09(\mathrm{~ms}, 2 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right)$:
$406,504,537,573,629 \mathrm{~nm}$. ESI MS m/z: $673.4435\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{2}$ 673.4460).
(5,15-bis[2'-(3', $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl]porphinato)zinc(II) (5):
Compound $4\left(200 \mathrm{mg}, 3.07 \times 10^{-4} \mathrm{~mol}\right)$ was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was heated to reflux and then Zn acetate dihydrate $\left(337 \mathrm{mg}, 1.54 \times 10^{-3} \mathrm{~mol}\right)$ was added and the reaction was allowed to stir for 2 hrs . After cooling reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:4 THF:Hexanes as the eluent. Yield $=213 \mathrm{mg}(97 \%$ yield based on Compound 4 starting material). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.07(\mathrm{~s}, 2 \mathrm{H}), \delta 9.71(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.75 \mathrm{~Hz}), \delta 9.40(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.41(\mathrm{t}, 4 \mathrm{H}, J=7.86 \mathrm{~Hz}), \delta 4.52(\mathrm{t}, 4 \mathrm{H}, J=$ $7.88 \mathrm{~Hz}), \delta 3.65(\mathrm{~m}, 4 \mathrm{H}), \delta 1.63(\mathrm{~m}, 4 \mathrm{H}), \delta 1.57(\mathrm{~m}, 4 \mathrm{H}), \delta 1.29(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}$, $4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.93(\mathrm{~m}, 18 \mathrm{H})$. Vis (THF): $410,546,579 \mathrm{~nm}$. ESI MS m/z: $712.3682\left[(\mathrm{M})^{+}\right]$(calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn} 712.3695\right)$.

5-Bromo-10,20-bis(2'-(3', $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl)porphyrin (6) ${ }^{5}$:

Compound 4 ($250 \mathrm{mg}, 3.841 \times 10^{-4} \mathrm{~mol}$) was dissolved in $\mathrm{CHCl}_{3}: \mathrm{MeOH}$ (9:1) and cooled to $-5^{\circ} \mathrm{C}$. N-bromosuccinimide ($65.3 \mathrm{mg}, 3.841 \times 10^{-4} \mathrm{~mol}$) was dissolved in $\mathrm{CHCl}_{3}: \mathrm{MeOH}(9: 1)$ added to the reaction mixture and stirred at $-5^{\circ} \mathrm{C}$ for 10 min . The reaction was poured through water in a separatory funnel followed by $\mathrm{NaCl}(\mathrm{aq})$ washing x3. The organic layer was collected and dried
over CaCl_{2} and then filtered followed by solvent removal via vacuum. The residue was then purified by silica gel chromatography $1: 4 \mathrm{THF}: H e x a n e s$. The first band collected was 5,15-dibromo-10,20-bis(3,5,5-trimethylhexylethyleneglycol)porphyrin (compound 7) ($89.7 \mathrm{mg}, 15 \%$ based on Compound 4). The second band collect was compound 6 ($129 \mathrm{mg}, 65 \%$ based on compound 5 . ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), \delta 9,71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.86 \mathrm{~Hz}), \delta 9.43(\mathrm{~d}, 2 \mathrm{H}$, $J=4.67 \mathrm{~Hz}), \delta 9.19(\mathrm{~d}, 2 \mathrm{H}, J=4.56 \mathrm{~Hz}), \delta 5.11(\mathrm{t}, 4 \mathrm{H}, J=7.70 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 4 \mathrm{H}, J$ $=7.69 \mathrm{~Hz}), \delta 3.54(\mathrm{t}, 4 \mathrm{H}, J=7.61 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45(\mathrm{~m}, 4 \mathrm{H}), \delta 1.30(\mathrm{~m}, 4 \mathrm{H}), \delta$ $1.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H}), \delta-3.80(\mathrm{~s}, 2 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right): 417,511$, $544,587,644 \mathrm{~nm}$. ESI MS m/z: $729.3773\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{BrN}_{4} \mathrm{O}_{2}$ 729.3743)

5,15-dibromo-10,20-bis(2'-($3^{\prime \prime}, 5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl)porphyrin (7): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.40(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.68 \mathrm{~Hz}), \delta 9.17(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.05 \mathrm{~Hz}), \delta$ $4.88(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.30 \mathrm{~Hz}), \delta 4.22(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.49 \mathrm{~Hz}), \delta 5.11(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.70 \mathrm{~Hz}), \delta 4.37($ $\mathrm{t}, 4 \mathrm{H}, J=7.69 \mathrm{~Hz}), \delta 3.54(\mathrm{t}, 4 \mathrm{H}, J=7.61 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45(\mathrm{~m}, 4 \mathrm{H}), \delta 1.30($ $\mathrm{m}, 4 \mathrm{H}), \delta 1.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H}), \delta-4.13(\mathrm{~s}, 2 \mathrm{H})$. Vis ($\left.\mathrm{CHCl}_{3}\right):$ $424,520,556,599,658 \mathrm{~nm}$. ESI MS m/z: $807.2836\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$ 807.2848).
(5-Bromo-10, 20-bis(2'-(3", $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl)porphinato)zinc(II) (8):

Compound 6 ($200 \mathrm{mg}, 3.07 \times 10^{-4} \mathrm{mols}$) was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was heated to reflux and
then Zn acetate dihydrate ($337 \mathrm{mg}, 1.54 \times 10^{-3} \mathrm{~mol}$) was added and the reaction was allowed to stir for an additional 2 hrs . After cooling, the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) $\times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:4 THF:Hexanes as the eluent. Yield $=233 \mathrm{mg}(96 \%$ based on compound 6). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), \delta 9.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.79 \mathrm{~Hz}), \delta 9.60(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=4.57 \mathrm{~Hz}), \delta 9.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.47 \mathrm{~Hz}), \delta 5.11(\mathrm{t}, 4 \mathrm{H}, J=7.70 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}$ $=7.69 \mathrm{~Hz}), \delta 3.54(\mathrm{t}, 4 \mathrm{H}, J=7.61 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45(\mathrm{~m}, 4 \mathrm{H}), \delta 1.30(\mathrm{~m}, 4 \mathrm{H}), \delta$ $1.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H})$. Vis (THF): $419,556,595 \mathrm{~nm}$. ESI MS $\mathrm{m} / \mathrm{z}: 813.2694\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{55} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{Zn} 790.2800\right)$.

(5,15-dibromo-10, 20-bis(2'-(3', $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-

 ethyl)porphinato)zinc(II) (9):Compound 7 ($200 \mathrm{mg}, 3.07 \times 10^{-4} \mathrm{mols}$) was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was warmed to reflux and then Zn acetate dihydrate ($337 \mathrm{mg}, 1.54 \times 10^{-3} \mathrm{~mol}$) was added and the reaction was allowed to stir for an additional 2 hrs . After cooling the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) $\times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:3 THF:Hexanes as the eluent. Yield $=249 \mathrm{mg}$ (97% based on Compound 7). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.69(\mathrm{~d}, 4 \mathrm{H}, J=4.70 \mathrm{~Hz}), \delta 9.50(\mathrm{~d}, 4 \mathrm{H}, J=$
$4.70 \mathrm{~Hz}), \delta 4.88(\mathrm{t}, 4 \mathrm{H}, J=6.30 \mathrm{~Hz}), \delta 4.22(\mathrm{t}, 4 \mathrm{H}, J=7.49 \mathrm{~Hz}), \delta 4.11(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ $7.70 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 4 \mathrm{H}, J=7.69 \mathrm{~Hz}), \delta 3.54(\mathrm{t}, 4 \mathrm{H}, J=7.61 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45($ $\mathrm{m}, 4 \mathrm{H}), \delta 1.30(\mathrm{~m}, 4 \mathrm{H}), \delta 1.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right): 426,559,601 \mathrm{~nm}$. MALDI-TOF MS m / z: $872.5302\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}$ 872.1018).

(5-(trimethylsilyl)ethynyl-10,20-bis(2'-(3', $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)ethyl)porphinato)zinc(II) (10):

THF (10 mL) and (trimethylsilyl)acetylene ($0.143 \mathrm{~mL}, 1.01 \times 10^{-3} \mathrm{~mol}$) were added to a 100 mL Schlenk flask, stirred, and cooled to $-78{ }^{\circ} \mathrm{C}$. nBuLi $(1.6 \mathrm{M}$ solution in hexanes, $0.633 \mathrm{~mL}, 1.01 \times 10^{-3} \mathrm{~mol}$) was added via syringe dropwise and the reaction mixture stirred for 30 min under Ar. The reaction mixture was warmed to room temperature and a THF $(30 \mathrm{~mL})$ solution of $\mathrm{ZnCl}_{2}(138 \mathrm{mg}, 1.01$ $\times 10^{-3}$ mols) was added via canula creating a cloudy white solution. The reaction was stirred for 15 min and then canula transferred to a 250 mL reaction flask charged with compound $6\left(200 \mathrm{mg}, 2.53 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 2.5 \times 10$ $\left.{ }^{5} \mathrm{~mol}\right)$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ under Ar for 8 hours and then quenched with water and extracted with CHCl_{3} and washed with $\mathrm{NaCl}(\mathrm{aq}) \times 3$. The organic layer was extracted and dried over CaCl_{2}, filtered and solvent removed via vacuum. The crude product was chromatographed on silica gel using 1:4 THF:Hexanes. Yield $=194 \mathrm{mg}(95 \%$ based on compound 6$) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), \delta 9.78(\mathrm{~d}, 2 \mathrm{H}, J=4.36 \mathrm{~Hz}), \delta 9.61(\mathrm{~d}, 2 \mathrm{H}, J=$ $4.45 \mathrm{~Hz}), \delta 9.57(\mathrm{~d}, 2 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 9.28(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.41 \mathrm{~Hz}), \delta 5.28(\mathrm{t}, 4 \mathrm{H}, J=$
$7.95 \mathrm{~Hz}), \delta 4.45(\mathrm{t}, 4 \mathrm{H}, J=8.28 \mathrm{~Hz}), \delta 3.60(\mathrm{t}, 4 \mathrm{H}, J=6.67 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45($ $\mathrm{m}, 4 \mathrm{H}), \delta 1.30(\mathrm{~m}, 4 \mathrm{H}), \delta 1.19(\mathrm{~m}, 2 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H}), \delta 0.63(\mathrm{~m}$, 9H). Vis $\left(\mathrm{CHCl}_{3}\right): 427,554,594 \mathrm{~nm}$. ESI MS m/z: $831.4008\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SiZn}$ 831.3990).
(5,15-bis(triisopropylsilylethynyl)-10,20-bis(2'-(3', 5', 5''-trimethylhexyloxy)ethyl)porphinato)zinc(II) (11):

Compound $7\left(270 \mathrm{mg}, 3.10 \times 10^{-4} \mathrm{~mol}\right)$ was charged into a 100 mL Schlenk tube and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(65 \mathrm{mg}, 1.6 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{CuI}\left(18 \mathrm{mg}, 9.3 \times 10^{-5} \mathrm{~mol}\right)$ were added in the glovebox. A THF:TEA ($30 \mathrm{~mL}, 9: 1$) was degassed with Ar purge for 30 min and then canula into the reaction flask while (triisopropylsilyl)acetylene ($0.35 \mathrm{~mL}, 1.6 \times 10^{-3} \mathrm{~mol}$) was added via syringe. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ and stirred under Ar overnight. The reaction was quenched with water and diluted with CHCl_{3} and washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$. The organic layer was extracted and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The crude product was purified on silica gel using 1:4 THF:Hexanes. Yield $=307 \mathrm{mg}$ (92\% based on Compound 7). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.72(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.47 \mathrm{~Hz}), \delta 9.51(\mathrm{~d}, 4 \mathrm{H}, J=4.52 \mathrm{~Hz}), \delta 5.28(\mathrm{t}, 4 \mathrm{H}, J=7.95 \mathrm{~Hz}), \delta 4.45(\mathrm{t}, 4 \mathrm{H}, J=$ $8.28 \mathrm{~Hz}), \delta 3.60(\mathrm{t}, 4 \mathrm{H}, J=6.67 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45(\mathrm{~m}, 4 \mathrm{H}), \delta 1.40(\mathrm{~m}, 18 \mathrm{H}), \delta$ $1.30(\mathrm{~m}, 4 \mathrm{H}), \delta 1.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H})$. Vis (THF): 439, 586, 640 nm . MALDI-TOF MS m/z: $1075.8249\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Zn}$ 1072.6363).

(5-ethynyl-10,20-bis(2'-(3', $5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl)porphinato)zinc(II)

 (12):Tetrabutylammonium fluoride (0.1 M in THF, $5.22 \mathrm{~mL}, 5.22 \times 10^{-4} \mathrm{~mol}$) was added to a solution of $10\left(282 \mathrm{mg}, 3.48 \times 10^{-4} \mathrm{~mol}\right)$ in 40 mL of THF cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and then directly poured down a short silica gel column with CHCl_{3} as the eluent. Yield $=153 \mathrm{mg}(65 \%$ based on compound 10). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), \delta 9.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $4.56 \mathrm{~Hz}), \delta 9.63(\mathrm{~d}, 2 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.58(\mathrm{~d}, 2 \mathrm{H}, J=4.41 \mathrm{~Hz}), \delta 9.29(\mathrm{~d}, 2 \mathrm{H}, J=$ $4.48 \mathrm{~Hz}), \delta 5.30(\mathrm{t}, 4 \mathrm{H}, J=7.99 \mathrm{~Hz}), \delta 4.47(\mathrm{t}, 4 \mathrm{H}, J=4.16 \mathrm{~Hz}), \delta 4.17(\mathrm{~s}, 1 \mathrm{H}), \delta 3.63(\mathrm{t}$, $4 \mathrm{H}, \mathrm{J}=8.28 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45(\mathrm{~m}, 4 \mathrm{H}), \delta 1.30(\mathrm{~m}, 4 \mathrm{H}), \delta 1.19(\mathrm{~m}, 4 \mathrm{H}), \delta$ $1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H})$. Vis (THF): 424, 559, 604 nm. ESI MS m/z: 675.4646 $\left[(\mathrm{M}+\mathrm{H})^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn} 675.4640\right)$.
(5,15-bis-ethynyl-10,20-bis(2'-($3^{\prime \prime}, 5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)ethyl)porphinato)zinc(II) (13):

Tetrabutylammonium fluoride (0.1 M in THF, $4.43 \mathrm{~mL}, 4.43 \times 10^{-4} \mathrm{~mol}$) was added to a solution of $11\left(307 \mathrm{mg}, 4.03 \times 10^{-4} \mathrm{~mol}\right)$ in 20 mL of THF and cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and then directly poured down a short silica gel column with CHCl_{3} as the eluent. Yield $=258 \mathrm{mg}$ (84% based on compound 11). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.66(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.41 \mathrm{~Hz}), \delta 9.46(\mathrm{~d}, 4 \mathrm{H}, J=4.23 \mathrm{~Hz}), \delta 5.15(\mathrm{t}, 4 \mathrm{H}, J=7.60 \mathrm{~Hz}), \delta 4.35(\mathrm{~d}, 4 \mathrm{H}, J=$ $7.79 \mathrm{~Hz}), \delta 4.17(\mathrm{~s}, 8 \mathrm{H}), \delta 3.63(\mathrm{t}, 4 \mathrm{H}, J=8.28 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), \delta 1.45(\mathrm{~m}, 4 \mathrm{H}), \delta$
$1.30(\mathrm{~m}, 4 \mathrm{H}), \delta 1.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.09(\mathrm{~m}, 2 \mathrm{H}), \delta 0.87(\mathrm{~m}, 18 \mathrm{H})$. Vis (THF): 432, 578, 629 nm . ESI MS m/z: $760.40\left[\left(\mathrm{M}^{+}\right)\right]$(calcd for $\left.\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn} 760.3695\right)$.

1,2-bis[(10',20'-bis(2"-(3'", $5^{\prime \prime \prime}, 5^{\prime \prime \prime}$-trimethylhexyloxy)-ethyl)porphinato)zinc(II)-5'-yllethyne $\underline{\mathrm{PZn}}_{2}-\mathbf{O 1}$ (14):

Compounds $6\left(53 \mathrm{mg}, 6.74 \times 10^{-5} \mathrm{~mol}\right)$ and $12\left(50 \mathrm{mg}, 7.4 \times 10^{-5} \mathrm{~mol}\right)$ were charged into a 100 mL Schlenk tube along with $\operatorname{Pd}_{2} \mathrm{dba}_{3}\left(9 \mathrm{mg}, 1 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{AsPh}_{3}\left(26 \mathrm{mg}, 8.1 \times 10^{-5} \mathrm{~mol}\right)$ which were added in the glovebox. Previously, degassed THF:TEA (9:1) solution was then canula into the reaction flask and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. The following morning the reaction was quenched with water and then the organics were extracted with CHCl_{3} and washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$. The organic layer was collected and dried with CaCl_{2}, filtered, and solvent removed via vacuum. Compound 17 was purified by silica gel column chromatography using 1:3 THF:Hexanes as the eluent. Yield $=84 \mathrm{mg}(86 \%$ based on compound 6$) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 10.56(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 9.97(\mathrm{~s}, 2 \mathrm{H}), \delta 9.84(\mathrm{~d}, 4 \mathrm{H}, J=4.65 \mathrm{~Hz}), \delta 9.64(\mathrm{~d}, 4 \mathrm{H}, J$ $=4.40 \mathrm{~Hz}), \delta 9.33(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.38(\mathrm{t}, 8 \mathrm{H}, J=7.94 \mathrm{~Hz}), \delta 4.56(\mathrm{t}, 8 \mathrm{H}, J=$ $8.10 \mathrm{~Hz}), \delta 3.67(\mathrm{~m}, 8 \mathrm{H}), \delta 1.62(\mathrm{~m}, 8 \mathrm{H}), \delta 1.45(\mathrm{~m}, 8 \mathrm{H}), \delta 1.30(\mathrm{~m}, 8 \mathrm{H}), \delta 1.19(\mathrm{~m}$, $12 \mathrm{H}), \delta 1.09(\mathrm{~m}, 4 \mathrm{H}), \delta 0.87(\mathrm{~m}, 36 \mathrm{H})$. Vis (THF): $414,427,478,562,700 \mathrm{~nm}$.

MALDI-TOF MS m/z: $1448.7102\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{86} \mathrm{H}_{110} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Zn}_{2}$ 1446.7233).
1,2-bis[5^{\prime}-bromo($5^{\prime}, 5^{\prime \prime}-10,20-$ bis($2^{\prime}-\left(3^{\prime \prime}, 5^{\prime \prime}, 5^{\prime \prime}\right.$-trimethylhexyloxy)-
ethyl)porphinato)zinc(II)]ethyne (15):

Isolated from second size exclusion band from the synthesis of compound 16. Yield $=22 \mathrm{mg}(30 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.30 \mathrm{~Hz}$), $\delta 10.47(\mathrm{~d}, 2 \mathrm{H}, J=4.55 \mathrm{~Hz}), \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), \delta 9.83(\mathrm{~d}, 2 \mathrm{H}, J=4.35 \mathrm{~Hz}), \delta 9.75(\mathrm{~d}, 2 \mathrm{H}$, $J=4.75 \mathrm{~Hz}), \delta 9.72(\mathrm{~d}, 2 \mathrm{H}, J=4.70 \mathrm{~Hz}), \delta 9.55(\mathrm{~d}, 2 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 5.32(\mathrm{t}, 8 \mathrm{H}, J=$ $7.50 \mathrm{~Hz}), \delta 4.49(\mathrm{t}, 8 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 3.67(\mathrm{~m}, 8 \mathrm{H}), \delta 2.01(\mathrm{~m}, 8 \mathrm{H}), \delta 1.62(\mathrm{~m}, 8 \mathrm{H}), \delta$ $1.45(\mathrm{~m}, 8 \mathrm{H}), \delta 1.30(\mathrm{~m}, 8 \mathrm{H}), \delta 1.19(\mathrm{~m}, 12 \mathrm{H}), \delta 1.09(\mathrm{~m}, 4 \mathrm{H}), \delta 0.87(\mathrm{~m}, 36 \mathrm{H})$. Vis (THF): 412, 485, 705 nm. MALDI-TOF MS m/z: 1522.08 [(M) $\left.{ }^{+}\right]$(calcd for $\mathrm{C}_{86} \mathrm{H}_{109} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{BrZn}_{2} 1524.63$). 5,15-bis[[5',-10',20'-bis([2'-(3' $, 5^{\prime \prime}, 5^{\prime \prime}$-trimethylhexyloxy)-ethyl]porphinato)zinc(II)]ethynyl]-10,20-bis([2'-(3', 5', 5'-trimethylhexyloxy)ethyl]porphinato)zinc(II) $\underline{\mathrm{PZn}}_{\underline{3}} \underline{-\mathrm{O} 1}$ (16):

Compound $7\left(71 \mathrm{mg}, 8.1 \times 10^{-5} \mathrm{~mol}\right)$ and $11\left(132 \mathrm{mg}, 1.79 \times 10^{-4} \mathrm{mo}\right)$ were charged into a 100 mL Schlenk tube along with $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(25 \mathrm{mg}, 2.7 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{AsPh}_{3}\left(70 \mathrm{mg}, 2.2 \times 10^{-4} \mathrm{~mol}\right)$. Previously degassed solution of THF:TEA (9:1) were then canula into the reaction flask and heated to $60^{\circ} \mathrm{C}$ and stirred overnight under Ar. The reaction was quenched with water and diluted with CHCl_{3} and washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) 3 x . The organic layer was collected and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The residue was then put down a silica gel plug using $\mathrm{CHCl}_{3}:$ Pyridine (99:1) as the eluent to remove catalyst. Solvent was removed by vacuum and then purified by gravimetric size exclusion column (THF as the eluent). The fastest moving band was collected and solvent removed by vacuum. A final silica gel plug was done to remove
residual biobeads using $\mathrm{CHCl}_{3}:$ Pyridine (99:1) as the eluent. Yield $=137 \mathrm{mg}(77 \%$ based on compound 7). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.56(\mathrm{~d}, 4 \mathrm{H}, J=4.15 \mathrm{~Hz}), \delta$ $10.49(\mathrm{~d}, 4 \mathrm{H}, J=4.05 \mathrm{~Hz}), \delta 9.96(\mathrm{~s}, 2 \mathrm{H}), \delta 9.84(\mathrm{~d}, 4 \mathrm{H}, J=.385 \mathrm{~Hz}), \delta 9.77(\mathrm{~d}, 4 \mathrm{H}$, $J=4.45 \mathrm{~Hz}), \delta 9.63(\mathrm{~d}, 4 \mathrm{H}, J=4.30 \mathrm{~Hz}), \delta 9.32(\mathrm{~d}, 4 \mathrm{H}, J=4.10 \mathrm{~Hz}), \delta 5.38(\mathrm{br}-\mathrm{m}$, $12 \mathrm{H}), \delta 4.63(\mathrm{t}, 12 \mathrm{H}, J=8.05 \mathrm{~Hz}), \delta 4.57(\mathrm{t}, 12 \mathrm{H}, J=8.06 \mathrm{~Hz}), \delta 3.74(\mathrm{t}, 12 \mathrm{H}, J=$ $6.55 \mathrm{~Hz}), \delta 3.69(\mathrm{t}, 12 \mathrm{H}, J=5.47 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 12 \mathrm{H}), \delta 1.45(\mathrm{~m}, 12 \mathrm{H}), \delta 1.30(\mathrm{~m}$, $12 \mathrm{H}), \delta 1.19(\mathrm{~m}, 20 \mathrm{H}), \delta 1.09(\mathrm{~m}, 6 \mathrm{H}), \delta 0.87(\mathrm{~m}, 72 \mathrm{H})$. Vis (THF): $414,494,574,774$ nm. MALDI-TOF MS m/z: $2182.9642\left[(\mathrm{M})^{+}\right]\left(\right.$calcd for $\mathrm{C}_{130} \mathrm{H}_{164} \mathrm{~N}_{12} \mathrm{O}_{6} \mathrm{Zn}_{3}$ 2181.0771).
(5,15-bis(10,20-bis[2-(3', 5', 5'-trimethylhexyloxy)-ethyl]porphinato)zinc(II)-ethyn-5-yl]-10,20-bis[2-(3', 5', 5'-trimethylhexyloxy)-ethyl]porphinato)zinc(II)-ethyn-5-yl)-10,20-bis[2-(3', 5', 5'-trimethylhexyloxy)-ethyl]porphinato]zinc(II) $\mathrm{PZn}_{5}-\mathrm{O} 1$ (17).

Compound $15\left(62 \mathrm{mg}, 4.1 \times 10^{-5} \mathrm{~mol}\right)$ and compound $13\left(15 \mathrm{mg}, 2.0 \times 10^{-5}\right.$ $\mathrm{mol})$ were charged into a 100 mL reaction flask. $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(15 \mathrm{mg}, 1.6 \times 10^{-5} \mathrm{~mol}\right)$, $\mathrm{P}(\bullet \text {-tolyl })_{3}\left(15 \mathrm{mg}, 4.9 \times 10^{-5} \mathrm{~mol}\right)$, and $\mathrm{CuI}\left(1 \mathrm{mg}, 4 \times 10^{-5} \mathrm{~mol}\right)$ were add to the reaction flask in a glove box. Previously dried and degassed THF:TEA (9:1) was canula into the reaction flask and heated to $60^{\circ} \mathrm{C}$ and stirred for 2 days under Ar. The reaction mixture was cooled to room temperature and passed through a silica gel plug washing with THF:Hexanes (1:1) to remove catalyst and baseline material. The organic residue was dried via vacuum and purified via size exclusion chromatography. The fastest moving band was collected and solvent
removed via vacuum. A silica gel column utilizing $\mathrm{CHCl}_{3}:$ Pyridine (98:2) as the eluent the first band was isolated yielding compound 17. Yield 42 mg (57% yield based on compound 13). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.56(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.15 \mathrm{~Hz})$, $\delta 10.49(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.05 \mathrm{~Hz}), \delta 9.96(\mathrm{~s}, 2 \mathrm{H}), \delta 9.84(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=.385 \mathrm{~Hz}), \delta 9.77(\mathrm{~d}$, $4 \mathrm{H}, \mathrm{J}=4.45 \mathrm{~Hz}), \delta 9.63(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.30 \mathrm{~Hz}), \delta 9.32(\mathrm{~d}, 4 \mathrm{H}, J=4.10 \mathrm{~Hz}), \delta 5.38(\mathrm{br}-\mathrm{m}$, $20 \mathrm{H}), \delta 4.63(\mathrm{t}, 20 \mathrm{H}, J=8.05 \mathrm{~Hz}), \delta 4.57(\mathrm{t}, 20 \mathrm{H}, J=8.06 \mathrm{~Hz}), \delta 3.74(\mathrm{t}, 20 \mathrm{H}, J=$ $6.55 \mathrm{~Hz}), \delta 3.69(\mathrm{t}, 20 \mathrm{H}, J=5.47 \mathrm{~Hz}), \delta 1.62(\mathrm{~m}, 20 \mathrm{H}), \delta 1.45(\mathrm{~m}, 20 \mathrm{H}), \delta 1.30(\mathrm{~m}$, $20 \mathrm{H}), \delta 1.19(\mathrm{~m}, 28 \mathrm{H}), \delta 1.09(\mathrm{~m}, 10 \mathrm{H}), \delta 0.87(\mathrm{~m}, 90 \mathrm{H})$. Vis (THF): $414,505,846$ nm. MALDI-TOF MS m/z: $3646.00\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{218} \mathrm{H}_{272} \mathrm{~N}_{20} \mathrm{O}_{10} \mathrm{Zn}_{5} 3649.5703$).

PZnO3EHex Series:

2-(2'-(2"-ethylhexyloxy)-ethoxy)ethylbromide (18) ${ }^{6}$:
Triphenylphosphine ($55.14 \mathrm{~g}, 0.21 \mathrm{~mol}$) and di(ethylene glycol) 2ethylhexyl ether ($50 \mathrm{~mL}, 0.21 \mathrm{~mol}$) were dissolved in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 1 L reaction flask and cooled to $0^{\circ} \mathrm{C}$ under N_{2}. Once cooled, small portions, 5 g , of NBS (37.40 g, 0.21 mol) were added producing heat. Reaction mixture was stirred for 4 hours after the last portion of NBS was added. The solvent was removed via vacuum and taken up in ether and sonicated for 60 min . The mixture was filtered and solvent again removed via vacuum. The reaction was again, taken up in cold ether and filtered. This was repeated until no solid is seen in the remaining oil. Compound 18 was purified by silica gel chromatography using ether as the eluent. Yield $=42.52 \mathrm{~g}(72 \%$ based on starting material). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.82(\mathrm{t}, 2 \mathrm{H}, J=6.38 \mathrm{~Hz}), \delta 3.66(\mathrm{~m}, 2 \mathrm{H}),, \delta$
$3.59(\mathrm{~m}, 2 \mathrm{H}), \delta 3.47(\mathrm{t}, 2 \mathrm{H}, J=6.36 \mathrm{~Hz}), \delta 3.33(\mathrm{~d}, 2 \mathrm{H}, J=5.95 \mathrm{~Hz}), \delta 1.50(\mathrm{~m}, 1 \mathrm{H}), \delta$
$1.32(\mathrm{~m}, 8 \mathrm{H}), \delta 0.88(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{CI} \mathrm{MS} \mathrm{m} / \mathrm{z}: 305.0932\left[(\mathrm{M}+\mathrm{Na})^{+}\right]\left(\right.$calcd $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{BrO}_{2}$ for 303.0932).

12-ethyl-4, 7, 10-trioxalhexadecane-1-ol (19):
KOH ($60 \mathrm{~g}, 1.1 \mathrm{~mol}$), 1,3-propanediol ($41 \mathrm{~mL}, 0.57 \mathrm{~mol}$), and 200 mL of DMSO were charged into a reaction flask and purged with bubbling Ar while being cooled by an ice bath. Compound 18 ($31.84 \mathrm{~g}, 0.11 \mathrm{~mol}$) was then added dropwise to the reaction mixture and stirred for 4 hr . The reaction was quenched with water and the organic phase diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}), \mathrm{NaHCO}_{3}(\mathrm{aq})$, and $\mathrm{NaCl}(\mathrm{aq})$ and the organic layer collected and dried with CaCl_{2}. The organic layer was then filtered and the solvent removed via vacuum leaving a pale yellow residue. Compound 19 was purified by silica gel chromatography using 1:19 MeOH: CHCl_{3}. Yield $=29.25 \mathrm{~g}(94 \%$ based on compound 18). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.20(\mathrm{~d}, 2 \mathrm{H}, J=2.04 \mathrm{~Hz}), \delta 3.98(\mathrm{dd}$, $4 \mathrm{H}, J=2.00 \mathrm{~Hz}), \delta 3.77(\mathrm{~m}, 2 \mathrm{H}), \delta 3.67(\mathrm{~m}, 2 \mathrm{H}), \delta 3.57(\mathrm{~m}, 2 \mathrm{H}), \delta 3.31(\mathrm{t}, 2 \mathrm{H}, J=$ $6.05 \mathrm{~Hz}), \delta 2.59(\mathrm{t}, 1 \mathrm{H}, J=5.62 \mathrm{~Hz}), \delta 1.84(\mathrm{~m}, 2 \mathrm{H}), \delta 1.52(\mathrm{~m}, 1 \mathrm{H}), \delta 1.39(\mathrm{~m}, 8 \mathrm{H}), \delta$ 0.88(m, 6H). CI MS m/z: 299.2189 [(M+Na) $\left.{ }^{+}\right]\left(\right.$calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4}$ 299.2202).

12-ethyl-4, 7, 10-trioxalhexadecane-1-one (20):

PCC ($25.13 \mathrm{~g}, 0.116 \mathrm{~mol}$) was dissolved in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and degassed with purging Ar for 15 min while stirring at room temperature. Compound 19 (29.15, 0.11 mol) was syringed into the reaction flask causing an instant color change from pale orange to dark brown. The reaction was stirred for 3 hr and
then diluted with ethyl ether and passed through a silica gel plug. A second plug was done if oil residue appeared turbid. Solvent removed via vacuum leaving behind a clear oil. Yield $=25.57 \mathrm{~g}\left(88 \%\right.$ based on compound 19). ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.79(\mathrm{t}, 1 \mathrm{H}, J=1.70 \mathrm{~Hz}), \delta 4.20(\mathrm{~m}, 2 \mathrm{H}), \delta 3.82(\mathrm{~m}, 4 \mathrm{H}), \delta$ $3.60(\mathrm{~m}, 2 \mathrm{H}), \delta 3.32(\mathrm{~m}, 2 \mathrm{H}), \delta 2.66(\mathrm{~m}, 2 \mathrm{H}), \delta 1.80(\mathrm{~m}, 2 \mathrm{H}), \delta 1.51(\mathrm{~m}, 1 \mathrm{H}), \delta 1.32($ $\mathrm{m}, 8 \mathrm{H}), \delta 0.86(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{CIMS} \mathrm{m} / \mathrm{z}: 297.2053\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{4}$ 297.2040).

5,15-bis(11-ethyl-3, 6, 9-trioxapentadecane-1-yl))porphyrin (21):

2,2'-dipyrrylmethane ($4.58 \mathrm{~g}, 3.14 \times 10^{-2} \mathrm{~mol}$) and compound $20(8.62 \mathrm{~g}$, $\left.3.14 \times 10^{-2} \mathrm{~mol}\right)$ were dissolved in 4 L HPLC grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purged with Ar for 1 hour before TFA ($0.6 \mathrm{~mL}, 7.78 \times 10^{-3} \mathrm{~mol}$) was added via syringe. The reaction mixture was stirred for 12 hours at room temperature in the dark. Chloranil $\left(11.61 \mathrm{~g}, 4.72 \times 10^{-2} \mathrm{~mol}\right)$ was added to the reaction mixture and stirred for an additional 4 hours. The reaction mixture was passed through a silica plug to remove polymer and flushed with CHCl_{3} and porphyrin collected. Solvent was removed via vacuum and the dark red residue was chromatographed on silica gel using 3:7 THF:Hexanes as the eluent. Yield $=113 \mathrm{mg}(8 \%$ based on compound 20). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.06(\mathrm{~s}, 2 \mathrm{H}), \delta 9.55(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.50 \mathrm{~Hz}), \delta 9.31(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.24(\mathrm{t}, 4 \mathrm{H}, J=7.72 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, J=$ $7.60 \mathrm{~Hz}), \delta 3.82(\mathrm{~m}, 4 \mathrm{H}), \delta 3.60(\mathrm{~m}, 4 \mathrm{H}), \delta 3.32(\mathrm{~m}, 4 \mathrm{H}), \delta 2.66(\mathrm{~m}, 4 \mathrm{H}), \delta 1.80(\mathrm{~m}$, $4 \mathrm{H}), \delta 1.51(\mathrm{~m}, 2 \mathrm{H}), \delta 1.32(\mathrm{~m}, 16 \mathrm{H}), \delta 0.86(\mathrm{~m}, 12 \mathrm{H}), \delta-3.40(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{Vis}\left(\mathrm{CHCl}_{3}\right):$
$404,503,534,577,631 \mathrm{~nm}$. ESI MS m/z: $821.5198\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{6}$ 798.5295).

5,15-bis([11-ethyl-3, 6, 9-trioxapentadecane-1-yl]porphyrinato)Zn(II) PZn-

O3EHex (22)

5,15-bis(11-ethyl-3, 6, 9-trioxapentadecane-1-yl))porphyrin (200 mg, 0.250 mmol) was dissolved in 150 mL HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was heated to reflux and then Zinc acetate dihydrate (274 mg , 1.25 mol) was added and the reaction was allowed to stir for 2 hrs . After cooling, the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 3:7 THF:Hexanes as the eluent. Yield $=203$ $\mathrm{mg}\left(92 \%\right.$ yield based on Compound 21 starting material). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.06(\mathrm{~s}, 2 \mathrm{H}), \delta 9.55(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.31(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.24($ $\mathrm{t}, 4 \mathrm{H}, J=7.72 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, J=7.60 \mathrm{~Hz}), \delta 3.82(\mathrm{~m}, 4 \mathrm{H}), \delta 3.60(\mathrm{~m}, 4 \mathrm{H}), \delta 3.32($ $\mathrm{m}, 4 \mathrm{H}), \delta 2.66(\mathrm{~m}, 4 \mathrm{H}), \delta 1.80(\mathrm{~m}, 4 \mathrm{H}), \delta 1.51(\mathrm{~m}, 2 \mathrm{H}), \delta 1.32(\mathrm{~m}, 16 \mathrm{H}), \delta 0.86(\mathrm{~m}$, 12H). Vis (THF): 410, 546, 579 nm . ESI MS m/z: $883.4288\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} 883.4333\right)$.

5-Bromo-10,20-bis(11-ethyl-3, 6, 9-trioxapentadecane-1-yl)porphyrin (23):
Compound 21 ($234.6 \mathrm{mg}, 2.886 \times 10^{-4} \mathrm{~mol}$) was dissolved in $\mathrm{CHCl}_{3}: \mathrm{MeOH}$ (9:1) and cooled to $-5^{\circ} \mathrm{C}$. N -bromosuccinimide ($54 \mathrm{mg}, 3.2 \times 10^{-4} \mathrm{~mol}$) was added to the reaction mixture and stirred at $-5^{\circ} \mathrm{C}$ for 10 min and then allowed to cool to
room temperature. Once at room temperature the reaction was poured into water followed by $\mathrm{NaCl}(\mathrm{aq})$ washing $\times 3$. The organic layer was collected and dried over CaCl_{2} and then filtered followed by solvent removal via vacuum. The residue was then purified by silica gel chromatography 1:9 THF: $\left(\mathrm{CHCl}_{3}:\right.$ Hexanes 1:1). The first band collect was 5,15-dibromo-10,20-bis(2-ethylhexyltriethyleneglycol)porphyrin, compound 24. Yield $=110 \mathrm{mg}(20 \%$ based on compound 21). Second band collect was compound 23. Yield $=139 \mathrm{mg}(68 \%$ based on compound 21). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.07(\mathrm{~s}, 1 \mathrm{H}), \delta 9.80(\mathrm{~d}$, $2 \mathrm{H}, J=4.93 \mathrm{~Hz}), \delta 9.53(\mathrm{~d}, 4 \mathrm{H}, J=4.95 \mathrm{~Hz}), \delta 9.29(\mathrm{~d}, 2 \mathrm{H}, J=4.65 \mathrm{~Hz}), \delta 5.25(\mathrm{t}, 4 \mathrm{H}$, $J=7.13 \mathrm{~Hz}), \delta 4.49(\mathrm{t}, 4 \mathrm{H}, J=7.52 \mathrm{~Hz}), \delta 3.68(\mathrm{~m}, 4 \mathrm{H}), \delta 3.55(\mathrm{~m}, 4 \mathrm{H}), \delta 3.45(\mathrm{~m}$, $4 \mathrm{H}), \delta 3.21(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}, 16 \mathrm{H}), \delta 0.84(\mathrm{~m}, 12 \mathrm{H}), \delta-3.10(\mathrm{~s}, 2 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right):$ $414,512,544,590,648 \mathrm{~nm} . \mathrm{MS} \mathrm{m} / \mathrm{z}: 899.6327\left[(\mathrm{M}+\mathrm{Na})^{+}\right]\left(\right.$calcd for $\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{BrN}_{4} \mathrm{O}_{6}$ 876.4400).

5,15-dibromo-10,20-bis (11-ethyl-3, 6, 9-trioxapentadecane-1-yl)porphyrin (24):
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.58(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.93 \mathrm{~Hz}), \delta 9.36(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.95 \mathrm{~Hz}), \delta 5.07(\mathrm{t}, 4 \mathrm{H}, J=7.46 \mathrm{~Hz}), \delta 4.43(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=8.49 \mathrm{~Hz}), \delta 3.66(\mathrm{~m}, 4 \mathrm{H}), \delta 3.55($
$\mathrm{t}, 4 \mathrm{H}, J=4.80 \mathrm{~Hz}), \delta 3.19(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}, 16 \mathrm{H}), \delta 0.84(\mathrm{~m}, 12 \mathrm{H}), \delta-3.39(\mathrm{~s}, 2 \mathrm{H})$.
Vis $\left(\mathrm{CHCl}_{3}\right): 420,522,556,602,664 \mathrm{~nm}$.

(5-Bromo-10,20-bis(2-ethylhexyl-triethyleneglycol)porphinato)zinc(II) (25):

Compound 23 ($150 \mathrm{mg}, 1.71 \times 10^{-4} \mathrm{~mol}$) was dissolved in 150 mL of HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was warmed to reflux and then Zn acetate dihydrate ($188 \mathrm{mg}, 8.55 \times 10^{-4} \mathrm{~mol}$) was added and the reaction
was allowed to stir for an additional 2 hrs . After cooling the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) $\times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:3 THF:Hexanes as the eluent. Yield $=148 \mathrm{mg}$ (92% based on compound 23). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), \delta 9.78(\mathrm{~d}, 2 \mathrm{H}, J=4.67 \mathrm{~Hz}), \delta 9.61(\mathrm{~d}$, $2 \mathrm{H}, J=4.68 \mathrm{~Hz}), \delta 9.30(\mathrm{~d}, 2 \mathrm{H}, J=4.44 \mathrm{~Hz}), \delta 5.31(\mathrm{t}, 4 \mathrm{H}, J=7.92 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, J$ $=7.90 \mathrm{~Hz}), \delta 3.68(\mathrm{~m}, 4 \mathrm{H}), \delta 3.55(\mathrm{~m}, 4 \mathrm{H}), \delta 3.45(\mathrm{~m}, 4 \mathrm{H}), \delta 3.21(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}$, $16 \mathrm{H}), \delta 0.84(\mathrm{~m}, 12 \mathrm{H}) . \operatorname{Vis}\left(\mathrm{CHCl}_{3}\right): 418,547,580 \mathrm{~nm}$. ESI MS m/z: 963.3438 $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{67} \mathrm{BrN}_{4} \mathrm{O}_{6} \mathrm{Zn} 968.3595\right)$.

(5,15-dibromo-10,20-bis(11'-ethyl-3', $6^{\prime},{ }^{\prime}$ ' ${ }^{\prime}$-trioxapentadecane- $\mathbf{1}^{\prime}$ -

yl)porphinato)zinc(II) (26):

Compound 24 ($100 \mathrm{mg}, 1.05 \times 10^{-4} \mathrm{mols}$) was dissolved in 150 mL of HPLC grade CHCl_{3} with 1 mL of TEA. The reaction mixture was warmed to reflux and then Zn acetate dihydrate $\left(115 \mathrm{mg}, 5.25 \times 10^{-4} \mathrm{~mol}\right)$ was added and the reaction was allowed to stir for an additional 2 hrs . After cooling the reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq) $\times 3$ and the organic layer was collected and dried with CaCl_{2}. Organics were filtered and solvent removed via vacuum leaving behind a red organic residue. The residue was chromatographed on silica gel using 1:3 THF:Hexanes as the eluent. Yield $=99 \mathrm{mg}$ (93% based on compound 24). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.68(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.93 \mathrm{~Hz}), \delta 9.51(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.78 \mathrm{~Hz}), \delta 5.23(\mathrm{t}, 4 \mathrm{H}, J=7.77 \mathrm{~Hz}), \delta 4.45(\mathrm{t}, 4 \mathrm{H}, J=3.91 \mathrm{~Hz}), \delta 3.68(\mathrm{~m}, 4 \mathrm{H}), \delta 3.55($
$\mathrm{m}, 4 \mathrm{H}), \delta 3.45(\mathrm{~m}, 4 \mathrm{H}), \delta 3.21(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}, 16 \mathrm{H}), \delta 0.84(\mathrm{~m}, 12 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right): 426,559,602 \mathrm{~nm}$. MALDI-TOF MS m/z: 1018.0319 [(M) $\left.{ }^{+}\right]$(calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} 1018.2797$).
(5-Trimethylsilylethynyl-10,20-bis(11'-ethyl-3', $6^{\prime}, 9^{\prime}$-trioxapentadecane- $\mathbf{1}^{\prime}$ yl)porphinato)zinc(II) (27):

THF (10 mL) and (trimethylsilyl)acetylene ($0.1 \mathrm{~mL}, 6 \times 10^{-4} \mathrm{~mol}$) were added to a 100 mL Schlenk flask, stirred, and cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexanes, $0.396 \mathrm{~mL}, 6.34 \times 10^{-4} \mathrm{~mol}$) was added via syringe dropwise and the reaction mixture stirred for 30 min under Ar. The reaction mixture was warmed to room temperature and a THF $(30 \mathrm{~mL})$ solution of $\mathrm{ZnCl}_{2}(86 \mathrm{mg}, 6.3$ $x 10^{-4} \mathrm{~mol}$) was added via canula creating a cloudy white solution. The reaction was stirred for 15 min and then canula transferred to a 250 mL reaction flask charged with compound $25\left(142 \mathrm{mg}, 1.51 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 1.5 \mathrm{x}$ $\left.10^{-5} \mathrm{~mol}\right)$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under Ar for 8 hours and then quenched with water and extracted with CHCl_{3} and washed with NaCl (aq) x 3. The organic layer was extracted and dried over CaCl_{2}, filtered and solvent removed via vacuum. The crude product was chromatographed on silica gel using 1:4 THF:Hexanes. Yield $=139 \mathrm{mg}(96 \%$ based on compound 25$) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.95(\mathrm{~s}, 1 \mathrm{H}), \delta 9.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.55 \mathrm{~Hz}), \delta 9.59(\mathrm{~d}, 4 \mathrm{H}, J=$ $4.88 \mathrm{~Hz}), \delta 9.57(\mathrm{~d}, 2 \mathrm{H}, J=5.33 \mathrm{~Hz}), \delta 9.28(\mathrm{~d}, 2 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.31(\mathrm{t}, 4 \mathrm{H}, J=$ $7.75 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, J=7.71 \mathrm{~Hz}), \delta 3.69(\mathrm{~m}, 4 \mathrm{H}), \delta 3.61(\mathrm{~m}, 4 \mathrm{H}), \delta 3.52(\mathrm{~m}, 4 \mathrm{H}), \delta$
$3.27(\mathrm{~m}, 4 \mathrm{H}), \delta 1.24(\mathrm{~m}, 2 \mathrm{H}), \delta 0.82(\mathrm{~m}, 16 \mathrm{H}), \delta 0.62(\mathrm{~s}, 12 \mathrm{H})$. Vis (THF): 428, 562, $610 \mathrm{~nm} . \mathrm{MS} \mathrm{m} / \mathrm{z}: 979.4696\left[(\mathrm{M}+\mathrm{Na})^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{53} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SiZn} 979.4726\right)$.
(5,15-bis(triisopropylsilylethynyl)-10,20-bis(11'-ethyl-3', $\mathbf{6}^{\prime}, 9^{\prime}$ -
trioxapentadecane-1'-yl)porphinato)zinc(II) (28):
Compound 24 ($131 \mathrm{mg}, 1.28 \times 10^{-4} \mathrm{~mol}$) was charged into a 100 mL Schlenk tube and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(13.5 \mathrm{mg}, 1.92 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{CuI}\left(4 \mathrm{mg}, 2 \times 10^{-5} \mathrm{~mol}\right)$ were added in the glovebox. A THF:TEA ($30 \mathrm{~mL}, 9: 1$) solution was degassed with Ar purge for 30 min and then canula into the reaction flask while (triisopropylsily) acetylene ($0.01 \mathrm{~mL}, 3 \times 10^{-4} \mathrm{~mol}$) was added via syringe. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ and stirred under Ar overnight. Reaction was quenched with water and diluted with CHCl_{3} and washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \times 3$. The organic layer was extracted and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The crude product was purified on silica gel using 1:3 THF:Hexanes. Yield $=138 \mathrm{mg}$ (88% based on compound 24). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.68(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.47 \mathrm{~Hz}), \delta 9.41(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.63 \mathrm{~Hz}), \delta 5.12(\mathrm{t}, 4 \mathrm{H}, J$ $=7.50 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 4 \mathrm{H}, J=7.26 \mathrm{~Hz}), \delta 3.55(\mathrm{t}, 4 \mathrm{H}, J=4.01 \mathrm{~Hz}), \delta 3.46(\mathrm{t}, 4 \mathrm{H}, J=$ $4.84 \mathrm{~Hz}), \delta 3.08(\mathrm{t}, 4 \mathrm{H}, J=4.63 \mathrm{~Hz}), \delta 2.89(\mathrm{t}, 4 \mathrm{H}, J=4.64 \mathrm{~Hz}), \delta 1.50(\mathrm{~m}, 42 \mathrm{H}), \delta$ $1.28(\mathrm{~m}, 16 \mathrm{H}), \delta 0.89(\mathrm{~m}, 12 \mathrm{H})$. Vis (THF): $439,586,640 \mathrm{~nm}$. MALDI-TOF MS $\mathrm{m} / \mathrm{z}: 1220.8239\left[(\mathrm{M})^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{70} \mathrm{H}_{108} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Zn} 1220.7099\right)$.

(5-ethynyl-10,20-bis(11'-ethyl-3', $6^{\prime}, 9^{\prime}$-trioxapentadecane- 1^{\prime} -

yl)porphinato)zinc(II) (29):

Tetrabutylammonium fluoride (0.1 M in THF, $3.83 \mathrm{~mL}, 3.83 \times 10^{-4} \mathrm{~mol}$) was added to a solution of compound $27\left(282 \mathrm{mg}, 3.48 \times 10^{-4} \mathrm{~mol}\right)$ in 40 mL of THF cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and then directly poured down a short silica gel column with CHCl_{3} as the eluent. Yield = $246 \mathrm{mg}\left(80 \%\right.$ based on compound 27). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.98(\mathrm{~s}, 1 \mathrm{H})$, $\delta 9.80(\mathrm{~d}, 2 \mathrm{H}, J=4.70 \mathrm{~Hz}), \delta 9.62(\mathrm{~d}, 2 \mathrm{H}, J=4.52 \mathrm{~Hz}), \delta 9.59(\mathrm{~d}, 2 \mathrm{H}, J=5.59 \mathrm{~Hz}), \delta$ $9.31(\mathrm{~d}, 2 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.12(\mathrm{t}, 4 \mathrm{H}, J=7.50 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 4 \mathrm{H}, J=7.26 \mathrm{~Hz}), \delta 4.12($ $\mathrm{s}, 1 \mathrm{H}), \delta 3.55(\mathrm{t}, 4 \mathrm{H}, J=4.01 \mathrm{~Hz}), \delta 3.46(\mathrm{t}, 4 \mathrm{H}, J=4.84 \mathrm{~Hz}), \delta 3.08(\mathrm{t}, 4 \mathrm{H}, J=$ $4.63 \mathrm{~Hz}), \delta 2.89(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.64 \mathrm{~Hz}), \delta 1.28(\mathrm{~m}, 16 \mathrm{H}), \delta 0.89(\mathrm{~m}, 12 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right)$: $422,552,590 \mathrm{~nm} . \mathrm{MS} \mathrm{m} / \mathrm{z}: 907.4291\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\left.\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} 907.4330\right)$. (5,15-diethynyl-10,20-bis(11'-ethyl-3', $6^{\prime}, 9^{\prime}$-trioxapentadecane- 1^{\prime} yl)porphinato)zinc(II) (30):

Tetrabutylammonium fluoride (0.1 M in THF, $9 \mathrm{~mL}, 9 \times 10^{-5} \mathrm{~mol}$) was added to a solution of compound $28\left(100 \mathrm{mg}, 8.19 \times 10^{-5} \mathrm{~mol}\right)$ in 40 mL of THF cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and then directly poured down a short silica gel column with CHCl_{3} as the eluent. Yield $=77 \mathrm{mg}$ (94\% based on compound 28). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.80(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.70 \mathrm{~Hz}), \delta 9.62(\mathrm{~d}, 4 \mathrm{H}, J=4.52 \mathrm{~Hz}), \delta 9.59(\mathrm{~d}, 2 \mathrm{H}, J=5.59 \mathrm{~Hz}), \delta 9.31(\mathrm{~d}, 2 \mathrm{H}, J=$ $4.45 \mathrm{~Hz}), \delta 5.12(\mathrm{t}, 4 \mathrm{H}, J=7.50 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 4 \mathrm{H}, J=7.26 \mathrm{~Hz}), \delta 4.14(\mathrm{~s}, 2 \mathrm{H}), \delta 3.55(\mathrm{t}$, $4 \mathrm{H}, J=4.01 \mathrm{~Hz}), \delta 3.46(\mathrm{t}, 4 \mathrm{H}, J=4.84 \mathrm{~Hz}), \delta 3.08(\mathrm{t}, 4 \mathrm{H}, J=4.63 \mathrm{~Hz}), \delta 2.89(\mathrm{t}, 4 \mathrm{H}, J$ $=4.64 \mathrm{~Hz}), \delta 1.28(\mathrm{~m}, 16 \mathrm{H}), \delta 0.89(\mathrm{~m}, 12 \mathrm{H})$. Vis $(\mathrm{THF}): 433,578,629 \mathrm{~nm}$. MALDITOF MS m/z: $909.3127\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\left.\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} 908.4430\right)$.

5,15-bis[[5',-10',20'-bis([11'"-ethyl-3' $, 6^{\prime \prime}, 9^{\prime \prime}$-trioxapentadecane-1-

yl]porphinato)zinc(II)]ethynyl]-10,20-bis([11'"-ethyl-3', $6^{\prime \prime}, 9^{\prime \prime}-$
trioxapentadecane-1-yl]porphinato)zinc(II) $\underline{\mathrm{PZn}}_{3}-\mathrm{O} 3 \mathrm{EHex}$ (32):
Compound $27\left(46.2 \mathrm{mg}, 5.21 \times 10^{-5} \mathrm{~mol}\right)$ and $25\left(24.2 \mathrm{mg}, 2.37 \times 10^{-5} \mathrm{~mol}\right)$ were charged into a 100 mL Schlenk tube along with $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(3 \mathrm{mg}, 4 \times 10^{-6} \mathrm{~mol}\right)$ and $\mathrm{AsPh}_{3}\left(10 \mathrm{mg}, 2.8 \times 10^{-5} \mathrm{~mol}\right)$. Previously degassed solution of THF:TEA (9:1) were then canula into the reaction flask and heated to $60^{\circ} \mathrm{C}$ and stirred overnight under Ar. The reaction was quenched with water and diluted with CHCl_{3} and washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) 3 \mathrm{x}$. The organic layer was collected and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and solvent removed via vacuum. The residue was poured down a silica gel plug using CHCl_{3} :Pyridine (99:1) as the eluent to remove catalyst. Solvent was removed by vacuum and then purified by gravimetric size exclusion column (Biobeads, SX-1, THF). The fastest moving band was collected and solvent removed by vacuum. A final silica gel plug was done to remove residual biobeads using $\mathrm{CHCl}_{3}:$ Pyridine (99:1) as the eluent. Yield $=48 \mathrm{mg}(77 \%$ based on compound 25). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.56(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta$ $10.50(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 9.98(\mathrm{~s}, 2 \mathrm{H}), \delta 9.87(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.80(\mathrm{~d}, 4 \mathrm{H}, J=$ $4.50 \mathrm{~Hz}), \delta 9.66(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 9.33(\mathrm{~d}, 4 \mathrm{H}, J=4.35 \mathrm{~Hz}), \delta 5.12(\mathrm{t}, 12 \mathrm{H}, J=$ $7.50 \mathrm{~Hz}), \delta 4.37(\mathrm{t}, 12 \mathrm{H}, J=7.26 \mathrm{~Hz}), \delta 3.55(\mathrm{t}, 12 \mathrm{H}, J=4.01 \mathrm{~Hz}), \delta 3.46(\mathrm{t}, 12 \mathrm{H}, J=$ $4.84 \mathrm{~Hz}), \delta 3.08(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=4.63 \mathrm{~Hz}), \delta 2.89(\mathrm{t}, 12 \mathrm{H}, J=4.64 \mathrm{~Hz}), \delta 1.28(\mathrm{~m}, 48 \mathrm{H}), \delta$ 0.89(m, 36H). Vis (THF): 414, 494, 574, 774 nm. MALDI-TOF MS m/z: 2623.3485 [(M) ${ }^{+}$(calcd for $\mathrm{C}_{148} \mathrm{H}_{200} \mathrm{~N}_{12} \mathrm{O}_{18} \mathrm{Zn}_{3}$ 2625.2978).

5,15-bis[[5',-10',20'-bis([11-ethyl-3, 6, 9-trioxapentadecane-1-

yl]porphinato)zinc(II)]ethynyl]-10,20-bis([3-(3', 5', 5'-trimethylhexyloxy)ethyl]porphinato)zinc(II) PZn_{3}-O3EHexO1O3EHex (33):

Compound $9(237 \mathrm{mg}, 2.7 \times 10-4 \mathrm{~mol})$ and compound 29 ($120 \mathrm{mg}, 1.3 \times 10-$ 4 mol) were charged into a 50 mL Schlenk flask. Pd 2 dba 3 and AsPh_{3} were then charged into the same reaction flask. 30 mL of THF:TEA (9:1, and degassed by Freeze-Pump-thaw cycles) was cannula into the reaction flask. The reaction stirred for 16 hours under Ar. Once cooled the reaction mixture was diluted with CHCl_{3} and washed $3 x$ with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and the organic layer collected and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was filtered and solvent removed via vacuum and the residue subjected to silica gel chromatography using THF:Hex (3:7) as the eluent. One large band was collected and the solvent removed via vacuum and the resulting residue was taken up in THF and further purified via size exclusion chromatography. The first band collect was dried by vacuum and one remaining silica gel column was performed to remove residual biobeads using $\mathrm{CHCl}_{3}: \mathrm{MeOH}(95: 5)$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.56(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.35 \mathrm{~Hz}), \delta 10.50(\mathrm{~d}, 4 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 9.98(\mathrm{~s}, 2 \mathrm{H}), \delta 9.87(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta$ $9.80(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.66(\mathrm{~d}, 4 \mathrm{H}, J=4.40 \mathrm{~Hz}), \delta 9.33(\mathrm{~d}, 4 \mathrm{H}, J=4.35 \mathrm{~Hz}), \delta$ $5.41(\mathrm{br}, 12 \mathrm{H}), \delta 4.63(\mathrm{br}, 12 \mathrm{H}), \delta 3.83(\mathrm{br}, 12 \mathrm{H}), \delta 3.77(\mathrm{br}, 8 \mathrm{H}), \delta 3.68(\mathrm{br}, 8 \mathrm{H}), \delta$ $3.56(\mathrm{br}, 8 \mathrm{H}), \delta 3.28(\mathrm{br}, 8 \mathrm{H}), \delta 2.89(\mathrm{br}, 8 \mathrm{H}), \delta 1.22(\mathrm{br}, 18 \mathrm{H}), \delta 0.95(\mathrm{br}, 32 \mathrm{H}), \delta$ $0.84(\mathrm{br}, 42 \mathrm{H})$. Vis (THF): 414, 494, 574, 774 nm. MALDI-TOF MS m/z: 2476.71 $\left[(\mathrm{M})^{+}\right]$(calcd for $\left.\mathrm{C}_{142} \mathrm{H}_{188} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{Zn}_{3} 2477.2242\right)$.

ZnO3Hex Series:

Synthetic procedures were identical to the ZnO3EHex series. Listed is only a brief statement concerning purification and characterization, see section for full procedures and reaction details.

2-(2'-(2"-hexyloxy)-ethoxy)ethylbromide (34):
Compound 34 was purified by silica gel chromatography using ether as the eluent. The resulting organic residue was clear with a yield of 74.4% based on starting material. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.81(\mathrm{t}, 2 \mathrm{H}, J=6.38 \mathrm{~Hz}), \delta 3.66$ $(\mathrm{t}, 2 \mathrm{H}, J=4.24), \delta 3.58(\mathrm{t}, 2 \mathrm{H}, J=4.15), \delta 3.45(\mathrm{qu}, 4 \mathrm{H}, J=6.37 \mathrm{~Hz}), \delta 1.57(\mathrm{q}, 2 \mathrm{H}, J$ $=6.75 \mathrm{~Hz}), \delta 1.31(\mathrm{~m}, 8 \mathrm{H}), \delta 0.88(\mathrm{t}, 3 \mathrm{H}) . \mathrm{CI} \mathrm{MS} \mathrm{m} / \mathrm{z}: 253.0802\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{BrO}_{2}$ for 252.0725).

4, 7, 10-trioxalhexadecane-1-ol (35):

Compound 35 was purified by silica gel chromatography using 1:19 $\mathrm{MeOH}: H e x a n e s$ and isolated in 33% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{~m}$, $2 \mathrm{H}), \delta 3.62(\mathrm{~m}, 8 \mathrm{H}), \delta 3.46(\mathrm{~m}, 4 \mathrm{H}), \delta 1.82(\mathrm{~m}, 2 \mathrm{H}), \delta 1.56(\mathrm{~m}, 2 \mathrm{H}), \delta 1.29(\mathrm{~m}, 8 \mathrm{H}), \delta$ $0.86(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{CIMS} \mathrm{m} / \mathrm{z}: 249.2054\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4}$ 248.1988).

4, 7, 10-trioxalhexadecane-1-one (36):

Repetitive silica gel plugs were done using ether as the eluent until resulting in light yellow oil isolated in 74.9% yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.78(\mathrm{t}, 1 \mathrm{H}, J=1.79 \mathrm{~Hz}), \delta 3.82(\mathrm{~m}, 2 \mathrm{H}), \delta 3.61(\mathrm{~m}, 4 \mathrm{H}), \delta 3.56(\mathrm{~m}, 2 \mathrm{H}), \delta 3.47(\mathrm{~m}$, $2 \mathrm{H}), \delta 3.44(\mathrm{~m}, 2 \mathrm{H}), \delta 1.56(\mathrm{~m}, 2 \mathrm{H}), \delta 1.30(\mathrm{~m}, 2 \mathrm{H}), \delta 1.21(\mathrm{~m}, 8 \mathrm{H}), \delta 0.87(\mathrm{~m}, 3 \mathrm{H})$. CI MS m/z: $247.3423\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{4}$ 246.1831).

5,15-bis(-3, 6, 9-trioxapentadecane-1-yl))porphyrin (37):

The dark red residue was chromatographed on silica gel using 3:7
THF:Hexanes as the eluent isolated in $12 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.12($
$\mathrm{s}, 2 \mathrm{H}), \delta 9.60(\mathrm{~d}, 4 \mathrm{H}, J=4.70 \mathrm{~Hz}), \delta 9.38(\mathrm{~d}, 4 \mathrm{H}, J=4.60 \mathrm{~Hz}), \delta 5.28(\mathrm{t}, 4 \mathrm{H}, J=$
$7.71 \mathrm{~Hz}), \delta 4.53(\mathrm{t}, 4 \mathrm{H}, J=7.66 \mathrm{~Hz}), \delta 3.73(\mathrm{t}, 4 \mathrm{H}, J=4.02), \delta 3.67(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta$
$3.57(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.36), \delta 3.45(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.36), \delta 3.32(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.81), \delta 1.50(\mathrm{~m}, 4 \mathrm{H}), \delta$
$1.26(\mathrm{~m}, 18 \mathrm{H}), \delta 0.87(\mathrm{t}, 6 \mathrm{H}), \delta-3.25(\mathrm{~s}, 2 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right): 404,503,534,577,631$
nm. ESI MS m/z: $743.4724\left[(\mathrm{M}+\mathrm{H})^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{6} 742.4669\right)$.

5,15-bis([-3, 6, 9-trioxapentadecane-1-yl]porphyrinato)Zn(II) PZn-O3Hex (38)

The residue was chromatographed on silica gel using THF:Hexanes (3:7) as the eluent. Yield 92%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.12(\mathrm{~s}, 2 \mathrm{H}), \delta 9.60(\mathrm{~d}$, $4 \mathrm{H}, J=4.70 \mathrm{~Hz}), \delta 9.38(\mathrm{~d}, 4 \mathrm{H}, J=4.60 \mathrm{~Hz}), \delta 5.28(\mathrm{t}, 4 \mathrm{H}, J=7.71 \mathrm{~Hz}), \delta 4.53(\mathrm{t}, 4 \mathrm{H}, J$ $=7.66 \mathrm{~Hz}), \delta 3.73(\mathrm{t}, 4 \mathrm{H}, J=4.02), \delta 3.67(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.57(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta$ $3.45(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.36), \delta 3.32(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.81), \delta 1.50(\mathrm{~m}, 4 \mathrm{H}), \delta 1.26(\mathrm{~m}, 12 \mathrm{H}), \delta 0.87($ $\mathrm{t}, 6 \mathrm{H}$). Vis (THF): 410, $546,579 \mathrm{~nm}$.

5-Bromo-10,20-bis(-3, 6, 9-trioxapentadecane-1-yl)porphyrin (39):

The residue was then purified by silica gel chromatography THF:Hexanes
(3:7). The first band collected was 5,15-dibromo-10, 20-bis (-3, 6, 9-trioxapentadecane-1-yl)porphyrin (compound 40). Yield $=20 \%$. Second band collect was compound 39 . Yield $=68 \% .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.91$ (s, $1 \mathrm{H}), \delta 9.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.80 \mathrm{~Hz}), \delta 9.48(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.63 \mathrm{~Hz}), \delta 9.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $4.43 \mathrm{~Hz}), \delta 9.23(\mathrm{~d}, 2 \mathrm{H}, J=4.61 \mathrm{~Hz}), \delta 5.17(\mathrm{t}, 4 \mathrm{H}, J=7.71 \mathrm{~Hz}), \delta 4.47(\mathrm{t}, 4 \mathrm{H}, J=$
$7.66 \mathrm{~Hz}), \delta 3.71(\mathrm{t}, 4 \mathrm{H}, J=4.02), \delta 3.66(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.55(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.43($ $\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.31(\mathrm{t}, 4 \mathrm{H}, J=6.81), \delta 1.48(\mathrm{~m}, 4 \mathrm{H}), \delta 1.23(\mathrm{~m}, 16 \mathrm{H}), \delta 0.85(\mathrm{t}$, $6 \mathrm{H}), \delta-3.25(\mathrm{~s}, 2 \mathrm{H}) . \operatorname{Vis}\left(\mathrm{CHCl}_{3}\right): 414,512,544,590,648 \mathrm{~nm} . \mathrm{MS} \mathrm{m} / \mathrm{z}: 821.3871$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{BrN}_{4} \mathrm{O}_{6} 820.3774\right)$.

5,15-dibromo-10,20-bis (3, 6, 9-trioxapentadecane-1-yl)porphyrin (40):
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.49(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.75 \mathrm{~Hz}), \delta 9.27(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ $4.75 \mathrm{~Hz}), \delta 4.99(\mathrm{t}, 4 \mathrm{H}, J=7.23 \mathrm{~Hz}), \delta 4.35(\mathrm{t}, 4 \mathrm{H}, J=7.56 \mathrm{~Hz}), \delta 3.75(\mathrm{t}, 4 \mathrm{H}, J=4.02)$, $\delta 3.65(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.62(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.53(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.30(\mathrm{t}, 4 \mathrm{H}, J=$ $6.81), \delta 1.85(\mathrm{~m}, 4 \mathrm{H}), \delta 1.28(\mathrm{~m}, 16 \mathrm{H}), \delta 0.86(\mathrm{t}, 6 \mathrm{H}), \delta-3.76(\mathrm{~s}, 2 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right)$: $420,522,556,602,664 \mathrm{~nm}$.

(5-Bromo-10,20-bis((-3, 6, 9-trioxapentadecane-1-yl)porphinato)zinc(II) (41):

The residue was chromatographed on silica gel using 3:7 THF:Hexanes as the eluent. Yield $=92 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), \delta 9.77(\mathrm{~d}, 2 \mathrm{H}$, $J=4.91 \mathrm{~Hz}), \delta 9.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.22 \mathrm{~Hz}), \delta 9.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.22 \mathrm{~Hz}), \delta 9.29(\mathrm{~d}, 2 \mathrm{H}, J=$ $4.45 \mathrm{~Hz}), \delta 5.30(\mathrm{t}, 4 \mathrm{H}, J=7.82 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 3.73(\mathrm{t}, 4 \mathrm{H}, J=4.02)$, $\delta 3.68(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.60(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.49(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.36(\mathrm{t}, 4 \mathrm{H}, J=$ $6.81), \delta 1.50(\mathrm{~m}, 4 \mathrm{H}), \delta 1.26(\mathrm{~m}, 16 \mathrm{H}), \delta 0.87(\mathrm{t}, 6 \mathrm{H}) . \operatorname{Vis}\left(\mathrm{CHCl}_{3}\right): 418,547,580$ nm.

(5,15-dibromo-10,20-bis(-3, 6, 9-trioxapentadecane-1-yl)porphinato)zinc(II) (42):

The residue was chromatographed on silica gel using 3:7 THF:Hexanes as the eluent. Yield $=93 \% .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.69(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.81 \mathrm{~Hz}), \delta$
$9.51(\mathrm{~d}, 4 \mathrm{H}, J=4.65 \mathrm{~Hz}), \delta 5.22(\mathrm{t}, 4 \mathrm{H}, J=7.72 \mathrm{~Hz}), \delta 4.67(\mathrm{t}, 4 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta$ $3.70(\mathrm{t}, 4 \mathrm{H}, J=4.02), \delta 3.66(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.65(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.48(\mathrm{t}, 4 \mathrm{H}, J=$ $5.36), \delta 3.36(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.81), \delta 1.50(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}, 16 \mathrm{H}), \delta 0.83(\mathrm{t}, 6 \mathrm{H})$. Vis $\left(\mathrm{CHCl}_{3}\right): 426,559,602 \mathrm{~nm}$. ESI MS m/z: $983.1932\left[\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$(calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} 960.2015\right)$.

(5-Trimethylsilylethynyl-10,20-bis(-3, 6, 9-trioxapentadecane-1-

 yl)porphinato)zinc(II) (43):The crude product was chromatographed on silica gel using THF:Hexanes (3:7). Yield $=98 \% .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), \delta 9.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $4.39 \mathrm{~Hz}), \delta 9.58(\mathrm{~d}, 4 \mathrm{H}, J=4.89 \mathrm{~Hz}), \delta 9.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.41 \mathrm{~Hz}), \delta 9.27(\mathrm{~d}, 2 \mathrm{H}, J=$ $4.62 \mathrm{~Hz}), \delta 5.22(\mathrm{t}, 4 \mathrm{H}, J=7.72 \mathrm{~Hz}), \delta 4.67(\mathrm{t}, 4 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 3.70(\mathrm{t}, 4 \mathrm{H}, J=4.02)$, $\delta 3.66(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.65(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.48(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.36(\mathrm{t}, 4 \mathrm{H}, J=$ $6.81), \delta 1.50(\mathrm{~m}, 4 \mathrm{H}), \delta 1.22(\mathrm{~m}, 16 \mathrm{H}), \delta 0.83(\mathrm{t}, 6 \mathrm{H})$. Vis (THF): $428,562,610 \mathrm{~nm}$.

(5,15-bis(trimethylsilylethynyl)-10,20-bis(-3, 6, 9-trioxapentadecane-1-

 yl)porphinato)zinc(II) (44):The crude product was purified on silica gel using THF:Hexanes (3:7).
Yield $=90 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.53 \mathrm{~Hz}), \delta 9.49(\mathrm{~d}, 4 \mathrm{H}$, $J=4.59 \mathrm{~Hz}), \delta 5.23(\mathrm{t}, 4 \mathrm{H}, J=7.70 \mathrm{~Hz}), \delta 4.48(\mathrm{t}, 4 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 3.72(\mathrm{t}, 4 \mathrm{H}, J=$ $4.02), \delta 3.67(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.59(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.50(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.36(\mathrm{t}$, $4 \mathrm{H}, J=6.81), \delta 1.51(\mathrm{~m}, 4 \mathrm{H}), \delta 1.25(\mathrm{~m}, 16 \mathrm{H}), \delta 0.85(\mathrm{t}, 6 \mathrm{H}, J=6.39), \delta 0.62(\mathrm{~s}, 9 \mathrm{H})$. Vis (THF): 439, 586, 640 nm .
(5-ethynyl-10,20-bis(-3, 6, 9-trioxapentadecane-1-yl)porphinato)zinc(II) (45):

The reaction mixture was stirred for 15 min and then directly poured down a short silica gel column with CHCl_{3} as the eluent. Yield $=99 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), \delta 9.78(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.65 \mathrm{~Hz}), \delta 9.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $4.40 \mathrm{~Hz}), \delta 9.57(\mathrm{~d}, 2 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 9.29(\mathrm{~d}, 2 \mathrm{H}, J=4.45 \mathrm{~Hz}), \delta 5.31(\mathrm{t}, 4 \mathrm{H}, J=$ $7.80 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 4.13(\mathrm{~s}, 1 \mathrm{H}), \delta 3.72(\mathrm{t}, 4 \mathrm{H}, J=4.02), \delta 3.67(\mathrm{t}$, $4 \mathrm{H}, J=4.8), \delta 3.60(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.50(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.37(\mathrm{t}, 4 \mathrm{H}, J=6.81), \delta$ $1.49(\mathrm{~m}, 4 \mathrm{H}), \delta 1.23(\mathrm{~m}, 16 \mathrm{H}), \delta 0.83(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.39) . \operatorname{Vis}\left(\mathrm{CHCl}_{3}\right): 422,552,590$ nm.

(5,15-ethynyl-10,20-bis(-3, 6, 9-trioxapentadecane-1-yl)porphinato)zinc(II) (46):

The reaction mixture was stirred for 15 min and then directly poured down a short silica gel column with CHCl_{3} as the eluent. Yield $=94 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.70(\mathrm{~d}, 4 \mathrm{H}, J=4.52 \mathrm{~Hz}), \delta 9.52(\mathrm{~d}, 2 \mathrm{H}, J=5.59 \mathrm{~Hz}), \delta 5.31(\mathrm{t}$, $4 \mathrm{H}, J=7.80 \mathrm{~Hz}), \delta 4.51(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.80 \mathrm{~Hz}), \delta 4.14(\mathrm{~s}, 2 \mathrm{H}), \delta 3.72(\mathrm{t}, 4 \mathrm{H}, J=4.02), \delta$ $3.67(\mathrm{t}, 4 \mathrm{H}, J=4.8), \delta 3.60(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.50(\mathrm{t}, 4 \mathrm{H}, J=5.36), \delta 3.37(\mathrm{t}, 4 \mathrm{H}, J=$ $6.81), \delta 1.49(\mathrm{~m}, 4 \mathrm{H}), \delta 1.23(\mathrm{~m}, 16 \mathrm{H}), \delta 0.83(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.39)$. Vis (THF): 433, 578, 629 nm . ESI MS m/z: $875.3717\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(calcd for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn}$ 852.3804).

1,2-bis[$5^{\prime}-$ bromo($5^{\prime}, 5^{\prime \prime}-10,20-$ bis(-3, $6,9-$ trioxapentadecane-1-

yl)porphinato)zinc(II)]ethyne (47):
Isolated from synthesis of compound 48. Yield 70%. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.52(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.05 \mathrm{~Hz}), \delta 10.48(\mathrm{~d}, 4 \mathrm{H}, J=4.10 \mathrm{~Hz}), \delta 9.95(\mathrm{~s}, 1 \mathrm{H}), \delta$ $9.82(\mathrm{~d}, 4 \mathrm{H}, J=4.30 \mathrm{~Hz}), \delta 9.772(\mathrm{~d}, 4 \mathrm{H}, J=4.20 \mathrm{~Hz}), \delta 9.70(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta$ $9.62(\mathrm{~d}, 4 \mathrm{H}, J=4.25 \mathrm{~Hz}), \delta 9.54(\mathrm{~d}, 4 \mathrm{H}, J=4.50 \mathrm{~Hz}), \delta 9.31(\mathrm{~d}, 4 \mathrm{H}, J=4.20 \mathrm{~Hz}), \delta$
$5.39(\mathrm{br}, 4 \mathrm{H}), \delta 5.29(\mathrm{br}, 4 \mathrm{H}), \delta 4.62(\mathrm{t}, 4 \mathrm{H}, J=7.71), \delta 4.58(\mathrm{t}, 4 \mathrm{H}, J=7.71), \delta 3.78($ $\mathrm{m}, 8 \mathrm{H}), \delta 3.72(\mathrm{~m}, 8 \mathrm{H}), \delta 3.64(\mathrm{~m}, 8 \mathrm{H}), \delta 3.55(\mathrm{~m}, 8 \mathrm{H}), \delta 3.38(\mathrm{~m}, 8 \mathrm{H}), \delta 1.50(\mathrm{~m}$, $8 \mathrm{H}), \delta 1.24(\mathrm{~m}, 24 \mathrm{H}), \delta 0.84(\mathrm{~m}, 12 \mathrm{H})$. Vis (THF): $433,578,629 \mathrm{~nm}$. MALDI-TOF $\mathrm{m} / \mathrm{z}: 1708.55\left[(\mathrm{M})^{+}\right]$(calcd for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} 1708.6557$).

5,15-bis[[5',-10',20'-bis([[-3, 6, 9-trioxapentadecane-1-

yllporphinato)zinc(II)]ethynyl]-10,20-bis([-3, 6, 9-trioxapentadecane-1yllporphinato)zinc(II) $\mathrm{PZn}_{3}-\mathrm{O} 3 \mathrm{Hex}$ (48):

Solvent removed by vacuum and then was purified by gravimetric size exclusion column(Biobeads, SX-1, THF). The fastest moving band was collected and solvent removed by vacuum. A final silica gel plug was done to remove residual biobeads using $\mathrm{CHCl}_{3}:$ Pyridine (99:1) as the eluent. Yield $=30 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.56(\mathrm{br}, 4 \mathrm{H}), \delta 10.50(\mathrm{br}, 4 \mathrm{H}), \delta 9.98(\mathrm{br}-\mathrm{s}, 2 \mathrm{H}), \delta 9.86($ br, 4 H$), \delta 9.79(\mathrm{br}, 4 \mathrm{H}), \delta 9.65(\mathrm{br}, 4 \mathrm{H}), \delta 9.33(\mathrm{br}, 4 \mathrm{H}), \delta 5.43(\mathrm{br}, 12 \mathrm{H}), \delta 4.71(\mathrm{br}$, $12 \mathrm{H}), \delta 4.64(\mathrm{br}, 12 \mathrm{H}), \delta 3.84(\mathrm{~m}, 12 \mathrm{H}), \delta 3.75(\mathrm{~m}, 12 \mathrm{H}), \delta 3.74(\mathrm{~m}, 12 \mathrm{H}), \delta 3.66(\mathrm{~m}$, $12 \mathrm{H}), \delta 3.55(\mathrm{~m}, 12 \mathrm{H}), \delta 1.21(\mathrm{~m}, 36 \mathrm{H}), \delta 0.84(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CHCl}_{3}: \operatorname{Pyr} 99: 1\right): \delta 152.49(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 152.22(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 151.74(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 151.20(\mathrm{C}-$ $\mathrm{C}=\mathrm{N}), \delta 150.72(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 150.38(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 148.952(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 132.41$ (beta), $\delta 131.55$ (beta), $\delta 131.37$ (beta), $\delta 130.00$ (beta), $\delta 129.49$ (beta), $\delta 129.49$ (beta), $\delta 128.49$ (beta), $\delta 116.16$ (meso-R), $\delta 106.92$ (meso), $\delta 102.31$ (-CC-), $\delta 101.57$ (-CC-), $\delta 100.58$ (-CC-), $\delta 100.41(-\mathrm{CC}-), \delta 71.72\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 71.10\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 71.03\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 70.99\left(\mathrm{O}-\mathrm{CH}_{2}\right)$, $\delta 70.29\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 36.15\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 34.43\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 31.86\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 30.54(\mathrm{C}-$ $\left.\mathrm{CH}_{2}-\mathrm{C}\right), \delta 29.79\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 25.94\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 22.79\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 22.72\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right)$,
$\delta 21.39\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 14.20\left(-\mathrm{CH}_{3}\right), \delta 14.16\left(-\mathrm{CH}_{3}\right)$. Vis $(\mathrm{THF}): 414,494,574,774 \mathrm{~nm}$.
Anal Calc (found): $\mathrm{C}-66.32 \%(68.63 \%), \mathrm{H}-7.20 \%(7.76 \%), \mathrm{N}-6.82 \%(5.48)$.
MALDI-TOF MS m/z: $2456.73\left[(\mathrm{M})^{+}\right]$(calcd for $\left.\mathrm{C}_{148} \mathrm{H}_{200} \mathrm{~N}_{12} \mathrm{O}_{18} \mathrm{Zn}_{3} 2457.1100\right)$.
5,15-bis[[5',-10',20'-bis([-3, 6, 9-trioxapentadecane-1-
yl]porphinato)zinc(II)]ethynyl]-10,20-bis([-3, 6, 9-trioxapentadecane-1yllporphinato)zinc(II) $\mathrm{PZn}_{5}-\mathrm{O} 3 \mathrm{Hex}$ (49):

Solvent removed by vacuum and then was purified by gravimetric size exclusion column(Biobeads, SX-1, THF). The fastest moving band was collected and solvent removed by vacuum. A final silica gel plug was done to remove residual biobeads using $\mathrm{CHCl}_{3}:$ Pyridine (99:1) as the eluent. Yield $=42 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{Pyr}): \delta 10.92(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.30 \mathrm{~Hz}), \delta 10.85(\mathrm{~m}, \mathrm{H}), \delta 10.26(\mathrm{~s}, 2 \mathrm{H}), \delta 10.12(\mathrm{~d}$, $4 \mathrm{H}, \mathrm{J}=4.55), \delta 10.09(\mathrm{~m}, 8 \mathrm{H}), \delta 10.06(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.60), \delta 9.85(\mathrm{~d}, 4 \mathrm{H}, J=4.40), \delta$ $9.55(\mathrm{~d}, 4 \mathrm{H}, J=4.20), \delta 5.59(\mathrm{br}, 20 \mathrm{H}), \delta 4.89(\mathrm{br}, 20 \mathrm{H}), \delta 3.98(\mathrm{~m}, 20 \mathrm{H}), \delta 3.87(\mathrm{~m}$, $20 \mathrm{H}), \delta 3.82(\mathrm{~m}, 20 \mathrm{H}), \delta 3.77(\mathrm{~m}, 20 \mathrm{H}), \delta 3.66(\mathrm{~m}, 20 \mathrm{H}), \delta 3.62(\mathrm{~m}, 20 \mathrm{H}), \delta 3.43(\mathrm{~m}$, $20 \mathrm{H}), \delta 1.50(\mathrm{~m}, 20 \mathrm{H}), \delta 1.25(\mathrm{~m}, 20 \mathrm{H}), \delta 1.14(\mathrm{~m}, 30 \mathrm{H}), \delta 0.80(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CHCl}_{3}: \operatorname{Pyr} 99: 1$): $\delta 152.49(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 152.22(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 151.74(\mathrm{C}-\mathrm{C}=\mathrm{N})$, $\delta 151.20(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 150.72(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 150.38(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 148.952(\mathrm{C}-\mathrm{C}=\mathrm{N}), \delta 132.41$ (beta), $\delta 131.55$ (beta), $\delta 131.37$ (beta), $\delta 130.00$ (beta), $\delta 129.49$ (beta), $\delta 129.49$ (beta), $\delta 128.49$ (beta), $\delta 116.16$ (meso-R), $\delta 106.92$ (meso), $\delta 101.57$ (-CC-), $\delta 71.72\left(\mathrm{O}_{-} \mathrm{CH}_{2}\right)$, $\delta 71.10\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 71.03\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 70.99\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 70.29\left(\mathrm{O}-\mathrm{CH}_{2}\right), \delta 36.15\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right)$, $\delta 34.43\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 31.86\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 30.54\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 29.79\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 25.94(\mathrm{C}-$ $\left.\mathrm{CH}_{2}-\mathrm{C}\right), \delta 22.79\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 22.72\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 21.39\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), \delta 14.28\left(-\mathrm{CH}_{3}\right)$,
$\delta 14.21\left(-\mathrm{CH}_{3}\right), \delta 14.18\left(-\mathrm{CH}_{3}\right)$. Vis (THF): $414,505,855 \mathrm{~nm}$. Anal Calc (found): C 66.47\%(66.59\%), $\mathrm{H}-7.14 \%(8.13 \%), \mathrm{N}-6.80 \%(5.20 \%)$. MS MALDI-TOF m/z:
4109.94 (calc for $\mathrm{C}_{228} \mathrm{H}_{292} \mathrm{~N}_{20} \mathrm{O}_{30} \mathrm{Zn}_{5} 4109.8396$).

References:

1. Daire, A. White Paper Report No. 1808 2001, Keithley Instruments, Inc.
2. Uyeda, H. T.; Zhao, Y.; Wostyn, K.; Asselberghs, I.; Clays, K.; Persoons, A.; Therien, M. J. J. Am. Chem. Soc. 2002; 124(46), 13806-13813.
3. Susumu, K.; Therien, M. J. J. Am. Chem. Soc. 2002 124, 8550-8552
4. Lin, V. S.-Y; DiMagno, S. G.; Therien, M. J. Science 1994, 264, 1105-1111.
5. Liu, C.; Shen, D.-M.; Chen, Q.-Y. Chem. Comm. 2006, 770-772.

Figure Captions:
Chart S1. Compounds used in this study that were previously reported including compound abbreviations.
Scheme S1. General Synthetic Reaction scheme for the synthesis of $\mathbf{P Z n}_{2}, \mathbf{P Z n}_{3}$, PZn_{5} oligomers.
Scheme S2, S3, S4. Synthetic reaction and numbering scheme for PZnO1, PZnO3EHex, PZnO3Hex series.
Figure S1. $\quad{ }^{1} \mathrm{H}$ NMR of $\mathbf{P Z n}_{3}-\mathbf{O} 1, \mathrm{PZn}_{3}-\mathrm{O} 3 \mathrm{Hex}, \mathrm{PZn}_{3}-\mathrm{O} 3 \mathrm{Hex}, \mathrm{PZn}_{5}-\mathrm{O} 1, \mathrm{PZn}_{5}{ }^{-}$ O3Hex
Figure S2. Solution and Thin Film PZn ${ }_{1}$ Electronic Absorption Spectra. Spectra normalized and y-axis offset for clarity.
Figure S3. Solution and Thin Film $\mathbf{P Z n}_{2}$ Electronic Absorption Spectra. Spectra normalized and y-axis offset for clarity.
Figure S4. Solution and Thin Film $\mathbf{P Z n}_{3}$ Electronic Absorption Spectra. Spectra normalized and y-axis offset for clarity.
Figure S5. Solution and Thin film $\mathbf{P Z n}_{5}$ Electronic Absorption Spectra. Spectra normalized and y-axis offset for clarity.
Figure S6. TGA/DTA of $\mathbf{P Z n}_{3}-3,50 R$
Figure S7. TGA/DTA of $\mathbf{P Z n}_{3}-\mathbf{O 1}$
Figure S8. TGA/DTA of $\mathbf{P Z n}_{3}-\mathbf{O} 3 \mathrm{Hex}$
Figure S9. TGA/DTA of $\mathbf{P Z n}_{5}-\mathbf{O} 1$
Figure S10. TGA/DTA of $\mathbf{P Z n}_{5}-\mathbf{O} 3 \mathrm{Hex}$
Figure S11. Powder XRD (small/intermediate/wide angle) of $\mathbf{P Z n}_{3} \mathbf{- 3 , 5 O R}$
Figure S12. Powder XRD (small/intermediate/wide angle) of $\mathbf{P Z n}_{5}-\mathbf{O} 3 \mathrm{Hex}$
Figure S13. Analytical GPC Traces of $\mathbf{P Z n}_{3}-\mathbf{O} 3 \mathrm{Hex}$ and $\mathrm{PZn}_{5}-\mathbf{O} 3 \mathrm{Hex}$
Figure S14. Summary of $\mathrm{PZn}_{\mathrm{n}}$ Ionization and Electron Affinity potentials
Table S1. Summary of $\mathbf{P Z n}_{\mathbf{n}} \mathbf{- O} \mathbf{O H e x}$ cyclic voltammetry results.
Table S2. Complete $\mathbf{P Z n}_{\mathrm{n}}$ Pressed Pellet and Thin Film Conductivities (2- and 4- probe) $\mathrm{S} \mathrm{cm}^{-1}$.

Chart S1.

PZn \mathbf{n}_{3} - 3,5(PEG)3,5

$\mathrm{PZn}_{3}-\mathbf{3 , 5 (P E G)}{ }_{5} \mathbf{3 , 5}$

Scheme S1.

Scheme S2.

Scheme S3.

Scheme S4.

36

Figure 1a. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PZn}_{3}-\mathrm{O}$. Solvent: $\mathrm{CHCl}_{3}: \operatorname{Pyr}(99: 1)$

Figure S1b. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PZn}_{3}-\mathrm{O} 3 E H e x$. Solvent: $\mathrm{CHCl}_{3}: \mathrm{Pyr}$ (99:1)

Figure S1c. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PZn}_{3}-\mathrm{O} 3 \mathrm{Hex}$. Solvent: $\mathrm{CHCl}_{3}: \mathrm{Pyr}$ (99:1)

Figure S1d. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PZn}_{5}-\mathrm{O} 3 \mathrm{Hex}$. Solvent: Pyridine - d_{5}

Figure S1dd. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PZn}_{5}-\mathrm{O} 3 \mathrm{Hex}$. Solvent: $\mathrm{CHCl}_{3}: \mathrm{Pyr}$ (99:1)

Figure S2.

Figure S3.

Figure S4.

Figure S5.

Figure S6. TGA/DTA of $\mathrm{PZn}_{3}-3,5$

$\mathrm{A}=$ onset at $90^{\circ} \mathrm{C}$ - attributed to trap solvent
$\mathrm{B}=$ onset at $250^{\circ} \mathrm{C}$ - first decomposition process $\mathrm{C}=$ onset at $420^{\circ} \mathrm{C}-$ second decomposition process

Figure S7. TGA/DTA $\mathrm{PZn}_{3}-\mathrm{O} 1$

A = onset at $90^{\circ} \mathrm{C}$ - loss of solvent and diffusion controlled decomposition
B = onset at $282^{\circ} \mathrm{C}-$ second decomposition process
$\mathrm{C}=$ onset at $350^{\circ} \mathrm{C}$ - third decomposition process

Figure S8. TGA/DTA $\mathrm{PZn}_{3}-\mathrm{O} 3 \mathrm{Hex}$

$\mathrm{A}=$ onset at $80^{\circ} \mathrm{C}-$ loss of solvent
$\mathrm{B}=$ onset at $250^{\circ} \mathrm{C}$ - first decomposition process
$\mathrm{C}=$ onset at $350^{\circ} \mathrm{C}$ - second decomposition process
$\mathrm{D}=$ onset at $450^{\circ} \mathrm{C}$ - third decomposition process

Figure S9. TGA/DTA $\mathrm{PZn}_{5}-\mathrm{O} 1$

$\mathrm{A}=$ onset at $110^{\circ} \mathrm{C}$ - diffusion controlled air decomposition
$\mathrm{B}=$ onset at $240^{\circ} \mathrm{C}-$ second decomposition process
$\mathrm{C}=$ onset at $360^{\circ} \mathrm{C}$ - third decomposition and combustion

Figure S10. TGA/DTA of $\mathrm{PZn}_{5}-\mathrm{O} 3 \mathrm{Hex}$

A $=$ onset at $140^{\circ} \mathrm{C}-$ loss of solvent
$\mathrm{B}=$ onset at $240^{\circ} \mathrm{C}-$ first decomposition process
$\mathrm{C}=$ onset at $360^{\circ} \mathrm{C}-$ second decomposition process
$\mathrm{D}=$ onset at $440^{\circ} \mathrm{C}$ - third decomposition process

Figure S11. $\mathrm{PZn}_{3} \mathbf{- 3 , 5 (O R)}$

Small angle Log-log scale

Solid line is fit to power law. Power fits to -2.7 . Power of -2 would correspond to random coils; power of -4 would correspond to point-like defects. Sample 1 $\mathrm{z}=25.3$

Intermediate Angle Line plot (semilog scale)

Broad peak at $\mathrm{q}=0.291(\mathrm{~d}=21.6) \mathrm{HWHM}=0.058$ corresponding to correlation length
Wide angle linear scale

Broad peaks at $q=0.289(d=21.7 \AA), q=0.398(d=15.8 \AA), q=1.2(d=5.2 \AA)$

Figure S12. $\mathrm{PZn}_{5}-\mathrm{O} 3 \mathrm{Hex}$

Small angle Log-log plot

Fit to power law + constant. Power law is still -2.7. Looks similar except amplitude is down by a factor of 10 . Sample $2 \mathrm{z}=50.8$ Intermediate angle semilog scale

Peak at $\mathrm{q}=0.251(\mathrm{~d}=25.0)$ Sample $2 \mathrm{z}=50.8$

Wide angle linear scale

Peaks at $q=0.240(\mathrm{~d}=26.2 \AA), 0.498(\mathrm{~d}=12.6 \AA), 0.569(\mathrm{~d}=11.0 \AA), 1.45(\mathrm{~d}=4.3 \AA)$

Figure S13. Analytical GPC traces of $\mathrm{PZn}_{3,5}-\mathrm{O} 3 \mathrm{Hex}$

Figure S14.

Table S1.

	$\mathrm{PZn}_{3} \mathrm{O} 3 \mathrm{Hex}$		$\mathrm{PZn}_{5} \mathrm{O} 3 \mathrm{Hex}$	
	Solution (eV)	Film (eV)	Solution (eV)	Film (eV)
$\mathrm{E}_{\mathrm{op}}\left(\lambda_{\text {max }}\right)^{\text {a }}$	1.60	782	1.45	146
$\mathrm{E}_{\text {op }}$ (edge) ${ }^{\text {b }}$	1.49	1.39	1.34	1.22
$\mathrm{E}_{1 / 2}{ }^{0 /+}$	0.40	$0.50{ }^{\text {f }}$	0.39	$0.10^{\text {f }}$
$\mathrm{E}_{1 / 2}{ }^{-10}$	-1.10	$-1.01{ }^{\text {f }}$	-1.02	$-0.88^{\text {f }}$
$\mathrm{E}_{\mathrm{a}}{ }^{\text {c }}$		3.39 g		$3.52^{\text {g }}$
$\mathrm{I}_{\mathrm{p}}{ }^{\text {c }}$		4.90 g		4.50 g
E_{p}	$1.50{ }^{\text {d }}$	$1.51{ }^{\text {e }}$	$1.41^{\text {d }}$	$0.98{ }^{\text {e }}$

$\mathrm{PZn}_{\mathrm{n}}$-(OR) oligomer's potentiometric data has been reported elsewhere.
a) Measured as the maximum absorption of the lowest energy transition.
b) Measured as the point where the slope changes on the red edge of the lowest energy transition.
c) E_{a} and I_{p} where estimated from the onset electrochemical potentials via cyclic voltammetry of thin films on glassy carbon electrode. $\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\text {red }}+4.4 \mathrm{eV}$ and I_{p} $=\mathrm{E}_{\mathrm{ox}}+4.4 \mathrm{eV}$ where $\mathrm{E}_{\text {red }}$ and E_{ox} the onset potentials for reduction and oxidation relative to $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. ${ }^{2}$
d) E_{p} for solution was deteremined by $\mathrm{E}_{\mathrm{p}}=\mathrm{E}_{1 / 2}^{0 /+}-\mathrm{E}_{1 / 2}^{-/ 0}$. $\mathrm{E}_{1 / 2}$ values where measured in 1 mM porphyrin solution in $0.2 \mathrm{M} \mathrm{TBAPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using glassy carbon as the electrode. Potentiometric values are reported using SCE as the reference electrode.
e) E_{p} for thin films was determined as $E_{p}=I_{p}-E_{a}$.
f) Values represent the onset potentials of thin films on glassy carbon electrode relative to the $\mathrm{Ag} / \mathrm{AgCl}$ references electrode.
g) For reference concerning the possibility of charge injection listed are work functions for various metal electrodes: Au (5.2) , ITO (4.8-5.0), Ca (2.9), MgAg (3.7), and Al (4.2). ${ }^{1}$

1) (a)Uyeda, H. T.; Zhao, Y.; Wostyn, K.; Asselberghs, I.; Clays, K.; Persoons, A.; Therien, M. J. J. Am. Chem. Soc. 2002; 124(46), 13806-13813.
(b)Susumu, K.; Therien, M. J. J. Am. Chem. Soc. 2002 124, 8550-8552
(c) Lin, V. S.-Y; DiMagno, S. G.; Therien, M. J. Science 1994, 264, 1105-1111.
2) Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Let. 1998, 73, 2453-2455.

Table 1.

* $=$ not measurable because material remained soft after drying
** $=$ not measurable because there was not enough material to press a pellet or poor film quality
Error listed as standard deviation for a minimum of 3 independent samples.
Standard deviation not listed when there were fewer than 3 independent samples.

Compound	Pressed Pellet / S cm ${ }^{-1}$		Thin Film / S cm ${ }^{-1}$	
	2 - Probe	4-Probe	2 - Probe	4-Probe
Monomers				
PZn ${ }_{1}$ - 2,6(OR)Ar	8.67×10^{-11}		$>10^{-11}$	
PZn ${ }_{1}$ - 3,5(OR)Ar	2.74×10^{-12}		$>10^{-11}$	
PZn ${ }_{1}$ - TPP	$(7.60 \pm 0.11) \times 10^{-11}$		$>10^{-11}$	
PZn_{1} - DPP	6.86×10^{-12}		$>10^{-11}$	
PZn_{1} - O1	2.07×10^{-12}		$>10^{-11}$	
PZn_{1} - O3EHex	*		*	
PZn1-O3Hex	*		*	
Dimers				
PZn_{2} - 2,6(OR)Ar	$(9.59 \pm 0.13) \times 10^{-11}$		4.20×10^{-10}	
$\mathrm{PZn}_{2} \mathbf{- 3 , 5 (O R) A r}$	$(8.82 \pm 5.49) \times 10^{-12}$		5.18×10^{-10}	
$\mathbf{P Z n}_{2} \mathbf{- 3 , 5 (P E G) A r}$	1.62×10^{-12}		4.44×10^{-10}	
PZn_{2} - $\mathbf{O 1}$	**		5.52×10^{-12}	
PZn_{2} - O3EHex	**		**	
PZn_{2} - O3Hex	**		**	
Trimers				
PZn_{3} - 2,6(OR)Ar	8.54×10^{-11}		3.92×10^{-10}	
$\mathbf{P Z n}_{3}-3,5(\mathrm{OR}) \mathrm{Ar}$	$(2.62 \pm 2.58) \times 10^{-9}$		1.40×10^{-9}	

PZn ${ }^{-3,5(P E G) A r}$	$(7.14 \pm 7.73) \times 10^{-12}$		4.91×10^{-10}	
PZn_{3} - O1	6.00×10^{-8}	5.95×10^{-8}	$(1.85 \pm 0.14) \times 10^{-8}$	
PZn_{3} - O3EHexO1	4.69×10^{-7}	5.29×10^{-7}		
$\mathbf{P Z n}_{3}$ - O3EHex	6.99×10^{-8}	2.96×10^{-7}	$(5.38 \pm 1.70) \times 10^{-7}$	$(1.07 \pm 0.10) \times 10^{-6}$
PZn_{3} - O3Hex	*		$(5.24 \pm 2.40) \times 10^{-7}$	$(8.60 \pm 4.83) \times 10^{-7}$
Pentamers				
PZn ${ }_{5} \mathbf{- 3 , 5 (P E G) A r}$	**		$(1.49 \pm 2.49) \times 10^{-8}$	
$\mathrm{PZn}_{5} \mathbf{- 3 , 5 (O R) A r}$	**		2.74×10^{-10}	
$\mathrm{PZn}_{5} \mathbf{- O 1}$	**		$(3.24 \pm 3.20) \times 10^{-8}$	
$\mathrm{PZn}_{5}-\mathrm{O} 3 \mathrm{Hex}$	*		$(3.83 \pm 1.11) \times 10^{-5}$	$(4.60 \pm 2.22) \times 10^{-6}$

