Supporting Information for
The Chemistry of Pyrrolo[1,2-a]indole and Pyrido[1,2-a]indole - Based Quinone Methides.
Mechanistic Explanations for differences in Cytostatic/ Cytotoxic Properties.
Omar Khdour and Edward B. Skibo*

Table of Contents:

Page S2, General Experimental Methods
Page S3, H- NMR for Compound 5
Page S4, H- NMR for Compound 6
Page S5, H- NMR for Compound 7
Page S6, H- NMR for Compound 8
Page S7, H- NMR for Compound 9
Page S8, H- NMR for Compound 1a
Page S9, H- NMR for Compound 1b
Page S10, H- NMR for Compound 10
Page S11, H- NMR for Compound 1c
Page S12, H- NMR for Compound 1d
Page S13, H- NMR for Compound 12
Page S14, H- NMR for Compound 13
Page S15, H- NMR for Compound 14
Page S16, H- NMR for Compound 15
Page S17, H- NMR for Compound cis 16

Page S18, H- NMR for Compound cis 2 a Page S19, H- NMR for Compound 2b Page S 20, H- NMR for Compound 2c Page S 21, H- NMR for Compound 28 Page S 22, H- NMR for Compound 3a Page S 23, H- NMR for Compound 17 Page S 24, ${ }^{13} \mathrm{C}$ - NMR for Compound 17 Page S 25, H- NMR for Compound 18 Page S 26, H- NMR for Compound 20 Page S 27, H- NMR for Compound 21 Page S 28, H- NMR for Compound 22 Page S 29, H- NMR for Compound 23 Page S 30, H- NMR for Compound 25 Page S 31, H- NMR for Compound 27 Pages S 32-44, Syntheses of compounds 2 and 3

General Experimental Methods
All analytically pure compounds were dried under high vacuum in a drying pistol over refluxing methanol. Elemental analyses (CHN) were obtained for intermediates and final products. Melting points and decomposition points were determined for all intermediates and final products. All TLCs were performed on silica gel plates using a variety of solvent systems and a fluorescent indicator for visualization. IR spectra were taken as KBr pellets and only the strongest absorbances were reported. H NMR spectra were obtained with a 300 or 500 MHz spectrometer. All chemical shifts are reported relative to TMS. High- resolution mass spectra were obtained using MALDI or EI mode.

S 3

S 4

S 9

S 12

S 16

S 17

S 19

S 21

S 23

S 25

S 26

S 27

S 28

S 29

$\stackrel{\text { in }}{\text { in }}$

S 31

Ethyl 5-Methoxy-3-methylindole-2-carboxylate (11). To a slurry of potassium t-butoxide $(16.95 \mathrm{~g}, 0.15 \mathrm{~mol})$ in 100 mL of dry benzene under nitrogen, was added of 20.5 mL of diethyl oxalate. A solution of 3-methyl-4-nitroanisole ($25 \mathrm{~g}, 0.15 \mathrm{~mol}$) in 300 ml of dry benzene was added dropwise and a red solid formed immediately. The reaction mixture was then stirred at room temperature for 45 min . The red solid precipitate was collected by filtration washed with benzene to afford 29 g of the potassium salt 3-(5-Methoxy-2-nitro-phenyl)-2-oxo-propionic acid ethyl ester (63%).

To a stirred mixture of $20.0 \mathrm{~g}(65.5 \mathrm{mmol})$ of the ketoester salt prepared above and 300 mL of dry acetone was slowly added $18.0 \mathrm{~g}(127 \mathrm{mmol})$ of methyl iodide at room temperature. ${ }^{29}$ After completion of addition, stirring was continued for 4 h . The reaction mixture was filtered and the solid was washed two times with $50-\mathrm{mL}$ portions of acetone. The filtrates and washing were combined and evaporated to red oil which was dissolved in 200 mL of glacial acetic acid and treated with 25 g of zinc dust under efficient mechanical stirring at $40-45^{\circ} \mathrm{C}$. The reaction was stirred for 3 h , before was filtered, and the solid residue was washed two times with $25-\mathrm{mL}$ portions of acetic acid. The filtrate and washings were diluted with 800 mL of ice-cold water and extracted two times with $200-\mathrm{mL}$ portions of ethyl acetate. The extracts were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Dried extracts were concentrated to a residue and purified by flash chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. Recrystallization from methanol afforded (11) as white crystals: $3.8 \mathrm{~g}(25 \%)$ yield; $\mathrm{mp} 151-162^{\circ} \mathrm{C}$; IR (KBr pellet) 3327,2988 , 1672, 1535,1470,1284,1251, 1202, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(1 \mathrm{H}, \mathrm{bs},-\mathrm{NH}$ proton $)$, $7.31(1 \mathrm{H}, \mathrm{d}), 7.01(2 \mathrm{H}, \mathrm{m}), 4.42(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}$, methylene protons), 3.88 ($3 \mathrm{H}, \mathrm{s}$ methoxy), $2.58(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$; mass spectrum (EI), m/z $233\left(\mathrm{M}^{+}\right), 187\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$,

172, 140. Anal calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.82; H, 6.44; N, 6.96.

Methyl 2, 3-Dihydro-7-methoxy-9-methyl-1-oxo-1H-pyrrolo [1, 2-a] indole-2-

carboxylate (12). To a mechanically stirred suspension of $2.0 \mathrm{~g}(17.8 \mathrm{mmol})$ of potassium tertbutoxide in 40 ml of dry benzene were added a solution of $4.0 \mathrm{~g}(17.14 \mathrm{mmol})$ of $\mathbf{1 1} \mathrm{in} 100 \mathrm{~mL}$ of dry benzene and then $3.0 \mathrm{~g}(34.8 \mathrm{mmol})$ of methyl acrylate. The reaction mixture was refluxed for 4 h and then stirred at room temperature for 48 h . The reaction was treated with 400 mL of water and acidified with concentrated hydrochloric acid to pH 4 . The acidified mixture was extracted two times with 200 mL portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then the extracts were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Dried extracts were concentrated to a white solid that was recrystallized from methanol: $2.6 \mathrm{~g}(50 \%)$ yield; $\mathrm{mp} 158-160^{\circ} \mathrm{C}$; IR (KBr pellet) 3071,3000 , $2956,2918,2820,1738,1705,1569,1339,1241,1164,1039,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO-d $\left._{6}\right) \delta$ $7.52(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=2.7,6.6 \mathrm{~Hz}), 4.59(2 \mathrm{H}, \mathrm{m})$, $4.41(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 2.44(3 \mathrm{H}, \mathrm{s})$; MALDI m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+1)$ 273.100, found 273.102. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, $65.92 ; \mathrm{H}, 5.53 ; \mathrm{N}, 5.13$. Found: C, 66.09; H, 5.63; N, 5.11.

2, 3-Dihydro-7-methoxy-9-methyl-1H-pyrrolo [1, 2 - a] indol-1-one (13). A solution of 12, $2.0 \mathrm{~g}(7.3 \mathrm{mmol})$, in 20 mL of ethanol and 20 mL of 6 M HCl was heated at $80^{\circ} \mathrm{C}$ for 2 h . The solvents were removed by evaporation and the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The ethereal extract was washed with NaHCO_{3} solution $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to a white solid which was recrystallized from $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $): 1.37 \mathrm{~g}$ (87\%) yield; mp 197-199 ${ }^{\circ} \mathrm{C}$; IR (KBr pellet) 2954, 2907, 1689, 1618, 1563, 1487, 1405, 1383, $1328,1164,1039,798 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d6) $7.47(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=2.1$
$\mathrm{Hz}), 7.01(1 \mathrm{H}, \mathrm{dd}, J=2.1,6.6 \mathrm{~Hz}), 4.35(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz})$, $2.43(3 \mathrm{H}, \mathrm{s})$; MALDI m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$ 215.0946, found 215.106.

2, 3-Dihydro-7-methoxy-9-methyl-8-nitro-1H-pyrrolo [1, 2-a] indol-1-one (14). Tо а

 mixture of $2.0 \mathrm{~g}(9.3 \mathrm{mmol})$ of (13) and 60 mL of glacial acetic acid was added 3 mL of 70% nitric acid dropwise with stirring while maintaining a temperature of $10-15^{\circ} \mathrm{C}$. Reaction was stirred for 10 min at this temperature range. 200 mL of ice water was added, the reaction was extracted two times with $100-\mathrm{mL}$ portions of dichloromethane. The extracts were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Dried extracts were concentrated to a residue and purified by flash chromatography on silica gel using chloroform as the eluent. Recrystallization from ethyl acetate afforded (14) as a yellow crystalline solid: $1.25 \mathrm{~g}(52 \%)$ yield; $\mathrm{mp} 185-187^{\circ} \mathrm{C}$; IR (KBr pellet) 3033, 2983, 2940, 1722, 1623, 1552, 1525, 1355, 1323, 1279, 1055, $787 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}\right) \delta 7.46(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 4.39(2 \mathrm{H}, \mathrm{t}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.21(2 \mathrm{H}, \mathrm{t})$, $2.38(3 \mathrm{H}, \mathrm{s})$. MALDI m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+1)$ 261.0875, found 261.088. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 60.00 ; \mathrm{H}, 4.65 ; \mathrm{N}, 10.76$. Found: C, $59.94 ; \mathrm{H}, 4.70 ; \mathrm{N}, 10.72$.
2, 3-Dihydro-2-hydroxy-7-methoxy-9-methyl-8-nitro-1H-pyrrolo [1, 2-a] indol-1-one (15).

A solution of $\mathbf{1 4}, 500 \mathrm{mg}(1.9 \mathrm{mmol})$, in 80 mL of DMF was added 800 mg CuBr 2 and 200 mg of LiBr . The mixture was heated at $85^{\circ} \mathrm{C}$. for 32 hours and then the reaction was cooled to room temperature and acidified with aqueous 1 N HCl to pH 3.00 . Extraction with 3 x 50 mL portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then the extracts were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Dried extracts were concentrated to a residue and purified by flash chromatography on silica gel using chloroform as the eluent: 210 (39\%) yield; mp dec. $\geq 159^{\circ} \mathrm{C}$; IR (KBr pellet) 3369, 2924, 1697, 1523, 1357, $1275,1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.48(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 7.22(11 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 4.91$ $(2 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}, \mathrm{m}), 3.96(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s})$. MALDI m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+1) .277$.

081, found 277.082. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 56.52; H, 4.38; N, 10.14. Found: C, 55.87; H, 4.32; N, 9.93.

2, 3-Dihydro-7-methoxy-9-methyl-8-nitro-1H-pyrrolo [1, 2 - a] indole-cis-1, 2-diol (cis-

16). Sodium borohydride $0.3 \mathrm{~g},(7.9 \mathrm{mmol})$ was added portionwise upon cooling to a solution of (15) $0.5 \mathrm{~g},(1.8 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 10 minute. Reaction was quenched with iced water, the reaction then extracted with methylene chloride (3 x 50 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. Crude product was purified by silica gel chromatography (methylene chloride) as the eluent. Two fractions were collected, the major was the title compound cisisomer and the minor was the trans- isomer: 325 mg (cis-isomer) (65%) yield ; $\mathrm{mp} \mathrm{dec} . \geq 163^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}$ pellet $) 3350,2941,1653,1521,1367,1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.27(1 \mathrm{H}, \mathrm{d}, J=$ 8.7 Hz), $6.95(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{m}), 3.97$ $(1 \mathrm{H}, \mathrm{m}), 3.91(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s})$; MALDI m/z calculated $278.0903\left(\mathrm{M}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$. Found $278.092(\mathrm{M}+) .105 \mathrm{mg}$ (trans-isomer) (21\%) yield.

2, 3-Dihydro-cis-1, 2-dihydroxy-7-methoxy-9-methyl-1H-pyrrolo[1, 2 - a]indole-5, 8-

dione (2a). A solution of $150 \mathrm{mg}(0.54 \mathrm{mmol})$ of (cis-16) in 100 ml of methanol containing of $5 \% \mathrm{Pd}$ on carbon was shaken under 50 psi of H_{2} for 45 min . The reaction mixture was filtered through Celite, and the filtrate was washed with 15 ml of methanol. The filtrate was concentrated to afford the crude amine product, which was used in the next step without purification.

The amine was dissolved in 2 mL of MeOH followed by 20 mL of phosphate buffer (monobasic potassium phosphate) $(0.1 \mathrm{M}), \mathrm{pH}=3.20$. To this solution was added a solution
consisting of 4 g of Fremy's salt in 100 mL phosphate buffer (monobasic potassium phosphate, $0.1 \mathrm{M}, \mathrm{pH}=3.20$). The reaction mixture was stirred at room temperature for 50 min and then extracted $(4 \times 50 \mathrm{~mL})$ portions of chloroform. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extracts were concentrated. Flash column chromatography of the crude product on silica gel using $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 96: 4\right)$ as the eluent. The isolated cis-diol (2a) was crystallized from $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$ to afford the product as light red solid. $75 \mathrm{mg}(53 \%)$ yield; $\mathrm{mp} \mathrm{dec} . \geq 169^{\circ} \mathrm{C}$; IR (KBr pellet) 3410,3298 , 2933, 1653, 1640, 1503, 1447, 1327, 1102, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 5.73(1 \mathrm{H}, \mathrm{s}), 5.37$ $(2 \mathrm{H}, \mathrm{m}), 4.83(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}$, s), $2.21(3 \mathrm{H}, \mathrm{s})$; MALDI m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{5}(\mathrm{M}+1)$ 264.0867, found 264.090. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{5} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.51 ; \mathrm{H}, 5.06 ; \mathrm{N}, 5.25$. Found: C, $58.20 ; \mathrm{H}, 4.94 ; \mathrm{N}, 5.23$.

cis-1, 2-Diacetoxy- 2, 3-Dihydro-7-methoxy-9-methyl-1H-pyrrolo [1, 2-a] indole-5, 8-

dione (2b). To a stirred solution of 2a, $80 \mathrm{mg}(0.30 \mathrm{mmol})$, in 30 mL of dry methylene chloride, cooled to $0^{\circ} \mathrm{C}$, was added 30 mg of DMAP followed by 0.2 mL of acetic anhydride. The reaction was stirred for 5 min at room temperature and then solvent was evaporated to yield solids. The crude product was purified by flash silica gel chromatography using methylene chloride as the eluent. Recrystallization from methylene chloride/hexane afforded $\mathbf{2 b}$ as a light yellow solid: 86 $\mathrm{mg}(82 \%)$ yield; $\mathrm{mp} 188-190^{\circ} \mathrm{C}$; IR (KBr pellet) 2942, 1739, 1645, 1505, 1371,1250, $1027 \mathrm{~cm}^{-1}$; $\left.{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.22(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz})\right), 5.69(1 \mathrm{H}, \mathrm{m}), 5.66(1 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{q}), 4.21(1 \mathrm{H}$, q), $3.81(3 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s})$; MALDI m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{7}(\mathrm{M}+2$, hydroquinone) 349.115 , found 349.123. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{7}: \mathrm{C}, 58.79 ; \mathrm{H}, 4.93$; $\mathrm{N}, 4.03$. Found: C, 58.66; H, 4.99; N, 4.17.
cis-1, 2-Diacetoxy -7-aziridinyl-2, 3-dihydro-9-methyl-1H-pyrrolo[1, 2 - a]indole-5, 8-
dione (2c). To a solution of $\mathbf{2 a}, 60 \mathrm{mg}(0.17 \mathrm{mmol})$, in 20 ml of methanol, cooled to $0^{\circ} \mathrm{C}$, was
added 0.7 ml of aziridine. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then at room temperature for 1 h . The solvent was then removed in vacuo to afford an orange solid that was purified by flash silica gel chromatography using methylene chloride / ethyl acetate (95:5) as the eluent. Compound 2c was recrystallized from methylene chloride/hexane to afford an orange crystalline solid: 38 mg (61%) yield; $\mathrm{mp} 189-191^{\circ} \mathrm{C}$; IR (KBr pellet), 2948, 1739, 1644, 1370, $\left.1250,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta\right) 6.21(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{s}), 5.67(1 \mathrm{H}, \mathrm{q}, J=5.7$ Hz), $4.68(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.20(4 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s}), 2.09(3 \mathrm{H}, \mathrm{s}) ;$ MALDI m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+1) 359.123$, found 359.117. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \bullet 0.2 \mathrm{H}_{2} \mathrm{O}$: C, $59.73 ;$ H, $5.12 ;$ N, 7.74. Found: C, 59.52; H, 5.68; N, 7.76.

9-Hydroxy- 6, 7, 8, 9-tetrahydro-3, 10-dimethyl-2-methoxypyrido[1, 2 -a]indole-1, 4-

dione (28). A solution of 5, $200 \mathrm{mg}(0.69 \mathrm{mmol})$, in 100 mL of methanol containing 200 mg of $5 \% \mathrm{Pd}$ on charcoal was shaken under 50 psi of H_{2} for 6 h . The reaction mixture was filtered through Celite and washed two times with 20 mL portions of methanol. The combined filtrates were concentrated to afford the crude amine product, which was used in the next step without purification.

To a solution of 2.2 g of Fremy salt and 2.5 g of potassium dihydrogen phosphate in 150 ml of water was added a solution of the crude amine in 50 ml of acetone. The reaction was stirred for 4 h and then diluted with 200 ml of water. The resulting solution was extracted with of chloroform ($3 \times 100 \mathrm{ml}$). The extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford a red solid. The crude product was purified by flash silica gel chromatography using hexane/ethyl acetate (40:60) as the eluent. The purified product was crystallized from methylene chloride/hexane to afford an orange crystalline solid: 120 mg (63\%) yield; mp 202-204${ }^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}), 3489,2938,1637,1126,1006,751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$
$4.91(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{m}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.87(1 \mathrm{H}, \mathrm{m}), 2.5(1 \mathrm{H}, \mathrm{bs}), 2.28(3 \mathrm{H}, \mathrm{s})$, $2.25(1 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{m}), 1.90-1.83(5 \mathrm{H})$; MALDI m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}(\mathrm{M}+1)$ 276.1236, found 276.126.

9-Acetoxy-6, 7, 8, 9-tetrahydro-2-methoxy-3, 10-dimethylpyrido [1, 2 -a]indole-1, 4-dione

(3a). To a stirred solution of $\mathbf{2 8}, 100 \mathrm{mg}(0.36 \mathrm{mmol})$, in 50 mL of dry methylene chloride under a nitrogen atmosphere and cooled to $0^{\circ} \mathrm{C}$, was added 30 mg of DMAP followed by dropwise addition of 0.5 mL of acetic anhydride. Reaction was stirred for 5 min at room temperature and then the solvent was evaporated in vacuo. Crude product was purified by flash silica gel chromatography using methylene chloride as the eluent. Compound 3a was recrystallized from methylene chloride/hexane to afford an orange crystalline solid: $90 \mathrm{mg}(82 \%) ; \mathrm{mp} 170-171{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}$ pellet $) 2954,1733,1637,1238,1126,926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.12(1 \mathrm{H}, \mathrm{t}, J=$ $3.3 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{m}), 3.97(3 \mathrm{H}, \mathrm{s}), 3.93(1 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}), 2.15(2 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{s})$, $1.95(2 \mathrm{H}, \mathrm{m}), 1.93(3 \mathrm{H}, \mathrm{s})$; MALDI m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{5}(\mathrm{M}+1) 318.133$, found 318.127.

Hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$ in Anaerobic pH 7.4 Aqueous Buffer. A solution consisting of 10 mL of DMSO and $25 \mathrm{mg}(0.067 \mathrm{mmol})$ of $\mathbf{1 a}$ was added to 30 mL of 0.1 M pH 7.4 phosphate buffer held at $\mu=1$ with KCl . To this solution was added 5 mg of $5 \% \mathrm{Pd}$ on carbon and the mixture was then deaerated with nitrogen for 30 min . Hydrogen gas was then bubbled into the reaction mixture for 5 min . and then nitrogen was bubbled into the reaction mixture for 30 min to remove the excess hydrogen. The reaction mixture was incubated at $30^{\circ} \mathrm{C}$ for 24 h and then opened to the air. The catalyst was filtered off and the filtrate extracted ($3 \times 20 \mathrm{~mL}$) with methylene chloride. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to a red solid, which was subjected
to preparative silica gel thin-layer chromatographic separation using methylene chloride as the eluent. The physical properties of hydrolysis products (17) and (18) are provided below:

6, 7-Dihydro-2-methoxy-3, 10-dimethylpyrido[1, 2-a]indole-1,4-dione (17): 10 mg (58\%)

yield; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), R_{f}=0.48$; IR (KBr pellet), 2962, 2923, 2852, 1667, 1634, 1503, 1306, 1213, 1115, 935, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.48(1 \mathrm{H}$, doublet of triplets, $J=9.9,1.5 \mathrm{~Hz}), 6.0$ $(1 \mathrm{H}$, doublet of triplets, $J=9.9,4.2 \mathrm{~Hz}), 4.48(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.98(3 \mathrm{H}, \mathrm{s}), 2.54(2 \mathrm{H}, \mathrm{m}), 2.47$ and $1.93(6 \mathrm{H}, 2 \mathrm{~s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 179.8,178.9,156.3,132.8,129.0,127.9,124.4,122.3$, 117.8, 117.0, 61.0, 41.7, 23.6, 9.4, 8.8; HREI MS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} 257.1052$, found 257.1048 .

2-methoxy-3, 10-Dimethylpyrido[1, 2 - a]indole-1, 4-dione (18): 2.8 mg (16%) yield; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), R_{f}=0.36$; IR (KBr pellet), 3002, 2929, 2852, 1656, 1634,1323,1143,110 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.4(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{t}, \quad J=7.2 \mathrm{~Hz}), 6.95$ $(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.95(3 \mathrm{H}, \mathrm{s}), 2.58$ and $2.06(6 \mathrm{H}, 2 \mathrm{~s}) ;$ HREI MS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}$ 255.0895, found 255.0897 .

Hydrolysis of $\left(\mathbf{1 a H}_{\mathbf{2}}\right)$ in Anaerobic Methanol. To a mixture consisting of 20 mg of $\mathbf{1 a}$ and 5 mg of Pd on carbon was added 50 mL of methanol. The mixture was deaerated with nitrogen for 30 min , followed by bubbling hydrogen gas for 5 min to facilitate quinone reduction. The reaction mixture was transferred to the glove box $\left(\mathrm{N}_{2}\right)$, where the Pd on carbon catalyst was filtered off using Millipore (MILLEX ${ }^{\mathrm{R}}-\mathrm{PF}$) filter. The filtrate was incubated at $30^{\circ} \mathrm{C}$ for 16 h and then combined with air and stirred for 5 min . The filtrate was concentrated to red solid, which was subjected to preparative silica gel thin- layer chromatographic separation using
dichloromethane as eluent. The physical properties of products (17), (18), (19), (20) and (21) are provided below.

6,7-Dihydro-2-methoxy-3, 10-dimethylpyrido[1, 2 - a]indole-1,4-dione (17): 7.0 mg (55\%) yield; the physical properties were the same as reported above.

2-Methoxy-3, 10-Dimethylpyrido[1, 2 - a]indole-1, 4-dione (18): 2.6 mg (19 \%) yield; the physical properties were the same as reported above.

8-Acetoxy- 6, 7, 8, 9-tetrahydro-2, 9-dimethoxy-3, 10-dimethylpyrido [1, 2 - a] indole-1, 4dione (19): trace yield; HREI MS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{6} 247.1369$, found 347.1366.

6, 7, 8, 9-Tetrhydro-2-methoxy-3, 10-dimethylpyrido [1, 2 - a]indole-1, 4-dione (20): 1.2 $\operatorname{mg}(8.5 \%)$ yield; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), R_{f}=0.50$; IR (KBr pellet), 2916, 1655, 1621, 1499,1332,1143, $1081 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.28(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.95(3 \mathrm{H}, \mathrm{s}), 2.67(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.19$ $(3 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.92$ and $1.84(4 \mathrm{H}, 2 \mathrm{~m})$; HREI MS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$ 259.1208, found 259.1198 .

8-Acetoxy- 6, 7, 8, 9-tetrahydro-2-methoxy-3, 10-dimethylpyrido [1, 2 - a] indole-1, 4-

 dione (21): $1.4 \mathrm{mg}(8 \%)$ yield: $\mathrm{mp} 145-147^{\circ} \mathrm{C}$; IR (KBr pellet) 2952, 1730, 1635, 1237, 1127, $924 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5,29(1 \mathrm{H}, \mathrm{m}), 4.51-4,41(2 \mathrm{H}, \mathrm{m}), 3.98(3 \mathrm{H}, \mathrm{s}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=$ $17.2,4.8 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=17.2,4.8 \mathrm{~Hz}), 2.20(3 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}, \mathrm{s}), 1.95(3$ $\mathrm{H}, \mathrm{s})$; MALDI m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{5}(\mathrm{M}+1) 318.133$, found 318.124.Hydrolysis of $\mathbf{1 c H}_{\mathbf{2}}$ in Anaerobic Aqueous Buffer. This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$. The physical properties of hydrolysis products (22), (23) and (24) are provided below:

6, 7, 8, 9-Tetrahydro-2-(2-methoxyethylamino)-3, 10-dimethylpyrido[1, 2 - a]indole-1, 4dione (22): 5.5 mg (38\%) yield; IR (KBr pellet), 3426, 2934, 1661, 1612, 1246, 1170, $1110 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.28(1 \mathrm{H}, \mathrm{b}), 4.33(2 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{m}), 3.55(2 \mathrm{H}, \mathrm{m}), 3.38(3 \mathrm{H}, \mathrm{s}), 2.67$ $(2 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.92(2 \mathrm{H}, \mathrm{m}), 1.82(2 \mathrm{H}, \mathrm{m})$; HREI MS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} 302.1631$, found 302.1638 .

6, 7, 8, 9-Tetrahydro-3, 10-dimethylpyrido[1, 2 - a]indole-1, 4-dione (23): 2.1 mg (19\%) yield; IR (KBr pellet), 2923, 2852, 1640, 1607, 1481, $1383 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.29(1 \mathrm{H}$, s), $4.32(2 \mathrm{H}, \mathrm{m}), 2.71(2 \mathrm{H}, \mathrm{m}), 2.19(3 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.87(2 \mathrm{H}, \mathrm{m}), 1.85(2 \mathrm{H}, \mathrm{m}) ;$ HREI MS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ 229.1103, found 229.1101.

8-Acetoxy- 6, 7, 8, 9-tetrahydro-2-(2-methoxyethylamino)-3, 10-dimethylpyrido[1, 2 -a]indole-1, 4-dione (24): trace yield; HRFAB MS m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} 360.1685$, found 360.1687 .

Hydrolysis of $\mathbf{2 b H} \mathbf{2}$ in Anaerobic Aqueous Buffer (pH 7.4). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$. The physical properties of hydrolysis products (25) and (26) are provided below and 4.8 mg of starting material $\mathbf{2 b}$ was recovered:

2-Acetoxy- 2, 3-dihydro-1-hydroxy-7-methoxy-9-methyl-1H-pyrrolo[1, 2-a]indole-5, 8dione (25): 1.1 mg (42 \%) yield; IR (KBr pellet) 3396, 2952, 1730, 1635, 1237, 1127, $924 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.99(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{q}, J=5.4 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{dd}$, $J=4.8,14.2 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{dd}, J=71.2,14.4 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}) ;$ MALDI m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{6}(\mathrm{M}+1)$ 306.0972, found 306.095.

2-Acetoxy-2, 3-dihydro-7-methoxy-9-methyl-1H-pyrrolo[1, 2 - a]indole-5, 8-dione (26). Trace yield; MALDI m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5}(\mathrm{M}+2)$ 291.1096, found 291.111.

Hydrolysis of $\mathbf{3 a H}_{2}$ in Anaerobic Aqueous Buffer (pH 7.4 phosphate). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$. The physical properties of hydrolysis products (28), (20) and (17) are provided below:

6, 7, 8, 9-Tetrahydro- 9-hydroxy-2-methoxy- 3, 10-dimethylpyrido [1, 2 - a]indole-1, 4dione (28): $11.5 \mathrm{mg}(53 \%)$ yield; the physical properties were the same as reported above.

6, 7-Dihydro-2-methoxy-3, 10-dimethylpyrido[1, 2 - a]indole-1, 4-dione (17): 3.7 mg (18 \%) yield; the physical properties were the same as reported above.

6, 7, 8, 9-Tetrahydro-3, 10-dimethyl-2-methoxypyrido [1, 2 - a]indole-1,4-dione (20): 3.5 $\mathrm{mg}(20 \%)$ yield; the physical properties were the same as reported above.

Hydrolysis of $\mathbf{3 a H}_{\mathbf{2}}$ in Anaerobic Aqueous Buffer (pH 9.00). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H} \mathbf{H}_{\mathbf{2}}$ except pH 9.000 .1 M borate buffer was used as solvent. his reaction afforded 28 as a major product (yield 83%) and 17 as a minor product (yield 5\%); the physical properties were the same as reported above.

Hydrolysis of $\mathbf{3 b H}_{\mathbf{2}}$ in Anaerobic Aqueous Buffer (pH 7.4 phosphate). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$. The physical properties of hydrolysis products (29) and (30) are the same as reported previously in this laboratory. ${ }^{29}$

2,3-Dihydro-1-hydroxy-7-methoxy-6, 9-dimethyl-1H-pyrrolo[1, 2 - a]indole-5, 8-dione (29). $18 \mathrm{mg}(83 \%)$ yield; the physical properties were the same as reported.

2,3-Dihydro-7-methoxy-6,9-dimethyl-1H-pyrrolo[1, 2 - a]indole-5, 8-dione (30). Trace yield; the physical properties were the same as reported.

2, 3, 7, 8-Tetrahydro-11-methyl-indolizino[2, 3 - flquinoxaline-6-one (27). To a stirred solution of $\mathbf{1 7}, 20 \mathrm{mg}(0.078 \mathrm{mmol})$, in 5 mL of methanol was added $5 \mu \mathrm{~L}$ of ethylenediamine. The reaction was stirred 5 h at room temperature, and then solvent was evaporated. The crude product was subjected to preparative silica gel thin- layer chromatographic separation using dichloromethane/ methanol (95:5) as eluent : 16 mg (77% yield); $\mathrm{mp} \mathrm{dec} . \geq 198^{\circ} \mathrm{C}$; IR (KBr pellet) $\mathrm{cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.49(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{m}), 4.55(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $4.42(1 \mathrm{H}, \mathrm{b}), 4.04(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.37(2 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}, \mathrm{s}), 1.79$ ($3 \mathrm{H}, \mathrm{s}$); MALDI m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+1)$ 268.1444, found 268.160; HREI MS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} 267.1355$, found 267.1372.

Hydrolysis of $\mathbf{3 a H}_{2}$ in Anaerobic Aqueous Buffer (pH 7.4 phosphate). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$. The physical properties of hydrolysis products (28), (20) and (17) are provided below:

6, 7, 8, 9-Tetrahydro- 9-hydroxy-2-methoxy- 3, 10-dimethylpyrido [1, 2 - a]indole-1, 4-

 dione (28): $11.5 \mathrm{mg}(53 \%)$ yield; the physical properties were the same as reported above.6, 7-Dihydro-2-methoxy-3, 10-dimethylpyrido[1, 2 - a]indole-1, 4-dione (17): 3.7 mg (18 \%) yield; the physical properties were the same as reported above.

6, 7, 8, 9-Tetrahydro-3, 10-dimethyl-2-methoxypyrido [1, 2 - a]indole-1,4-dione (20): 3.5 $\mathrm{mg}(20 \%)$ yield; the physical properties were the same as reported above.

Hydrolysis of $\mathbf{3 a H}_{\mathbf{2}}$ in Anaerobic Aqueous Buffer (pH 9.00). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$ except pH 9.000 .1 M borate buffer was used as
solvent. his reaction afforded 28 as a major product (yield 83%) and $\mathbf{1 7}$ as a minor product (yield 5\%); the physical properties were the same as reported above.

Hydrolysis of $\mathbf{3 b H}_{\mathbf{2}}$ in Anaerobic Aqueous Buffer (pH 7.4 phosphate). This reaction was carried out as described above for the hydrolysis of $\mathbf{1 a H}_{\mathbf{2}}$. The physical properties of hydrolysis products (29) and (30) are the same as reported previously in this laboratory. ${ }^{29}$

2,3-Dihydro-1-hydroxy-7-methoxy-6, 9-dimethyl-1H-pyrrolo[1, 2 - a]indole-5, 8-dione (29). $18 \mathrm{mg}(83 \%)$ yield; the physical properties were the same as reported.

2,3-Dihydro-7-methoxy-6, 9-dimethyl-1H-pyrrolo[1, 2 - a]indole-5, 8-dione (30). Trace yield; the physical properties were the same as reported.

