Supporting Information

Sila Morita-Baylis-Hillman Reaction of Cyclopropenes

Stepan Chuprakov, Denis Malyshev, Alexander Trofimov, and Vladimir Gevorgyan*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061

Content

General Information	S2
Starting Materials	S2
Optimization of the reaction conditions	S4
TTMPP-Catalyzed coupling of 1-silylcyclopropenes with	
aldehydes and ketones	S6
Spectral Charts	S12
TTMPP-Catalyzed coupling of 1-silylcyclopropenes with aldehydes and ketones	S6 S12

General Information

NMR spectra were recorded on a Bruker Avance DRX-500 (500 MHz) or DPX-400 instruments. (+) and (-) represent positive and negative intensities of signals in ¹³C DEPT-135 experiments. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). Column chromatography was carried out employing Silicycle Silica-P Flash silica gel (40-63 µm). Precoated silica gel plates F-254 were used for thin-layer analytical chromatography. Anhydrous solvents were purchased from Aldrich and distilled over sodium or calcium hydride prior to use, and stored over 4Å MS under inert atmosphere. Aldehydes and ketones were purchased from Aldrich, Acros Organics or Alfa Aesar, distilled over anhydrous MgSO4 prior to use, and stored over 4Å MS under inert atmosphere.

Starting Materials

Dimethyl 1-(trimethylsilyl)cyclopropene-3,3-dicarboxylate $1a^1$ and ethyl 1,3-bis(trimethylsilyl) cyclopropene-3-carboxylate $1d^2$ were known and prepared via literature procedures. Cyclopropenes 1b and 1c were prepared via Rh(II)-catalyzed cyclopropenation of corresponding diazocompounds with trimethylsilylacetylene.¹

General preparative procedure. To a stirred mixture of trimethylsilylacetylene (15 mL) and Rh(II) acetate dimer (11 mg, 0.025 mmol) in a two-neck 25 mL flask, equipped with a condenser, a solution of the corresponding diazocompound (10.0 mmol) in 5 mL of trimethylsilylacetylene was added via a syringe pump over 16 hrs at 55°C under inert atmosphere. The reaction mixture was stirred for additional 2 hrs. The excess of trimethylsilylacetylene was distilled off at ambient pressure and the residue was purified via flash Silica chromatography or bulb-to-bulb distillation. The recovered trimethylsilylacetylene was used in syntheses without any additional purification.

Dimethyl 1-(trimehylsilyl)cyclopropene-3,3-dicarboxylate (1a)

 $\begin{array}{c} O & O \\ Si \\ \end{array} \begin{array}{c} 1a: \ ^{1}H \ NMR \ (500 \ MHz, \ CDCl_{3}) \ \delta \ ppm \ 7.04 \ (s, \ 1H), \ 3.69 \ (s, \ 6H), \ 0.24 \ (s, \ 9H); \ ^{13}C \\ NMR \ (126 \ MHz, \ CDCl_{3}) \ \delta \ ppm \ 172.1, \ 113.7, \ 110.6 \ (+), \ 52.1 \ (+), \ 30.5, \ -1.9 \ (+); \ LR \ EI \\ MS \ m/z \ 228.0 \ (M^{+}). \end{array}$

Rubin, M.; Gevorgyan, V. Synthesis 2004, 796.

² (a) Arrowood, T. L.; Kass, S. R. Tetrahedron 1999, 55, 6739; (b) Zrinski, I.; Novak-Coumbassa, N.; Eckert-Maksic, M. Organometallics 2004, 23, 2806.

1b: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.06 - 8.21 (m, 2H), 7.42 - 7.52 (m, 2H), 7.37 (s, 1H), 3.69 (s, 3H), 0.19 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 174.6, 150.5, 146.0, 128.9 (+), 123.1 (+), 119.2, 113.9 (+), 52.1 (+), 31.2, -1.6 (+).

Methyl 1-(trimethylsilyl)-3-(4-trifluoromethylphenyl)cyclopropene-3-carboxylate (1c)

1c: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.48 - 7.59 (m, 2H), 7.35 - 7.45 (m, 3H), 3.69 (s, 3H), 0.20 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 175.3, 146.7, 128.5 (+), 128.1 (q, $J^2_{FC} = 32.4$ Hz), 124.8 (+, q, $J^3_{FC} = 3.7$ Hz), 124.3 (q, $J^1_{FC} = 272.0$ Hz), 119.5, 114.8 (+), 52.0 (+), 31.1, -1.5 (+); ¹⁹F NMR (470.59 MHz, CDCl₃) δ ppm -63.9; LR EI MS *m/z* 314.0 (M⁺).

Methyl 1,3-bis(trimethylsilyl)cyclopropene-3-carboxylate (1d)

1d: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.15 (s, 1H), 4.00 - 4.12 (m, 2H), 1.21 (t, *J* = 7.2 Hz, 3H), 0.20 (s, 9H), -0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 178.3, 115.7 (+), 114.5, 59.9 (-), 17.4, 14.3 (+), -1.3 (+); LR EI MS *m*/*z* 256.1 (M⁺).

Cyclopropene 1e was prepared from compound 12 using procedure by Fox *et al.*³ Compound 12 was obtained via standard Rh(II)-catalyzed cyclopropenation⁴ of 1-hexyne with methyl (4-nitrophenyl)diazoacetate 11:

³ Pallerla, M. K.; Fox, J. M. Org. Lett. **2005**, *7*, 3593.

⁴ Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233.

Methyl 1-butyl-3-(4-nitrophenyl)cyclopropene-3-carboxylate (12)

12: (78%); ¹H NMR (500 MHz, CDCl₃) δ ppm 8.07-8.23 (m, 2H), 7.37-7.54 (m, 2H), 6.66 (t, *J* = 1.5 Hz, 1H), 3.70 (s, 3H), 2.55 (tt, *J* = 7.4, 1.7 Hz, 2H), 1.50 - 1.58 (m, 2H), 1.29 - 1.41 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 174.5, 149.6, 146.2, 129.0 (+), 123.2 (+), 120.1, 95.8 (+), 52.2 (+), 32.9, 28.7 (-), 24.0 (-), 22.2 (-), 13.6 (+); LR EI MS *m/z* 275.3 (M⁺).

Methyl 1-(trimethylsilyl)-2-butyl-3-(4-nitrophenyl)cyclopropene-3-carboxylate (1e)

1e: (77%); ¹H NMR (500 MHz, CDCl₃) δ ppm 8.02 - 8.21 (m, 2H), 7.38 - 7.57 (m, 2H), 3.67 (s, 3H), 2.48 - 2.69 (m, 2H), 1.49 - 1.71 (m, 2H), 1.31 - 1.47 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 174.8, 151.2, 145.6, 128.4 (+), 127.9, 123.0 (+), 107.4 (+), 51.7 (+), 34.4, 29.2 (-), 25.2 (-), 22.3 (-), 13.7 (+), -1.2 (+); LR EI MS *m/z* 346.9.0 (M⁺).

Optimization of the Reaction Conditions

General procedure for optimization of the reaction conditions. To an oven-dried 1 mL Wheaton miniinert vial catalyst, solvent, and benzaldehyde (20 µL, 0.2 mmol) were added under nitrogen atmosphere, followed by 22.8 mg (0.1 mmol) of 1-(trimethylsilyl)cyclopropene-3,3-dicarboxylate 1a. The reaction mixture was stirred at temperature and for time listed in Table 1. Dibenzyl ether (5 μ L) was added to the reaction mixture standard as an internal and the vield of dimethvl 1-[trimethylsiloxy(phenyl)methyl]cyclopropene-3,3-dicarboxylate 2a was determined by GC analysis using quantitatively calibrated mass selective detector. The results are summarized in Table 1.

#	Catalyst ^a	mol %	solvent	Concentration, mol/L	T, ⁰ C	Time, h	Yield, %
1	Quinuclidine	25	DMF	1	rt	21 h	0
2	DBU	25	DMF	1	rt	3 h	0
3	Urotropine	25	DMF	1	rt	21 h	37
4	DMAP	25	DMF	1	rt	21 h	47
5	Boratrane	25	DMF	1	rt	21 h	0
6	(-)-N-Methylephedrine	25	DMF	1	rt	21 h	31
7	Imidazole	25	DMF	1	rt	21 h	0
8	DABCO	25	DMF	1	rt	21 h	59
9	DABCO	25	THF	1	rt	14 h	27
10	DABCO	25	THF/water ^b	1	rt	1 h	0
11	DABCO	25	MeOH	1	rt	1 h	0^{f}
12	DABCO	25	DCM	1	rt	21 h	6
13	DABCO	25	Toluene	1	rt	21 h	43
14	DABCO	25	DMF	0.5	rt	21 h	56
15	DABCO	25	DMF	2	rt	5 h	66
16	DABCO	10	DMF	1	rt	21 h	58
17	DABCO	5	DMF	1	rt	21 h	58
18	13	25	DMF	1	rt	21 h	22
19	PBu ₃	25	DMF	1	rt	21 h	10
20	$P(t-Bu)_3$	25	DMF	1	rt	21 h	49
21	PHPr ₂	25	DMF	1	rt	21 h	38
22	PCy ₃	25	DMF	1	rt	21 h	47
23	PPh ₃	25	DMF	1	rt	21 h	54
24	(±)-BINAP	25	DMF	1	rt	21 h	15
25	TTMPP	25	DMF	1	rt	3 h	57
26	TTMPP	25	DMF	1	0°C	26 h	58
27	TTMPP	25	DMF	1	50°C	0.3 h	53
28	TTMPP	5	DMF	1	rt	6 h	62
29	TTMPP	25	Toluene	1	rt	3 h	50
30	P(oTol) ₃	5	DMF	1	rt	48 h	21
31	P(furyl) ₃	5	DMF	1	rt	48 h	14
32	$P(OiPr)_3$	5	DMF	1	rt	48 h	35
33	AsPh ₃	5	DMF	1	rt	48 h	14
34	TTMPP	5	DMA	1	rt	6 h	61
35	TTMPP	5	DMSO	1	rt	6 h	63
36	TTMPP	5	BuCN	1	rt	6 h	62
37	TTMPP	5	THF	1	rt	6 h	64
38	TTMPP	5	NMP	1	rt	6 h	50
39	TTMPP	5	Pyridine	1	rt	6 h	61
40	TTMPP	5	Dioxane	2	rt	6 h	73
41	TTMPP	1	Dioxane ^c	2	rt	6 h	79

Table 1. Optimization of the Reaction Conditions

^a DMAP = 4-(dimethylamino)pyridine; Boratrane = 4,6,11-trioxa-1-aza-5-borabicyclo[3.3.3]undecane; (-)-N-Methylephedrine = (-)-(1*R*,2*S*)-2-Dimethylamino-1-phenylpropanol; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; DABCO = 1,4-diazabicyclo[2.2.2]octane; (±)-BINAP = (±)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthalene; TTMPP = tris(2,4,6-trimethoxyphenyl)phosphine; **13** = 2-Diphenylphosphino-2'-(N,N-dimethylamino)biphenyl. ^b 2 eqv. (0.2 mmol) of water were added to the reaction ^c0.5 mmol scale.

Decomposition of cyclopropene 1a in the presence of TTMPP

The following experiment was performed to evaluate stability of 1-silylcyclopropene in the presence of phosphine catalyst. To an oven-dried 1 mL Wheaton mini-inert vial TTMPP and dry 1,4-dioxane (0.10 mL) were added under nitrogen atmosphere, followed by 22.8 mg (0.1 mmol) of 1-(trimethylsilyl)cyclopropene-3,3-dicarboxylate **1a**. Dibenzyl ether (5 μ L) was added to the same vial as an internal standard, and the reaction mixture was stirred at room temperature for 8h. The reaction was monitored by GC/MS and an amount of the consumed starting material was determined by GC analysis using quantitatively calibrated mass selective detector. This experiment was run with 1 and 5 mol % of catalyst. Representative results are listed in Table 2.

Table 2			
Time, hrs	2	4.5	8
% of 1a decomposed (1 mol % of TTMPP)	1	13	17
% of 1a decomposed (5 mol % of TTMPP)	10	24	45

Thus, it is apparent that, under prolonged time, TTMPP causes significant decomposition of **1a**. Consequently, the employment of lower catalyst loading allowed for higher material balance, and hence higher efficiency of the *sila*-MBH reaction.

TTMPP-Catalyzed coupling of 1-silylcyclopropenes with aldehydes and ketones

General preparative procedure. To an oven-dried 3 mL Wheaton microreactor tris(2,4,6-(trimethoxyphenyl)phosphine (2.66 mg, 0.005 mmol), carbonyl compound (0.6 mmol), anhydrous dioxane (250 μ L) and cyclopropene 1 (0.5 mmol) were added at nitrogen atmosphere. The reaction mixture was stirred at room temperature until judged complete by GC/MS analysis. A flash Silica chromatography was directly applied to the reaction mixture to afford cyclopropene 2 as colorless oil.

Dimethyl 1-[trimethylsilyloxy(phenyl)methyl]cyclopropene-3,3-dicarboxylate (2a)

2a: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.35 - 7.41 (m, 2H), 7.30 - 7.35 (m, 2H), 7.24 - 7.30 (m, 1H), 6.56 (d, *J* = 1.7 Hz, 1H), 5.76 (d, *J* = 1.1 Hz, 1H), 3.68 (s, 3H), 3.41 (s, 3H), 0.15 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.3, 170.6, 139.3, 128.6 (+), 128.3 (+), 126.6 (+), 116.2, 95.2 (+), 69.6 (+), 52.4 (+), 52.1 (+), 34.4, 0.1 (+); FT IR (neat): 3139, 2953, 2902, 1743, 1454, 1436, 1285, 1246, 1194, 1095, 1064, 881, 847, 753 cm⁻¹; HR EI MS *m*/*z* 334.1235, Calcd for C₁₇H₂₂O₅Si 334.1237.

Dimethyl 1-[trimethylsilyloxy(4-methylphenyl)methyl]cyclopropene-3,3-dicarboxylate (2b)

2b: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.24 (s, 2H), 7.10 - 7.16 (m, 2H), 6.53 (d, *J* = 1.5 Hz, 1H), 5.72 (s, 1H), 3.67 (s, 3H), 3.42 (s, 3H), 2.31 (s, 3H), 0.13 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.1, 170.5, 137.8, 136.2, 129.0 (+), 126.4 (+), 116.1, 94.8 (+), 69.2 (+), 52.1 (+), 51.9 (+), 34.2, 21.1 (+), -0.1 (+);FT IR (neat): 3140, 2953, 2901, 1734, 1435, 1285, 1253, 1089, 1068, 883, 843, 757 cm⁻¹; HR EI MS *m/z* 348.1390, Calcd for C₁₈H₂₄O₅Si 348.1393.

Dimethyl 1-[trimethylsilyloxy(4-methoxyphenyl)methyl]cyclopropene-3,3-dicarboxylate (2c)

2c: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.27 - 7.30 (m, 2H), 6.85 (s, 2H), 6.54 (d, *J* = 1.5 Hz, 1H), 5.70 (d, *J* = 1.1 Hz, 1H), 3.78 (s, 3H), 3.69 (s, 3H), 3.45 (s, 3H), 0.13 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.1, 170.5, 159.4, 131.3, 127.8 (s), 116.1, 113.7 (+), 94.7 (+), 69.0 (+), 55.3 (+), 52.2 (+), 51.9 (+), 34.2, -0.1 (+); FT IR (neat): 3139, 2953, 1734, 1612, 1513, 1436, 1284, 1247, 1174, 1070, 885, 844, 758 cm⁻¹; HR EI MS *m/z* 364.1343, Calcd for C₁₈H₂₄O₆Si (M⁺) 364.1342.

Dimethyl 1-[trimethylsilyloxy-(4-methoxycarbonylphenyl)methyl]cyclopropene-3,3-dicarboxylate (2d)

2d: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.01 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 2H), 6.59 (d, *J* = 1.5 Hz, 1H), 5.82 (br. s., 1H), 3.91 (s, 3H), 3.68 (s, 3H), 3.43 (s, 3H), 0.15 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 170.8, 170.3, 166.7, 144.1, 129.9, 129.7 (+), 126.2 (+), 115.5, 95.8 (+), 68.9 (+), 52.2 (+), 52.1 (+), 52.0 (+), 34.2, -0.2 (+); HR EI MS *m*/*z* 392.1294, Calcd for C₁₉H₂₄O₇Si 392.1291.

Dimethyl 1-[trimethylsilyloxy(3-chlorophenyl)methyl]cyclopropene-3,3-dicarboxylate (2e)

2e: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.38 (s, 1H), 7.20 - 7.32 (m, 3H), 6.59 (d, *J* = 1.5 Hz, 1H), 5.74 (d, *J* = 1.3 Hz, 1H), 3.69 (s, 3H), 3.47 (s, 3H), 0.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 170.9, 170.3, 141.2, 134.3, 129.7 (+), 128.3 (+), 126.5 (+), 124.5 (+), 115.5, 95.7 (+), 52.2 (+), 52.0 (+), 34.2, -0.2 (+); HR EI MS *m/z* 368.0846, Calcd for C₁₇H₂₁O₅SiCl 368.0847.

Dimethyl 1-[trimethylsilyloxy(3-bromophenyl)methyl]cyclopropene-3,3-dicarboxylate (2f)

2f: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.54 (t, *J* = 1. 6 Hz, 1H), 7.41 (dt, *J* = 7.9, 0.8 Hz, 1H), 7.28 - 7.33 (m, 1H), 7.17 - 7.23 (m, 1H), 6.59 (d, *J* = 1.5 Hz, 1H), 5.73 (s, 1H), 3.69 (s, 3H), 3.48 (s, 3H), 0.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 170.9, 170.3, 141.4, 131.2 (+), 130.0 (+), 129.4 (+), 125.0 (+), 122.4, 115.6, 95.8 (+), 68.6 (+), 52.2 (+), 52.1 (+), 34.2, -0.2 (+); HR EI MS *m*/*z* 412.0343, Calcd for C₁₇H₂₁O₅BrSi 412.0342.

Dimethyl 1-[trimethylsilyloxy(2-furyl)methyl]cyclopropene-3,3-dicarboxylate (2g)

2g: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.31 - 7.46 (m, 1H), 6.70 (d, J = 1.5 Hz, 1H), 6.21 - 6.43 (m, 2H), 5.80 (d, J = 1.1 Hz, 1H), 3.69 (s, 3H), 3.60 (s, 3H), 0.13 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 170.8, 170.5, 151.2, 142.7 (+), 113.7, 110.4 (+), 108.0 (+), 96.8 (+), 63.1 (+), 52.3 (+), 52.2 (+), 34.1, -0.3 (+); FT IR (neat): 3141, 2954, 2923, 1731, 1436, 1284, 1252, 1149, 1069, 877, 848, 753 cm⁻¹; HR EI MS *m/z* 324.1029, Calcd for C₁₅H₂₀O₆Si 324.1029.

Diemthyl 1-[(2E)-1-trimethylsilyloxy-3-phenylprop-2-ene]cyclopropene-3,3-dicarboxylate (2h)

2h: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.34 - 7.39 (m, 2H), 7.29 - 7.34 (m, 2H), 7.22 - 7.27 (m, 1H), 6.65 (d, *J* = 15.6 Hz, 1H), 6.60 (d, *J* = 1.3 Hz, 1H), 6.21 (dd, *J* = 15.9, 6.5 Hz, 1H), 5.39 (dt, *J* = 6.6, 1.2 Hz, 1H), 3.72 (s, 3H), 3.60 (s, 3H), 0.19 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.1, 170.9, 136.1, 131.7 (+), 128.6 (+), 128.0 (+), 126.7 (+), 126.6 (+), 114.9, 95.2 (+), 68.2 (+), 52.3 (+), 33.8, -0.0 (+); HR EI MS *m*/*z* 360.1392, Calcd for C₁₉H₂₄O₅Si 360.1393.

Dimethyl 1-(1-trimethylsilyloxybutyl)cyclopropene-3,3-dicarboxylate (2i)

2i: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.49 (d, J = 1.5 Hz, 1H), 4.68 (ddd, J = 7.2, 5.6, 1.4 Hz, 1H), 3.70 (d, J = 2.9 Hz, 6H), 1.56 - 1.71 (m, 2H), 1.27 - 1.52 (m, 2H), 0.90 (t, J = 7.3, 3H), 0.12 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.2, 171.2, 116.1, 94.9 (+), 67.0 (+), 52.2 (+), 37.6 (-), 33.8, 18.4 (-), 13.7 (+), -0.2 (+); FT IR (neat): 3137, 2958, 2875, 1736, 1436, 1279, 1265, 1118, 1069, 903, 847, 757 cm⁻¹; HR EI MS *m/z* 300.1394, Calcd for C₁₄H₂₄O₅Si 300.1393.

Dimethyl 1-(trimethylsilyloxy-2-methylpropyl)cyclopropene-3,3-diarboxylate (2j)

2j: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.52 (d, J = 1.1 Hz, 1H), 4.48 (dd, J = 4.6, 1.1 Hz, 1H), 3.69 (s, 6H), 1.81 - 1.97 (m, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H), 0.11 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.2, 115.5, 96.0 (+), 72.2 (+), 52.1 (+), 33.8, 32.9 (+), 18.5 (+), 16.9 (+), -0.2 (+); FT IR (neat): 3139, 2957, 2902, 1736, 1436, 1283, 1253, 1064, 878, 845, 758 cm⁻¹; HR EI MS *m/z* 299.1315, Calcd for C₁₄H₂₃O₅Si 299.1317.

Dimethyl 1-[1-trimethylsilyloxy-2-methyl-2-phenylpropyl]cyclopropene-3,3-dicarboxylate (2k)

2k: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.34 - 7.39 (m, 2H), 7.27 - 7.32 (m, 2H), 7.15 - 7.24 (m, 1H), 6.36 (d, *J* = 1.7 Hz, 1H), 4.83 (d, *J* = 1.8 Hz, 1H), 3.67 (s, 3H), 3.62 (s, 3H), 1.34 (s, 3H), -0.06 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.2, 171.0, 146.3, 128.0 (+), 126.5 (+), 126.2 (+), 115.0, 97.4 (+), 75.7 (+), 52.1 (+), 52.0 (+), 43.1 (+), 36.6, 34.3, 24.5 (+), 23.3 (+), -0.4 (+); FT IR (neat): 2953, 1734, 1436, 1279, 1252, 1093, 1068, 880, 845, 759 cm⁻¹ HR EI MS *m/z* 376.1708, Calcd for C₂₀H₂₈O₅Si 376.1706.

Dimethyl 1-[1-trimethylsilyloxy-2-oxo-1,2-diphenylethyl]cyclopropene-3,3-dicarboxylate (2p)

2p: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.76 - 7.86 (m, 2H), 7.49 - 7.62 (m, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.22 - 7.30 (m, 3H), 6.78 (s, 1H), 3.77 (s, 3H), 3.26 (s, 3H), 0.07 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 195.8, 170.3, 170.0, 138.8, 133.5, 132.9 (+), 130.9 (+), 128.7 (+), 128.4 (+), 127.9 (+), 125.3 (+), 116.3, 98.0 (+), 84.3, 52.3 (+), 51.7 (+), 35.9, 1.6 (+); FT IR (neat): 2952, 2360, 1737, 1686, 1448, 1435, 1286, 1253, 1071, 880, 850 cm⁻¹; HR EI MS *m/z* 438.1496, Calcd for C₂₄H₂₆O₆Si 438.1499.

Methyl 1-(1-trimethylsilyloxy-1-phenyl-2,2,2-trifluoroethyl)cyclopropene-3,3-dicarboxylate (2q)

2q: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.59 - 7.65 (m, 2H), 7.34 - 7.41 (m, 3H), 7.02 (s, 1H), 3.70 (s, 3H), 3.61 (s, 3H), 0.17 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 169.8, 169.6, 135.4, 129.3 (+), 128.2 (+), 127.1 (+), 119.9 - 127.0 (q, $J^{1}_{FC} = 287.6$ Hz), 113.0, 102.7 (+), 77.6 (q, $J^{2}_{CF} = 32.4$ Hz) 52.3 (+), 35.2, 1.5 (+); ¹⁹F NMR (470.59 MHz, CDCl₃) δ ppm -167.3; FT IR (neat): 2955, 2360, 2339, 1734, 1437, 1289, 1257, 1181, 1069, 878, 740 cm⁻¹; HR EI MS *m/z* 402.11086, Calcd for C₁₈H₂₁O₅SiF₃ 402.11104.

Note: Compounds **2l-o** were obtained as approximately 1:1 mixtures of diastereomers, which could not be separated by flash Silica chromatography. The following analytical data are reported for mixtures.

Methyl 1-[trimethylsilyloxyphenylmethyl]-3-(4-nitrophenyl)cyclopropene-3-carboxylate (21)

21: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.06 - 8.18 (m, 2H), 7.94 - 8.03 (m, 2H), 7.46 - 7.59 (m, 12H), 6.90 (d, J = 1.1 Hz, 1H), 6.86 (d, J = 1.7 Hz, 1H), 5.81 (s, 1H), 5.74 (d, J = 1.3 Hz, 1H), 3.55 (s, 3H), 3.54 (s, 3H), 0.10 (s, 9H), 0.10 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 173.6, 173.4, 148.8, 148.2, 146.4, 146.2, 139.9, 139.2, 129.4 (+), 129.3 (+), 128.5 (+), 128.4 (+), 128.2 (+), 128.1 (+), 126.4 (+), 126.1 (+), 123.1 (+), 122.8 (+), 121.4, 121.1, 99.7 (+), 98.1 (+), 69.6 (+), 69.3 (+), 52.1 (+), 52.1 (+), 35.3, 34.9, -0.1 (+), -0.1 (+); FT IR (neat): 3139, 2953, 1719, 1599, 1518, 1348, 1253, 1219, 1109, 1069, 879, 853 cm⁻¹; HR EI MS *m/z* 397.1342, Calcd for C₂₁H₂₃O₅NSi 397.1345.

Methyl 1-(trimethylsilyloxyphenylmethyl)-3-(4-trifluoromethylphenyl)cyclopropene-3-carboxylate (2m)

2m: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.51 (s, 4H), 7.16 - 7.43 (m, 14H), 6.91 (d, *J* = 1.3 Hz, 1H), 6.87 (d, *J* = 1.7 Hz, 1H), 5.80 (s, 1H), 5.75 (d, *J* = 1.3 Hz, 1H), 3.55 (s, 3H), 3.51 (s, 3H), 0.11 (s, 9H), 0.10 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 174.1, 173.8, 145.2, 144.5, 140.0, 139.4, 128.9 (+), 128.8 (+), 128.4 (+), 128.3 (+), 128.1 (+), 128.0 (+), 126.5 (+), 126.2 (+), 124.9 (+, q, *J*³_{FC} = 2.8 Hz), 124.5 (+, q, *J*³_{FC} = 2.8 Hz), 124.3 (q, *J*¹_{FC} = 271.9 Hz), 121.9, 121.5, 100.1 (+), 98.7 (+), 69.6 (+), 69.5 (+), 51.9 (+), 51.9 (+), 35.4, 35.0, -0.1 (+), -0.1 (+); ¹⁹F NMR (470.59 MHz, CDCl₃) δ ppm -63.9; HR EI MS *m/z* 420.1367, Calcd for C₂₂H₂₃O₃SiF₃ 420.1369.

Ethyl 1-(trimethylsilyloxyphenylmethyl)-3-trimethylsilylcyclopropene-3-carboxylate (2n)

2n: The reaction was carried at 50°C. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.17 - 7.47 (m, 10H), 6.52 (d, *J* = 1.1 Hz, 1H), 6.47 (d, *J* = 1.8 Hz, 1H), 5.72 (s, 1H), 5.64 (d, *J* = 1.8 Hz, 1H), 3.92 - 4.02 (m, 4H), 1.15 (t, *J* = 7.15 Hz, 6H), 0.13 (s, 9H), 0.11 (s, 9H), 0.04 (s, 9H), -0.14 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 177.0, 140.9, 140.2, 128.3 (+), 128.2 (+), 127.9 (+), 127.7 (+), 126.5 (+), 126.2 (+), 119.1, 118.3, 97.7 (s), 96.8 (s), 70.0 (+), 69.9 (+), 60.0 (+), 22.7, 22.0, 14.2 (+), 0.0 (+), -0.1 (+), -1.3 (+), -1.7 (+); HR EI MS *m/z* 362.1733, Calcd for C₁₉H₃₀O₃Si₂ 362.1734.

Methyl 1-(trimethylsilyloxyphenylmethyl)-2-butyl-3-(4-nitrophenyl)cyclopropene-3-carboxylate (20)

20: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.08 - 8.16 (m, 2H), 7.98 - 8.07 (m, 2H), 7.55 - 7.65 (m, 2H), 7.20 - 7.45 (m, 12H), 5.76 (s, 1H), 5.69 (s, 1H), 3.58 (s, 3H), 3.48 (s, 3H), 2.51 (t, *J* = 7.5 Hz, 2H), 2.37 (td, *J* = 7.3, 1.7 Hz, 2H), 1.44 - 1.56 (m, 2H), 1.11 - 1.40 (m, 6H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.76 (t, *J* = 7.3 Hz, 3H), 0.09 (s, 9H), 0.08 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm 173.8, 149.6, 149.5, 146.0, 145.9, 141.0, 140.2, 129.4 (+), 129.3 (+), 128.4 (+), 128.3 (+), 128.0 (+), 127.9 (+), 126.3 (+), 126.1 (+), 123.0 (+), 122.9 (+), 113.9, 112.2, 110.7, 110.5, 69.1 (+), 69.0 (+), 51.8 (+), 51.7 (+), 37.3, 36.6, 29.0 (-), 28.8 (-), 23.6 (-), 23.4 (-), 22.3 (-), 22.2 (-), 13.6 (+), 13.5 (+), -0.1 (+), -0.2 (+); HR EI MS *m/z* 453.1973, Calcd for C₂₅H₃₁O₅NSi 453.1971.

