Synthesis of α-Hydroxy Acids by Silylene Transfer to α-Keto Esters

Brett E. Howard and K. A. Woerpel ${ }^{*}$
Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information

Contents:

I. Synthesis of Substituted α-Keto Esters S-2
II. Synthesis of α-Hydroxy Acids $S-5$
III. Chiral α-Keto Ester Synthetic Intermediates and Products $S-8$
IV. α-Imino Ester Synthesis and Silylene Transfer $S-12$
V. References S-13
VI. X-ray Crystallographic Data S-13
VII. Selected Spectra S-28

Experimental Section

General. Melting points were obtained using a Büchi 510 melting point apparatus and are reported uncorrected. Chiral gas chromatography was performed using a Hewlett-Packard 5890 series II gas chromatograph with a G-TA γ-cyclodextrin, trifluoroacetyl column ($20 \mathrm{~m} \times 0.25 \mathrm{~mm}, 100: 1$ split ratio), with helium as the carrier gas. Chiral HPLC was accomplished using a Varian Prostar 320 UV-Vis detector in combination with 2 Varian Prostar 210 solvent delivery modules and a Daicel Chemical Industries LTD. Chiralcel OD-H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$). Method of chromatography is as follows: 199:1 hexanes:IPA, flow rate $0.6 \mathrm{~mL} / \mathrm{min}$. Analytical thin later chromatography was performed on EMD Silical Gel $60 \mathrm{~F}_{254}$ precoated plates. Liquid chromatography utilized force flow (flash chromatography) of the indicated solvent system on Silacycle Sila-P silica gel $\left(\mathrm{SiO}_{2}\right) 60 \AA$ pore size, $40-63 \mu \mathrm{~m}$ mesh. Infrared spectroscopy was performed on an Applied Systems React IR 1000. High-resolution mass spectra were acquired on a Walters LCT Premier and were obtained by peak matching. Microanalyses were performed by Atlantic Microlabs, Atlanta, GA. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ at 400 and 100 , and 500 and 125 MHz respectively, using Bruker DRX 400 or DRX 500 spectrometers as indicated. These data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiciplity ($\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), and integration. Silacyclopropanes were stored and manipulated in an Innovative Technologies nitrogen-atmosphere dry box. All reactions were performed under an atmosphere of nitrogen or argon in glassware that had been flame-dried under vacuum prior to use. Solvents were distilled or filtered before use. Cyclohexenesilacyclopropane (6) was constructed by known methods. ${ }^{1}$

5

1,1-di-tert-butyl-2,2-dimethylsilirane (5). To a cooled ($-78^{\circ} \mathrm{C}$) solution of lithium granules ($3.9 \mathrm{~g}, 470$ mmol) in THF (23 mL), isobutylene ($14.5 \mathrm{~g}, 259 \mathrm{mmol}$) and di-tert-butyldichlorosilane ($10 \mathrm{~g}, 47 \mathrm{mmol}$) were added. After warming to room temperature and stirring for 72 h , the reaction mixture was concentrated in vacuo and filtered through a Celite pad using Schlenk technique. The Celite was rinsed with hexanes ($4 \times 50 \mathrm{~mL}$) and the filtrate was concentrated. The reaction mixture was then purified by bulb to bulb distillation to give 5 ($4.7 \mathrm{~g}, 50 \%$ yield) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 18 \mathrm{H}), 0.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.0,29.2,20.5,17.9,15.3$; IR (thin film) $2936,2857,1475 \mathrm{~cm}^{-1}$.

I. Synthesis of Substituted α-Keto Esters

General Coupling Procedure for the Formation of $\boldsymbol{\alpha}$-Keto Esters: To a solution of the α-hydroxy acid (1.5-2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 M) was added the allylic alcohol (1.0 equiv) and DMAP (0.1 equiv). The solution was cooled to $0^{\circ} \mathrm{C}$ and stirred for 15 min prior to the addition of DCC (1.5-2.0 equiv). After stirring for $3-6 \mathrm{~h}$, the reaction mixture was filtered, diluted with 20 mL of saturated aqueous NaHCO_{3}, and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL per mmol of alcohol). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting oil was purified as indicated.

1

Allyl 2-oxo-2-phenylacetate (1). The general coupling procedure was performed on benzoyl formic acid (3.30 $\mathrm{g}, 22.0 \mathrm{mmol})$ and allyl alcohol ($0.748 \mathrm{~mL}, 11.0 \mathrm{mmol}$). Purification of the concentrated reaction mixture by flash chromatography ($10: 1$ hexanes:EtOAc) gave $1(1.01 \mathrm{~g}, 48 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{ddt}, J=17.0,10.4,5.9,1 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H})$, $5.31(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{dt}, J=5.9,1.3,2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.3,163.7,135.2,132.6,131.0$, 130.2, 129.2, 120.1, 66.7; IR (thin film) 3070, 1737, 1686, 1598, 1451, 1194, $1175 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$213.0528, found 213.0529. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}: \mathrm{C}, 69.46 ; \mathrm{H}, 5.30$. Found: C, 69.10; H, 5.26.

Cinnamyl 2-oxopropanoate (6a). The general coupling procedure was performed on pyruvic acid (0.557 mL , 8.00 mmol) and cinnamyl alcohol ($0.537 \mathrm{~g}, 4.00 \mathrm{mmol}$). Purification of the concentrated reaction mixture by flash chromatography ($10: 1$ hexanes:EtOAc) gave $\mathbf{6 a}\left(0.434 \mathrm{~g}, 53 \%\right.$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.33(\mathrm{dt}, J=15.6,6.7,1 \mathrm{H}), 4.91(\mathrm{dd}, J=6.7,1.1,2 \mathrm{H}), 2.50$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.0,160.7,136.3,136.0,128.9,128.7,127.0,121.6,67.2,27.0$; IR (thin film) 3369 (br), 2939, 1727, 1677, $1135 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 227.0684, found 227.0687. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 70.57; H, 5.92. Found: C, 70.56; H, 6.02.

6b
Cinnamyl 2-oxobutanoate (6b). The general coupling procedure was performed on 2-ketobutyric acid (0.817 $\mathrm{g}, 8.00 \mathrm{mmol})$ and cinnamyl alcohol ($0.537 \mathrm{~g}, 4.00 \mathrm{mmol}$). Purification of the concentrated reaction mixture by column chromatography ($10: 1$ hexanes:EtOAc) gave $\mathbf{6 b}\left(0.667 \mathrm{~g}, 76 \%\right.$) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.32(\mathrm{dt}, J=15.9,6.6,1 \mathrm{H}), 4.9(\mathrm{dd}, J=6.6,1.1,2 \mathrm{H})$, $2.88(\mathrm{q}, J=7.2,2 \mathrm{H}), 1.13(\mathrm{t}, J=7.2,3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.3,160.5,135.5,135.2,128.3$, 128.0, 126.4, 121.3, 66.2, 32.4, 6.5; IR (thin film) 3451, 2940, $1731,1269 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$241.0841, found 241.0845.

Cinnamyl 3-methyl-2-oxobutanoate ($\mathbf{6 c}$). The general coupling procedure was performed on 2-ketovaline ($0.318 \mathrm{~g}, 2.75 \mathrm{mmol}$) and cinnamyl alcohol ($0.184 \mathrm{~g}, 1.37 \mathrm{mmol}$). Purification of the concentrated reaction mixture by column chromatography ($10: 1$ hexanes:EtOAc) gave $\mathbf{6 c}\left(0.254 \mathrm{~g}, 80 \%\right.$) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.34(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.7,2 \mathrm{H}), 3.30$ (septet, $J=7.0,1 \mathrm{H}), 1.19(\mathrm{dd}, J=7.0,0.7,6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.0,161.5,135.85,135.79$, 128.6, 128.4, 126.7, 121.5, 66.6, 37.1, 17.1; IR (thin film) 2977, 2937, 1729, 1449, 1264, $1027 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 255.0997$, found 255.0996. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 72.39; H , 6.94. Found: C, 72.32; H, 7.08.

Cinnamyl 3,3-dimethyl-2-oxobutanoate (6d). The general coupling procedure was performed on 3,3-dimethyl-2-oxobutanoic acid ($0.484 \mathrm{~g}, 3.73 \mathrm{mmol}$) and cinnamyl alcohol ($0.250 \mathrm{~g}, 1.86 \mathrm{mmol}$). Purification of the concentrated reaction mixture by column chromatography ($10: 1$ hexanes:EtOAc) gave $\mathbf{6 d}(0.408 \mathrm{~g}, 90 \%)$ as a white solid: mp $45{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.33(\mathrm{dt}, J=$ $15.9,6.7,1 \mathrm{H}), 4.91(\mathrm{dd}, J=6.7,1.2,2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.1,163.8,136.1$, 128.9, 128.7, 127.0, 121.8, 66.4, 43.0, 26.0; IR (thin film) 2973, 1733, 1717, 1480, 1449, 1287, $1233 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$269.1154, found 269.1157. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 73.15; H, 7.37. Found: C, 73.44; H, 7.40.

Cinnamyl 2-0x0-2-phenylacetate (6e). The general coupling procedure was performed on benzoylformic acid $(0.60 \mathrm{~g}, 4.0 \mathrm{mmol})$ and cinnamyl alcohol $(0.268 \mathrm{~g}, 2.00 \mathrm{mmol})$. Purification of the concentrated reaction
mixture by column chromatography ($10: 1$ hexanes:EtOAc) gave $\mathbf{6 e}\left(0.481 \mathrm{~g}, 90 \%\right.$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.40(\mathrm{dt}, J=15.9,6.6,1 \mathrm{H}), 5.06(\mathrm{dd}, J=6.6,1.2,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 186.4,163.8,136.2,136.1,135.2,132.7,130.3,129.2,128.9,128.7,127.0,121.8,66.9$; IR (thin film) 3060, 3028, 1735, 1686, 1596, 1449, $1195 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$289.0841, found 289.0837. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 76.68; H, 5.30. Found: C, 76.25; H, 5.27.

$6 f$

Crotyl 2-oxo-2-phenylacetate (6f). The general coupling procedure was performed on benzoyl formic acid $(3.36 \mathrm{~g}, 22.4 \mathrm{mmol})$ and crotyl alcohol $(0.941 \mathrm{~mL}, 11.2 \mathrm{mmol})$. Purification of the concentrated reaction mixture by column chromatography ($10: 1$ hexanes:EtOAc) gave $\mathbf{6 f}\left(1.11 \mathrm{~g}, 49 \%\right.$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{dtq}, J=$ $15.1,6.7,1.6,1 \mathrm{H}), 4.76(\mathrm{dt}, J=6.8,1.2,2 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.5,163.9$, $135.1,133.7,132.7,130.2,129.1,124.0,67.0,18.0$; IR (thin film) $3031,1735,1686,1598,1451,1194,1173$ cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$227.0684, found 227.0685. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 70.57; H, 5.92. Found: C, 70.59; H, 6.00.

(\boldsymbol{E})-Hept-2-enyl 2-oxo-2-phenylacetate ($\mathbf{6 g}$). The general coupling procedure was performed on benzoyl formic acid ($0.500 \mathrm{~g}, 3.33 \mathrm{mmol}$) and (E)-hept-2-en-1-ol ($0.253 \mathrm{~g}, 2.22 \mathrm{mmol}$). Purification of the concentrated reaction mixture by column chromatography ($20: 1$ hexanes:EtOAc) gave $\mathbf{6 g}(0.497 \mathrm{~g}, 91 \%$) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 5.96-5.88(\mathrm{~m}$, $1 \mathrm{H}), 5.75-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.7,2 \mathrm{H}), 2.10(\mathrm{q}, J=6.9,2 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.1,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.6,163.9,139.0,135.1,132.7,130.3,129.1,122.7,67.2,32.2,31.1,22.4$, 14.1; IR (thin film) 2958, 2931, 1735, 1688, 1598, 1451, $1194 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}$ $(\mathrm{M}+\mathrm{Na})^{+}$269.1154, found 269.1154. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 73.15 ; \mathrm{H}, 7.37$. Found: C, 73.39; H, 7.42.

6h
(E)-4-(tert-butyldimethylsilyloxy)but-2-enyl 2-oxo-2-phenylacetate (6 h). The general coupling procedure was performed on benzoyl formic acid $(0.500 \mathrm{~g}, 3.33 \mathrm{mmol})$ and (E)-4-(tert-butyldimethylsilyloxy)but-2-en-1ol ($0.449 \mathrm{~g}, 2.22 \mathrm{mmol}$). Purification of the concentrated reaction mixture by column chromatography ($20: 1$ hexanes:EtOAc) gave $\mathbf{6 h}(0.676 \mathrm{~g}, 91 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-8.00(\mathrm{~m}$, $2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.04-5.87(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=5.6,2 \mathrm{H}), 4.23(\mathrm{dd}, J=3.7,1.3$, 2H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.4,163.8,136.3,135.1,132.7,130.3,129.1$,

$6 i$
(E)-5-(benzyloxy)pent-2-enyl 2-oxobutanoate (6i). The general coupling procedure was performed on 2ketobutyric acid ($0.153 \mathrm{~g}, 1.50 \mathrm{mmol}$) and (E)-5-(benzyloxy)pent-2-en-1-ol ($0.192 \mathrm{~g}, 1.00 \mathrm{mmol}$). Purification of the concentrated reaction mixture by column chromatography ($20: 1$ hexanes:EtOAc) gave $\mathbf{6 i}(0.186 \mathrm{~g}, 67 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.94-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.64(\mathrm{~m}, 1 \mathrm{H})$, $4.68(\mathrm{~d}, J=6.6,2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.6,2 \mathrm{H}), 2.84(\mathrm{q}, J=7.2,2 \mathrm{H}), 2.39(\mathrm{q}, J=6.5,2 \mathrm{H}), 1.11(\mathrm{t}, J=$ $7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.1,161.1,138.6,134.7,128.6,127.9,127.8,124.7,73.1,69.3$, $66.9,33.1,32.9,7.2$; IR (thin film) $3029,2860,1727,1455,1218,1100 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$294.1705, found 294.1700.

II. Synthesis of $\boldsymbol{\alpha}$-Hydroxy Acids

Procedure for the Formation of $\boldsymbol{\alpha}$-Hydroxy Acids: Silacyclopropane $\mathbf{5}$ (1.25-1.65 equiv) was added to a solution of the α-keto ester (1.0 equiv) in toluene (0.1 M) inside an inert atmosphere glove box. Upon cooling to $-24^{\circ} \mathrm{C}$, silver tosylate ($10 \mathrm{~mol} \%$) was added, and the reaction mixture was kept at $-24^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was removed from the glove box and warmed to ambient temperature under nitrogen atmosphere over 1 h , then $\mathrm{HF} \cdot \operatorname{Pyr}(70 \% \mathrm{HF}$ solution in pyridine, 4.0 equiv of HF$)$ was added. After an additional 1 h , the reaction mixture was diluted with 20 mL of saturated aqueous NaHCO_{3} and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The aqueous layer was then acidified to pH 1 with 1 M aqueous HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to provide pure products.

3
2-hydroxy-2-phenylpent-4-enoic acid (3). The general transfer procedure was performed on $\mathbf{1}(0.190 \mathrm{~g}, 1.00$ $\mathrm{mmol})$, silacyclopropane $5(0.277 \mathrm{~g}, 1.40 \mathrm{mmol})$, and AgOTs ($0.028 \mathrm{~g}, 0.10 \mathrm{mmol}$) to give $3(0.092 \mathrm{~g}, 48 \%)$ as a white solid: mp $100^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.81$ (ddt, $J=$ $17.2,10.1,7.2,1 H), 5.23(\mathrm{dd}, J=17.2,1.3,1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.2,1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.0,7.4,1 \mathrm{H}), 2.81(\mathrm{dd}, J$ $=14.1,6.9,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.0,140.2,131.7,128.4,128.2,125.5,120.4,77.8,44.1$; IR (thin film) 3435 (br), 3062, 2981, 1713, 1449, 1229, $1189 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{3}(\mathrm{M}+$ $\mathrm{Na})^{+}$215.0684, found 215.0683. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 68.74 ; \mathrm{H}, 6.29$. Found: C, 68.48; H, 6.21.

7a

2-Hydroxy-2-methyl-3-phenylpent-4-enoic acid (7a). The general transfer procedure was performed on 6a $(0.204 \mathrm{~g}, 1.00 \mathrm{mmol})$, silacyclopropane $5(0.287 \mathrm{~g}, 1.45 \mathrm{mmol})$, and AgOTs ($0.028 \mathrm{~g}, 0.10 \mathrm{mmol}$) to give 7 a
$(0.126 \mathrm{~g}, 62 \%)$ as a light yellow oil, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{dt}, J=17.0,10.0,1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.2,1.7,1 \mathrm{H}), 5.27(\mathrm{dd}, J=$ $17.0,1.1,1 \mathrm{H}), 3.64(\mathrm{~d}, J=9.8,1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.2,139.6,135.6,128.8$, $128.7,127.5,119.1,77.5,57.9,24.7$; IR (thin film) 3450 (br), 3064, 2983, 1713, 1455, $1148 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$229.0841, found 229.0844. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 69.88 ; \mathrm{H}, 6.84$. Found: C, 69.70; H, 6.80.

7b
2-Ethyl-2-hydroxy-3-phenylpent-4-enoic acid (7b). The general transfer procedure was performed on $\mathbf{6 b}$ $(0.050 \mathrm{~g}, 0.23 \mathrm{mmol})$, silacyclopropane $5(0.072 \mathrm{~g}, 1.6 \mathrm{mmol})$, and AgOTs ($0.006 \mathrm{~g}, 0.02 \mathrm{mmol}$) to give 7b $(0.038 \mathrm{~g}, 84 \%)$ as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.26(\mathrm{dt}, J=17.0,10.0,1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.2,1.7,1 \mathrm{H}), 5.19$ $(\mathrm{dd}, J=17.1,1.1,1 \mathrm{H}), 3.57(\mathrm{~d}, J=9.8,1 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}) $\delta 180.8,139.8,135.9,128.8,128.6,127.4,118.7,80.7,57.9,30.7,8.3$; IR (thin film) 3460 (br), 2973, 1710, 1231, $1135 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$243.0997, found 243.0995. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 70.89; H, 7.32. Found: C, 70.80; H, 7.39.

7c

2-Hydroxy-2-isopropyl-3-phenylpent-4-enoic acid (7c). The general transfer procedure was performed on $\mathbf{6 c}$ $(0.232 \mathrm{~g}, 1.00 \mathrm{mmol})$, silacyclopropane $5(0.287 \mathrm{~g}, 1.45 \mathrm{mmol})$, and AgOTs $(0.028 \mathrm{~g}, 0.10 \mathrm{mmol})$ to give 7c $(0.127 \mathrm{~g}, 54 \%)$ as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $125{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{dt}, J=16.9,9.8,1 \mathrm{H}), 5.22(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=9.6,1 \mathrm{H})$, 2.12 (septet, $J=6.9,1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.3$, $140.0,135.8,129.0,128.3,127.0,118.0,82.4,54.0,34.6,17.2,16.9$; IR (thin film) 3489 (br), 2973, 1706, 1231, 1140, $1073 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$257.1154, found 257.1159. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 71.77; H, 7.74. Found: C, 71.47; H, 7.70.

7d
2-tert-Butyl-2-hydroxy-3-phenylpent-4-enoic acid (7d). The general transfer procedure was performed on $\mathbf{6 d}$ ($0.246 \mathrm{~g}, 1.00 \mathrm{mmol}$), silacyclopropane $5(0.287 \mathrm{~g}, 1.45 \mathrm{mmol})$, and AgOTs ($0.028 \mathrm{~g}, 0.10 \mathrm{mmol}$) to give 7d ($0.115 \mathrm{~g}, 47 \%$) as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): $\mathrm{mp} 123{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, acetone- d_{6}) $\delta 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.25(\mathrm{ddd}, J=15.8,8.1,6.3,1 \mathrm{H})$, $2.76(\mathrm{dd}, J=13.6,8.2,1 \mathrm{H}), 2.56(\mathrm{ddd}, J=13.6,6.2,0.9,1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta$ 176.2, 137.9, 133.3, 128.6, 127.2, 126.2, 125.7, 81.8, 37.3, 36.9, 25.3; IR (thin film) 3435 (br), 2960, 1702, 1368, 1212, $1106 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$271.1310, found 271.1317. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, $72.55 ; \mathrm{H}, 8.12$. Found: C, $72.33 ; \mathrm{H}, 8.08$.

$7 e$

2-Hydroxy-2,3-diphenylpent-4-enoic acid (7e). The general transfer procedure was performed on $\mathbf{6 e}(0.266 \mathrm{~g}$, $1.00 \mathrm{mmol})$, silacyclopropane $5(0.277 \mathrm{~g}, 1.40 \mathrm{mmol})$, and AgOTs $(0.028 \mathrm{~g}, 0.10 \mathrm{mmol})$ to give $7 \mathrm{e}(0.189 \mathrm{~g}$, 71%) as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$) $\delta 7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{ddd}, J=17.2,10.4,8.6,1 \mathrm{H}), 4.84-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=8.6,1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR $(125$ MHz , acetone- d_{6}) $\delta 174.8,141.7,140.8,137.4,130.1,128.5,128.01,127.98,127.5,126.9,126.8,116.8,80.7$, 57.6; IR (thin film) 3423, 3064 (br), 3029, 1721, 1694, 1449, $1100 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$291.0997, found 291.1000. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 76.10; H, 6.01. Found: C, 75.82; H, 6.19.

7f

2-Hydroxy-3-methyl-2-phenylpent-4-enoic acid (7f). The general transfer procedure was performed on $\mathbf{6 f}$ $(0.204 \mathrm{~g}, 1.00 \mathrm{mmol})$, silacyclopropane $5(0.287 \mathrm{~g}, 1.45 \mathrm{mmol})$, and AgOTs ($0.028 \mathrm{~g}, 0.10 \mathrm{mmol}$) to give 7 f $(0.126 \mathrm{~g}, 62 \%)$ as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{ddd}, J=17.5,10.6,7.2,1 \mathrm{H}), 4.98$ (d, $J=8.4,1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.26$ (quintet, $J=6.7,1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $179.0,139.8,137.2,128.3,128.0,126.0,117.1,80.5,45.1,14.5$; IR (thin film) 3481 (br), 3072, 2977, 1706, 1449, 1241, 1192, $1135 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$229.0841, found 229.0841. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 69.88; H, 6.84. Found: C, 69.49; H, 6.93.

79
2-Hydroxy-2-phenyl-3-vinylheptanoic acid (7g). The general transfer procedure was performed on $\mathbf{6 g}$ (0.150 $\mathrm{g}, 0.609 \mathrm{mmol})$, silacyclopropane $5(0.174 \mathrm{~g}, 1.45 \mathrm{mmol})$, and AgOTs $(0.017 \mathrm{~g}, 0.061 \mathrm{mmol})$ to give $7 \mathrm{~g}(0.110$ $\mathrm{g}, 72 \%$) as a white solid with $98: 2$ diastereoselectivity (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 3 \mathrm{H}), 5.45(\mathrm{dt}, J=17.1,10.1,1 \mathrm{H}), 4.94(\mathrm{dd}, J$ $=10.3,1.8,1 \mathrm{H}), 4.82(\mathrm{dd}, J=17.3,1.6,1 \mathrm{H}), 2.96(\mathrm{t}, J=9.6,1 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.18(\mathrm{~m}, 5 \mathrm{H}), 0.89$ $(\mathrm{t}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,140.2,136.0,128.3,128.0,126.3,119.0,81.3,52.1$, 29.8, 29.3, 22.7, 14.2; IR (thin film) 3450 (br), $3074,2958,2933,1706,1449,1131 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}-\mathrm{H})^{-} 247.1334$, found 247.1333. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12. Found: C, 72.53; H, 8.14.

7h
3-((tert-Butyldimethylsilyloxy)methyl)-2-hydroxy-2-phenylpent-4-enoic acid (7h). The general transfer procedure was performed on $\mathbf{6 h}(0.100 \mathrm{~g}, 0.299 \mathrm{mmol})$, silacyclopropane $5(0.071 \mathrm{~g}, 0.36 \mathrm{mmol})$, and AgOTs $(0.008 \mathrm{~g}, 0.03 \mathrm{mmol})$. The reaction mixture was concentrated in vacuo and purified by column chromatography (80:18:2 hexanes:EtOAc:AcOH) to give $7 \mathrm{~h}(0.071 \mathrm{~g}, 71 \%)$ as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $91-93{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}$, 3 H), 5.72 (ddd, $J=17.4,10.5,8.5,1 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{dd}, J=10.3,3.1,1 \mathrm{H}), 3.92(\mathrm{dd}, J=10.3,3.8$, $1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,139.4,133.5,128.4,128.1$, $125.8,119.3,81.6,66.1,50.7,25.9,18.3,-5.6,-5.7$; IR (thin film) $3529,2950,2931,2858,1698,1259,1098$ cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}-\mathrm{H})^{-}$335.1679, found 335.1672.

7i
3-(2-(benzyloxy)ethyl)-2-Ethyl-2-hydroxypent-4-enoic acid (7i). The general transfer procedure was performed on $6 \mathbf{i}(0.050 \mathrm{~g}, 0.18 \mathrm{mmol})$, silacyclopropane $5(0.061 \mathrm{~g}, 0.31 \mathrm{mmol})$, and $\mathrm{AgOTs}(0.005 \mathrm{~g}, 0.02$ mmol) to give $7 \mathbf{i}(0.038 \mathrm{~g}, 75 \%)$ as a white solid, single diastereomer (as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $81-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{dt}, J=17.2,10.1,1 \mathrm{H})$, $5.18(\mathrm{dd}, J=10.2,1.8,1 \mathrm{H}), 5.06(\mathrm{dd}, J=17.2,1.7,1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.8,1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.8,1 \mathrm{H})$, $3.63-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{td}, J=10.3,3.2,1 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{t}, J=7.4,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.8,137.3,136.0,128.7,128.4,128.2,119.5,79.8,73.4,68.0,48.3,31.0$, 29.4, 8.0; IR (thin film) 3438 (br), 2971, 2937, 2879, 1719, $1237 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}$279.1596, found 279.1588. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 69.04 ; \mathrm{H}, 7.97$. Found: C, 69.07; H, 7.98.

III. Chiral α-Keto Ester Synthetic Intermediates and Products

S-1
Lactate S-1. (S)-2-(tert-Butyldiphenylsilyloxy)propanoic acid ${ }^{2}$ ($0.20 \mathrm{~g}, 0.61 \mathrm{mmol}$) was added to 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by oxalyl chloride ($0.058 \mathrm{~mL}, 0.67 \mathrm{mmol}$) and DMF (1 drop). After stirring for 11 h , pyridine $(0.072 \mathrm{~mL}, 0.91 \mathrm{mmol})$ and (S, E)-oct-3-en-2-ol${ }^{3}(0.097 \mathrm{~g}, 0.76 \mathrm{mmol}$, ee $>97 \%$ as determined by chiral GC) were then added. After 3 h , the reaction mixture was diluted with 15 mL of aqueous saturated ammonium chloride and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resultant yellow oil was purified by column chromatography ($20: 1$ hexanes:EtOAc) to give $\mathbf{S - 1}(0.106 \mathrm{~g}, 40 \%)$ as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}-55.3\left(c 5.29, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-$ $7.69(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.71-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{ddt}, J=15.3,6.9,1.3,1 \mathrm{H}), 5.27$ (pentet, $J=6.5$,
$1 \mathrm{H}), 4.28(\mathrm{q}, J=6.7,1 \mathrm{H}), 2.02(\mathrm{q}, J=6.6,2 \mathrm{H}), 1.39(\mathrm{~d}, J=6.7,3 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4,3 \mathrm{H})$, $1.13(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,136.2,136.0,134.0,133.8,133.5$, 129.96, 129.95, 129.5, 127.9, 127.8, 71.8, 69.3, 32.1, 31.3, 27.1, 22.4, 21.5, 20.5, 19.5, 14.1; IR (thin film) 3074, 2960, 2933, 2860, 1750, $1428 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 456.2934$, found 456.2936. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$: C, 73.92; H, 8.73. Found: C, 73.97; H, 8.89.

S-2
(S)-((S,E)-oct-3-en-2-yl) 2-Hydroxypropanoate (S-2). To a cooled solution ($-20^{\circ} \mathrm{C}$) of S-1 (1.77 g, 4.03 mmol) in 40 mL THF was added $n-\mathrm{Bu}_{4} \mathrm{NF}(6.05 \mathrm{~mL}$ of a 1 M solution in THF, 6.05 mmol) dropwise. After 48 $\mathrm{h}, 10 \mathrm{~mL}$ of aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the reaction mixture was warmed to room temperature. ${ }^{4}$ The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resultant oil was purified by column chromatography (5:1 hexanes:EtOAc) affording $\mathbf{S - 2}(0.597 \mathrm{~g}, 74 \%)$ as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}-67.2\left(c 3.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=4.4,1 \mathrm{H}), 2.01(\mathrm{q}, J=$ $7.0,2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.88(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1$, $134.2,128.8,77.8,66.8,31.8,31.0,22.1,20.39,20.35,13.9$; IR (thin film) 3464 (br), 2958, 2929, 2858, 1735, 1214, $1129 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 223.1310$, found 223.1302. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 65.97; H, 10.07. Found: C, 65.77; H, 10.21.

13
(S,E)-Oct-3-en-2-yl 2-oxopropanoate (13). To S-2 ($0.50 \mathrm{~g}, 2.5 \mathrm{mmol}$) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added pyridine ($1.0 \mathrm{~mL}, 12 \mathrm{mmol}$) followed by Dess-Martin periodinane $(1.6 \mathrm{~g}, 3.7 \mathrm{mmol}) .{ }^{5}$ After 3 h , the reaction mixture was diluted with 15 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resultant oil was purified by column chromatography ($5: 1$ hexanes: EtOAc) to give $13\left(0.23 \mathrm{~g}, 84 \%\right.$) as a pale yellow oil: $[\alpha]^{23}{ }_{\mathrm{D}}-32.9(c$ $\left.1.70, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79(\mathrm{td}, J=6.7,15.0,1 \mathrm{H}), 5.50(\mathrm{ddt}, J=15.1,7.3,1.3,1 \mathrm{H}), 5.42$ (quintet, $J=6.5,1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{q}, J=6.8,2 \mathrm{H}), 1.42-1.23(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.6,160.4,135.6,128.3,74.5,32.0,31.1,26.9,22.4,20.5,14.1$; IR (thin film) 2960 , 2933, 2861, 1725, 1430, 1295, $1144 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 221.1154$, found 221.1148. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 66.64; H, 9.15. Found: C, 66.92; H, 9.08.

14
$\boldsymbol{\alpha}$-Hydroxy acid 14. The general transfer procedure was performed on $\mathbf{1 3}(0.498 \mathrm{~g}, 2.51 \mathrm{mmol})$,
silacyclopropane $5(0.871 \mathrm{~g}, 4.40 \mathrm{mmol})$, and $\mathrm{AgOTs}(0.07 \mathrm{~g}, 0.3 \mathrm{mmol})$ to give $14(0.389 \mathrm{~g}, 77 \%, 97 \%$ ee based on HPLC data on the derived benzyl ester, absolute and relative stereochemistry determined from phenylethylamine salt vida infra) as a white solid: mp $105{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+10.6\left(c 0.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{ddd}, J=15.3,9.7,1.5,1 \mathrm{H}), 2.23(\mathrm{t}, J=10.2,1 \mathrm{H}), 1.73(\mathrm{dd}, J=6.4$, $1.4,3 \mathrm{H}), 1.43-1.09(\mathrm{~m}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.2,130.3,129.2,51.4$, 29.9, 29.3, 24.6, 22.7, 18.3, 14.2; IR (thin film) 3440 (br), 2958, 2933, 2860, 1717, 1453, $1239 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$223.1310, found 223.1301. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 65.97; H , 10.07. Found: C, 65.91 ; H, 10.09 .

S-3
(2S,3R)-3-(Benzyloxy)-2-(tert-Butyldimethylsilyloxy)butanoic acid (S-3). (2S,3R)-3-(benzyloxy)-2hydroxybutanoic acid $^{6}(0.61 \mathrm{~g}, 2.9 \mathrm{mmol})$ was combined with imidazole $(0.40 \mathrm{~g}, 5.8 \mathrm{mmol})$ and tertbutyldimethylsilyl chloride ($1.7 \mathrm{~g}, 11 \mathrm{mmol}$) in 2 mL of DMF. ${ }^{7}$ The reaction mixture was stirred overnight then diluted with 50 mL of $1: 1 \mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}$. This solution was washed with 15 mL of 10% aqueous citric acid, 15 mL of $\mathrm{H}_{2} \mathrm{O}$, and 15 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was then concentrated in vacuo, and dilute with in 20 mL of $\mathrm{MeOH} . \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 6 mL of $\mathrm{H}_{2} \mathrm{O}$ was then added dropwise. After stirring for 16 h , the solution was concentrated, diluted with 20 mL of $\mathrm{H}_{2} \mathrm{O}$, and acidified with 10% aqueous citric acid (about 15 mL) to pH 2 . The mixture was then extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), the organic layers were combined, dried with MgSO_{4}, and concentrated in vacuo to give a viscous oil which was purified by column chromatography (80:18:2 hexanes:EtOAc:AcOH) to give S-3 ($0.83 \mathrm{~g}, 88 \%$) as a colorless oil. S-3 decomposed rapidly and was carried on to the next synthetic step immediately after isolation: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~d}, J=11.6,1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.6,1 \mathrm{H}), 4.10(\mathrm{~d}, J=3.0,1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 1 \mathrm{H}), 1.31$ $(\mathrm{d}, J=6.4,3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,137.5,128.7,128.3,128.1$, $75.1,73.6,71.6,25.8,18.3,15.6,-3.4$; IR (thin film) 3355 (br), 2971, $1380,1129 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}-\mathrm{H})^{-} 323.1679$, found 323.1688 .

S-4
(2S,3R)-Cinnamyl 3-(benzyloxy)-2-(tert-butyldimethylsilyloxy)butanoate (S-4). To a solution of S-3 (1.89 $\mathrm{g}, 5.83 \mathrm{mmol}$) in 58 mL of benzene, were added cinnamyl alcohol ($0.601 \mathrm{~g}, 4.49 \mathrm{mmol}$), triethylamine (1.68 $\mathrm{mL}, 12.1 \mathrm{mmol})$ and DMAP $(0.680 \mathrm{~g}, 5.57 \mathrm{mmol})^{7}$ After stirring for $30 \mathrm{~min}, 2,4,6$-trichlorobenzoyl chloride $(1.43 \mathrm{~mL}, 9.15 \mathrm{mmol})$ was added dropwise. After stirring for 16 h , the solution was diluted with 20 mL of 10% aqueous citric acid and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an oil which was purified by column chromatography (20:1 hexanes:EtOAc) to give $\mathbf{S}-4(1.08 \mathrm{~g}, 54 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}^{23}-12.6\left(c 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.67(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.26(\mathrm{dt}, J=15.9,6.5,1 \mathrm{H}), 4.78(\mathrm{dt}, J=6.5,1.5,2 \mathrm{H})$, $4.65(\mathrm{~d}, J=12.0,1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0,1 \mathrm{H}), 4.27(\mathrm{~d}, J=4.6,1 \mathrm{H}), 3.88(\mathrm{dq}, J=6.4,4.7,1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4$, $3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,138.8,136.4,134.8,128.5$, $128.0,126.8,123.1,76.5,76.3,71.5,65.6,26.0,18.7,15.9,-4.7,-5.0$; IR (thin film) 2954, 2858, 1752, 1254,

1162, $1123 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 458.2727$, found 458.2735. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$: C, 70.87; H, 8.23. Found: C, 71.20 ; H, 8.27.

(2S,3R)-Cinnamyl 3-(benzyloxy)-2-hydroxybutanoate (S-5). S-4 ($0.624 \mathrm{~g}, 1.42 \mathrm{mmol}$) was added to 15 mL of THF and cooled to $-20^{\circ} \mathrm{C}$. After stirring for $30 \mathrm{~min}, n-\mathrm{Bu} \mathrm{u}_{4} \mathrm{NF}(2.12 \mathrm{~mL}$ of a 1 M solution in THF, 2.12 mmol) was added dropwise. After $48 \mathrm{~h}, 5 \mathrm{~mL}$ of aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the reaction mixture was warmed to room temperature. ${ }^{4}$ The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resultant oil was purified by column chromatography ($5: 1$ hexanes:EtOAc) to give $\mathbf{S - 5}(0.303 \mathrm{~g}, 66 \%)$ as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}-62.9(c 0.781$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.65(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.22(\mathrm{dt}, J=15.9,6.6,1 \mathrm{H})$, 4.83 (ddd, $J=12.6,6.7,1.1,1 \mathrm{H}), 4.75$ (ddd, $J=12.6,6.6,1.2,1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.9,1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.9$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.4,2.3,1 \mathrm{H}), 3.98(\mathrm{qd}, J=6.4,2.3,1 \mathrm{H}), 2.95(\mathrm{~d}, J=8.4,1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,138.2,136.2,135.4,128.9,128.6,128.5,127.9,126.9,122.6,75.3,74.7,71.1$, 66.4, 15.8; IR (thin film) 3489 (br), 3029, 2935, 2875, 1742, 1266, $1198 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 349.1416$, found 349.1429 .

15
(\boldsymbol{R})-Cinnamyl 3-(benzyloxy)-2-oxobutanoate (17). To $\mathbf{S - 5}(0.280 \mathrm{~g}, 0.858 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added pyridine $(0.345 \mathrm{~mL}, 4.28 \mathrm{mmol})$ followed by Dess-Martin periodinane $(0.545 \mathrm{~g}, 1.28 \mathrm{mmol}) .{ }^{5}$ After 3 h , the reaction mixture was diluted with 8 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resultant oil was purified by column chromatography ($5: 1$ hexanes:EtOAc) to give $15(0.233 \mathrm{~g}, 84 \%)$ as a yellow oil: $[\alpha]^{23}{ }_{\mathrm{D}}$ $+27.3\left(c 1.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.26(\mathrm{~m}, 10 \mathrm{H}), 6.74(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.31(\mathrm{dt}, J=$ $15.9,6.7,1 \mathrm{H}), 4.94(\mathrm{ddd}, J=6.7,2.5,1.2,2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.5,1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5,162.6,137.4,136.2,136.0,128.9,128.7,128.6,128.3,128.2,127.0$, 121.6, 77.7, 72.8, 67.0, 16.8; IR (thin film) 3477 (br), 3031, 2985, 2939, 2873, 1729, $1272 \mathrm{~cm}^{-1}$; HRMS (ESI) m $/ z$ calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}+\mathrm{CH}_{3} \mathrm{OH}\right)^{+} 374.1967$, found 374.1957. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{D}_{3} \mathrm{H}_{21} \mathrm{NaO}_{5}\left(\mathrm{M}+\mathrm{Na}+\mathrm{CD}_{3} \mathrm{OH}\right)^{+} 382.1710$, found 382.1704 .

16

2-((R)-1-(Benzyloxy)ethyl)-2-Hydroxy-3-phenylpent-4-enoic acid (16). The general transfer procedure was performed on $15(0.050 \mathrm{~g}, 0.15 \mathrm{mmol})$, silacyclopropane $5(0.050 \mathrm{~g}, 1.65 \mathrm{mmol})$, and $\mathrm{AgOTs}(0.004 \mathrm{~g}, 0.02$ $\mathrm{mmol})$ to give $16\left(0.032 \mathrm{~g}, 63 \%, 80 \%\right.$ diastereoselectivity as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The
product is predominantly one diastereomer, but 20% of other compounds can be observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. These materials are likely to be isomers because the compound exhibits satisfactory elementary analysis.) as a viscous light yellow oil. The relative stereochemistry of the product was assigned based upon analogies to similar systems, as described in the text: ${ }^{1} \mathrm{H}$ NMR major diastereomer $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-$ $7.24(\mathrm{~m}, 10 \mathrm{H}), 6.36(\mathrm{td}, J=10.0,17.1,1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.1,1.7,1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.1,1.2,1 \mathrm{H}), 4.81(\mathrm{~d}, J$ $=10.9,1 \mathrm{H}), 4.55(\mathrm{~d}, J=10.9,1 \mathrm{H}), 4.06(\mathrm{q}, J=6.3,1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.7,1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9,138.9,136.7,136.1,129.1,128.9,128.80,128.76,128.7,128.4,127.7,118.8,81.2$, $76.4,72.3,54.0,14.0$; IR (thin film) 3460 (br), 3006, 2917, 1710, $1420,1360 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 349.1416$, found 349.1414. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 73.60 ; \mathrm{H}, 6.79$. Found: C, 73.24; H, 6.85.

IV. α-Imino Ester Synthesis and Silylene Transfer

17
Cinnamyl 2-(4-methoxyphenylimino)acetate (17). To a solution of anisidine ($0.073 \mathrm{~g}, 0.60 \mathrm{mmol}$) in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added cinnamyl 2-oxoacetate (obtained as a mixture of aldehyde, hydrate, and hydrate oligomers ${ }^{8}$, $0.136 \mathrm{~g}, 0.654 \mathrm{mmol}$) and MgSO_{4} (about 0.2 g). ${ }^{9}$ After stirring for 2 h , the reaction mixture was filtered and concentrated in vacuo to give $17(0.172 \mathrm{~g}, 98 \%)$ as a yellow-green solid: mp $76-81^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.41(\mathrm{dt}, J=15.9,6.6$, $1 \mathrm{H}), 5.01(\mathrm{dd}, J=6.6,1.0,2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,160.9,147.9,141.5,136.3$, 135.7, 128.9, 128.6, 127.0, 124.0, 122.6, 114.8, 66.6, 55.8; IR (thin film) $3054,2919,2840,1740,1717,1590$ cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 318.1106$, found 318.1096.

Azasilalactone (18). The general transfer procedure was performed on 17 ($0.082 \mathrm{~g}, 0.28 \mathrm{mmol}$), silacyclopropane $5(0.079 \mathrm{~g}, 0.40 \mathrm{mmol})$, and AgOTs $(0.008 \mathrm{~g}, 0.03 \mathrm{mmol})$ to give $\mathbf{1 8}(0.059 \mathrm{~g}, 48 \%)$ as a tan viscous oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~s}, 4 \mathrm{H}), 6.16(\mathrm{dt}, J=16.9,9.7,1 \mathrm{H}), 5.10$ (dd, $J=10.0,1.6,1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.9,1 \mathrm{H}), 4.79(\mathrm{~d}, J=1.8,1 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,154.9,141.8,137.3,128.9,128.7,128.6,127.0,121.5,118.8,115.2$, $67.2,55.8,52.0,28.5,27.3,24.1,21.5$; IR (thin film) 2937, 2861, 1766, 1509, 1474, $1243 \mathrm{~cm}^{-1}$; HRMS (ESI) m $/ z$ calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 460.2284$, found 460.2275 .

Silyl ketene acetal (12). Ethyl pyruvate ($0.022 \mathrm{~g}, 0.19 \mathrm{mmol}$) was added to a solution of silirane $5(0.045 \mathrm{~g}$, $0.23 \mathrm{mmol})$ in benzene- $d_{6}(0.65 \mathrm{~mL})$. The solution was left under an inert atmosphere for several minutes before the addition of AgOTs $(0.005 \mathrm{~g}, 0.02 \mathrm{mmol})$. This reaction was performed to determine the viability of 12 as an intermediate; no product was collected: ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}) $\delta 3.89(\mathrm{q}, J=5.7,2 \mathrm{H}), 1.98$ ($\mathrm{s}, 3 \mathrm{H}$), 1.16-1.14 (m, 21H); ${ }^{29} \mathrm{Si}$ NMR (100 MHz , benzene- d_{6}) $\delta 14.2$.

V. References

(1) Driver, T. G.; Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 6524-6525.
(2) Harris, J. M.; O'Doherty, G. A. Tetrahedron Lett. 2002, 43, 8195-8199.
(3) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780.
(4) Nicewicz, D. A.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 6170-6171.
(5) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
(6) Deechongkit, S.; You, S. L.; Kelly, J. W. Org. Lett. 2004, 6, 497-500.
(7) Díez, E.; Dixon, D. J.; Ley, S. V.; Polara, A.; Rodríguez, F. Helv. Chim. Acta. 2003, 86, 3717-
3729.
(8) Spaller, M. R.; Thielemann, W. T.; Brennan, P. E.; Bartlett, P. A. J. Comb. Chem. 2002, 4, 516522.
(9) Cozzi, F.; Annunziata, R.; Cinquini, M.; Poletti, L.; Perboni, A.; Tamburini, B. Chirality 1998, 10, 91-94.

VI. X-Ray Crystallographic Data

SI-6

Phenylethylamine Salt (SI-6): To a solution of $\mathbf{1 4}(0.050 \mathrm{mg}, 0.25 \mathrm{mmol})$ in benzene (2 mL) was added Sphenylethylamine ($0.030 \mathrm{mg}, 0.25 \mathrm{mmol}$). The mixture was left at $4^{\circ} \mathrm{C}$ for 21 d , at which point crystals had formed and were submitted for X-ray crystallographic analysis.

X-ray Data Collection, Structure Solution and Refinement for SI-6.
A colorless crystal of approximate dimensions $0.14 \times 0.19 \times 0.35 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection ($40 \mathrm{sec} /$ frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS^{3} to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was $2 / m$ and the systematic absences were consistent with the monoclinic space groups $P 2_{1}$ and $P 2_{1} / m$. It was later determined that the noncentrosymmetric space group $P 2_{1}$ was correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were either located from a difference-Fourier map and refined (x, y, z and $U_{i s o}$) or were included using a riding model. There were two molecules of the formula unit present $(Z=4)$.

Least-squares analysis yielded wR2 $=0.1698$ and GOF $=1.050$ for 434 variables refined against 5903 data $(0.85 \AA), \mathrm{R} 1=0.0597$ for those 4209 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. The absolute structure could not be assigned by inversion of the model or by refinement of the Flack parameter. ${ }^{6}$ Although the quality of the structure was not high, the data establishes the relative stereochemistry between the acid and the amine.

References.

1. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
2. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
3. Sheldrick, G. M. SADABS Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
4. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
6. Flack, H. D. Acta. Cryst. 1983, A39, 876-881.

Definitions:
$\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$
$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for SI-6.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
kaw 109 (Brett Howard)
$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{3}$
321.45

153(2) K
$0.71073 \AA$
Monoclinic
$P 2_{1}$
$\mathrm{a}=17.558(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=5.4049(9) \AA \quad \beta=92.475(3)^{\circ}$.
$\mathrm{c}=20.711(3) \AA \quad \gamma=90^{\circ}$.

Volume
 1963.6(6) \AA^{3}

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal color
Crystal size
Theta range for data collection
Index ranges
4
$1.087 \mathrm{Mg} / \mathrm{m}^{3}$
$0.072 \mathrm{~mm}^{-1}$
704
colorless
$0.35 \times 0.19 \times 0.14 \mathrm{~mm}^{3}$

Reflections collected
1.49 to 24.79°

Independent reflections
Completeness to theta $=24.79^{\circ}$
$-20 \leq h \leq 20,-6 \leq k \leq 6,-24 \leq l \leq 23$

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
12061

Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I) $=4209$ data $]$
R indices (all data; 0.85A)
Absolute structure parameter
$5903[\mathrm{R}(\mathrm{int})=0.0366]$
99.4 \%

Semi-empirical from equivalents
0.9899 and 0.9751

Full-matrix least-squares on F^{2}

Extinction coefficient
5903 / 1 / 434
1.050

Largest diff. peak and hole
$\mathrm{R} 1=0.0597, \mathrm{wR} 2=0.1453$
$R 1=0.0945, w R 2=0.1698$
-0.8(15)
$0.005(2)$
0.392 and -0.255 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for SI-6. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	1343(1)	9490(5)	526(1)	38(1)
$\mathrm{O}(2)$	887(1)	5696(5)	425(1)	35(1)
$\mathrm{O}(3)$	2276(2)	3699(6)	360(2)	74(1)
$\mathrm{N}(1)$	-3(1)	11643(5)	688(1)	26(1)
C(1)	1430(2)	7213(7)	505(2)	26(1)
C(2)	2236(2)	6164(7)	607(2)	39(1)
C(3)	2806(2)	7673(7)	219(2)	32(1)
C(4)	2426(2)	6257(13)	1331(2)	71(2)
C(5)	2589(2)	7671(8)	-505(2)	35(1)
C(6)	3015(2)	9559(8)	-892(2)	36(1)
C(7)	2780(2)	9619(9)	-1605(2)	45(1)
C(8)	3174(3)	11607(10)	-1983(2)	62(1)
C(9)	3608(2)	6731(8)	345(2)	35(1)
C(10)	4182(2)	8080(8)	581(2)	39(1)
$\mathrm{C}(11)$	4976(2)	7147(10)	722(2)	52(1)
C(12)	-440(2)	11092(7)	1270(2)	29(1)
C(13)	104(2)	11229(7)	1865(2)	35(1)
C(14)	105(3)	13202(9)	2278(2)	62(1)
C(15)	626(3)	13328(11)	2815(2)	73(2)
C(16)	1137(3)	11548(10)	2921(2)	64(1)
C(17)	1175(3)	9617(11)	2514(2)	67(1)
C(18)	657(2)	9416(10)	1980(2)	57(1)
C(19)	-826(2)	8580(7)	1179(2)	36(1)
$\mathrm{O}(4)$	3692(1)	8360(5)	4564(1)	31(1)
$\mathrm{O}(5)$	4018(1)	4387(4)	4630(1)	29(1)
$\mathrm{O}(6)$	2657(2)	2772(5)	4218(2)	49(1)
N(2)	5021(1)	10580(5)	4332(1)	25(1)
C(20)	3547(2)	6104(7)	4506(2)	27(1)
C(21)	2736(2)	5369(6)	4261(2)	30(1)
C(22)	2166(2)	6429(7)	4735(2)	34(1)
C(23)	2594(2)	6460(8)	3588(2)	36(1)
C(24)	2323(2)	5433(11)	5426(2)	59(1)
C(25)	1901(2)	6730(17)	5936(2)	93(2)

$\mathrm{C}(26)$	$2064(3)$	$5730(30)$	$6619(3)$	$176(6)$
$\mathrm{C}(27)$	$1623(4)$	$5980(30)$	$7053(3)$	$207(8)$
$\mathrm{C}(28)$	$1352(2)$	$5913(8)$	$4525(2)$	$38(1)$
$\mathrm{C}(29)$	$821(2)$	$7588(9)$	$4418(2)$	$50(1)$
$\mathrm{C}(30)$	$-2(2)$	$7078(13)$	$4227(2)$	$73(2)$
$\mathrm{C}(31)$	$5431(2)$	$9915(7)$	$3742(2)$	$31(1)$
$\mathrm{C}(32)$	$5012(2)$	$10820(7)$	$3136(2)$	$33(1)$
$\mathrm{C}(33)$	$5429(3)$	$11399(8)$	$2608(2)$	$48(1)$
$\mathrm{C}(34)$	$5075(3)$	$12157(10)$	$2035(2)$	$67(1)$
$\mathrm{C}(35)$	$4289(3)$	$12369(11)$	$1995(2)$	$70(2)$
$\mathrm{C}(36)$	$3866(3)$	$11814(11)$	$2511(2)$	$64(1)$
$\mathrm{C}(37)$	$4229(2)$	$11021(9)$	$3089(2)$	$46(1)$
$\mathrm{C}(38)$	$5579(2)$	$7152(8)$	$3740(2)$	$42(1)$

Table 3. Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for SI-6.

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.241(4)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.262(4)$
$\mathrm{O}(3)-\mathrm{C}(2)$	$1.430(5)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.487(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.532(5)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.523(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.544(5)$
$\mathrm{C}(3)-\mathrm{C}(9)$	$1.508(4)$
$\mathrm{C}(3)-\mathrm{C}(5)$	$1.531(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.516(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.515(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.515(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.321(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.500(5)$
$\mathrm{C}(12)-\mathrm{C}(19)$	$1.526(5)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.527(5)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.368(6)$
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.392(6)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.411(6)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.326(7)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.308(6)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.345(7)$
$\mathrm{O}(4)-\mathrm{C}(20)$	$1.405(6)$
$\mathrm{O}(5)-\mathrm{C}(20)$	$1.251(4)$
$\mathrm{O}(6)-\mathrm{C}(21)$	$1.262(4)$
$\mathrm{N}(2)-\mathrm{C}(31)$	$1.413(5)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.488(4)$
$\mathrm{C}(21)-\mathrm{C}(23)$	$1.543(4)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.523(5)$
$\mathrm{C}(22)-\mathrm{C}(28)$	$1.502(5)$
$\mathrm{C}(22)-\mathrm{C}(24)$	C
$\mathrm{C}(24)-\mathrm{C}(25)$	$\mathrm{C}(25)-\mathrm{C}(26)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$\mathrm{C}(29)-\mathrm{C}(30)$
$\mathrm{C}(29)$	$1.59)$
C	

$\mathrm{C}(31)-\mathrm{C}(32)$	$1.509(5)$
$\mathrm{C}(31)-\mathrm{C}(38)$	$1.516(5)$
$\mathrm{C}(32)-\mathrm{C}(37)$	$1.377(5)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.379(5)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.379(6)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.384(7)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.361(7)$
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.399(5)$

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$123.8(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.4(3)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.8(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$111.8(4)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$110.7(3)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$106.6(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	$105.3(3)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	$112.1(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110.4(3)$
$\mathrm{C}(9)-\mathrm{C}(3)-\mathrm{C}(5)$	$111.1(3)$
$\mathrm{C}(9)-\mathrm{C}(3)-\mathrm{C}(2)$	$110.6(3)$
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(2)$	$111.7(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)$	$114.2(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$114.2(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$114.1(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(3)$	$124.7(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$125.1(4)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(19)$	$108.7(3)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$108.5(3)$
$\mathrm{C}(19)-\mathrm{C}(12)-\mathrm{C}(13)$	$113.7(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$117.3(4)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$121.7(4)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.8(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.9(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120.4(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.7(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.3(5)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.2(5)$
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{O}(5)$	$124.6(3)$

$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(21)$	$117.6(3)$
$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(21)$	$117.7(3)$
$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{C}(23)$	$108.4(3)$
$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{C}(20)$	$111.3(3)$
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(20)$	$108.3(3)$
$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	$110.1(3)$
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(22)$	$110.7(3)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$108.0(3)$
$\mathrm{C}(28)-\mathrm{C}(22)-\mathrm{C}(24)$	$109.5(3)$
$\mathrm{C}(28)-\mathrm{C}(22)-\mathrm{C}(21)$	$112.4(3)$
$\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(21)$	$111.5(3)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(22)$	$114.8(4)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$114.2(6)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$122.9(7)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(22)$	$125.5(4)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$125.8(5)$
$\mathrm{N}(2)-\mathrm{C}(31)-\mathrm{C}(32)$	$111.6(3)$
$\mathrm{N}(2)-\mathrm{C}(31)-\mathrm{C}(38)$	$109.2(3)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(38)$	$113.2(3)$
$\mathrm{C}(37)-\mathrm{C}(32)-\mathrm{C}(33)$	$119.2(3)$
$\mathrm{C}(37)-\mathrm{C}(32)-\mathrm{C}(31)$	$122.3(3)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	$118.4(3)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	$121.0(4)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$119.1(4)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	$120.8(4)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$119.7(4)$
$\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{C}(36)$	$120.1(4)$

Supporting Information: Brett E. Howard and K. A. Woerpel
Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for SI-6. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$20(1)$	$23(2)$	$71(2)$	$-2(1)$	$-3(1)$	$-1(1)$
$\mathrm{O}(2)$	$32(1)$	$35(2)$	$37(1)$	$2(1)$	$-9(1)$	$-9(1)$
$\mathrm{O}(3)$	$51(2)$	$26(2)$	$148(3)$	$14(2)$	$46(2)$	$6(2)$
$\mathrm{N}(1)$	$20(1)$	$24(2)$	$33(2)$	$-1(1)$	$-7(1)$	$1(1)$
$\mathrm{C}(1)$	$21(2)$	$27(2)$	$31(2)$	$1(2)$	$-2(1)$	$-3(2)$
$\mathrm{C}(2)$	$28(2)$	$29(2)$	$60(2)$	$10(2)$	$8(2)$	$12(2)$
$\mathrm{C}(3)$	$21(2)$	$29(2)$	$44(2)$	$0(2)$	$-3(2)$	$3(2)$
$\mathrm{C}(4)$	$28(2)$	$129(5)$	$58(3)$	$46(3)$	$2(2)$	$20(3)$
$\mathrm{C}(5)$	$19(2)$	$44(2)$	$43(2)$	$-4(2)$	$-5(2)$	$-1(2)$
$\mathrm{C}(6)$	$30(2)$	$40(2)$	$38(2)$	$-1(2)$	$-4(2)$	$-6(2)$
$\mathrm{C}(7)$	$33(2)$	$55(3)$	$48(2)$	$-2(2)$	$-5(2)$	$5(2)$
$\mathrm{C}(8)$	$71(3)$	$66(3)$	$48(2)$	$15(2)$	$3(2)$	$-1(3)$
$\mathrm{C}(9)$	$25(2)$	$42(2)$	$38(2)$	$6(2)$	$0(2)$	$9(2)$
$\mathrm{C}(10)$	$21(2)$	$49(3)$	$45(2)$	$6(2)$	$-7(2)$	$1(2)$
$\mathrm{C}(11)$	$24(2)$	$76(3)$	$56(3)$	$20(2)$	$-6(2)$	$2(2)$
$\mathrm{C}(12)$	$23(2)$	$30(2)$	$35(2)$	$0(2)$	$0(1)$	$4(2)$
$\mathrm{C}(13)$	$39(2)$	$35(2)$	$32(2)$	$3(2)$	$-4(2)$	$-6(2)$
$\mathrm{C}(14)$	$81(3)$	$47(3)$	$57(3)$	$-6(2)$	$-25(2)$	$16(3)$
$\mathrm{C}(15)$	$86(4)$	$62(3)$	$68(3)$	$-26(3)$	$-33(3)$	$5(3)$
$\mathrm{C}(16)$	$79(3)$	$54(3)$	$57(3)$	$-1(3)$	$-29(2)$	$2(3)$
$\mathrm{C}(17)$	$63(3)$	$77(4)$	$57(3)$	$2(3)$	$-25(2)$	$5(3)$
$\mathrm{C}(18)$	$52(3)$	$72(3)$	$44(2)$	$-10(2)$	$-22(2)$	$14(3)$
$\mathrm{C}(19)$	$28(2)$	$44(2)$	$36(2)$	$5(2)$	$-4(2)$	$-9(2)$
$\mathrm{O}(4)$	$19(1)$	$30(2)$	$45(1)$	$0(1)$	$-7(1)$	$-1(1)$
$\mathrm{O}(5)$	$21(1)$	$29(1)$	$36(1)$	$-2(1)$	$-10(1)$	$1(1)$
$\mathrm{O}(6)$	$30(1)$	$26(2)$	$89(2)$	$0(1)$	$-26(1)$	$-2(1)$
$\mathrm{N}(2)$	$20(1)$	$26(2)$	$28(2)$	$1(1)$	$-7(1)$	$1(1)$
$\mathrm{C}(20)$	$21(2)$	$27(2)$	$31(2)$	$-1(2)$	$-3(1)$	$2(2)$
$\mathrm{C}(21)$	$19(2)$	$26(2)$	$43(2)$	$2(2)$	$-10(2)$	$-1(1)$
$\mathrm{C}(22)$	$20(2)$	$35(2)$	$46(2)$	$6(2)$	$-5(2)$	$-7(2)$
$\mathrm{C}(23)$	$25(2)$	$46(2)$	$35(2)$	$-4(2)$	$-10(2)$	$2(2)$
$\mathrm{C}(24)$	$30(2)$	$98(4)$	$46(2)$	$24(3)$	$-10(2)$	$-6(2)$
$\mathrm{C}(25)$	$39(3)$	$197(8)$	$43(3)$	$13(4)$	$2(2)$	$-12(4)$

$\mathrm{C}(26)$	$43(3)$	$432(19)$	$53(3)$	$44(7)$	$0(3)$	$14(6)$
$\mathrm{C}(27)$	$78(5)$	$460(20)$	$83(5)$	$96(9)$	$-12(4)$	$-59(9)$
$\mathrm{C}(28)$	$22(2)$	$44(2)$	$47(2)$	$6(2)$	$-6(2)$	$-3(2)$
$\mathrm{C}(29)$	$28(2)$	$65(3)$	$56(3)$	$3(2)$	$-2(2)$	$13(2)$
$\mathrm{C}(30)$	$25(2)$	$129(5)$	$65(3)$	$0(3)$	$-7(2)$	$22(3)$
$\mathrm{C}(31)$	$27(2)$	$32(2)$	$34(2)$	$3(2)$	$3(2)$	$1(2)$
$\mathrm{C}(32)$	$38(2)$	$29(2)$	$31(2)$	$-4(2)$	$-2(2)$	$3(2)$
$\mathrm{C}(33)$	$64(3)$	$47(3)$	$33(2)$	$5(2)$	$7(2)$	$6(2)$
$\mathrm{C}(34)$	$93(4)$	$66(3)$	$42(3)$	$7(2)$	$10(2)$	$23(3)$
$\mathrm{C}(35)$	$99(4)$	$81(4)$	$29(2)$	$2(2)$	$-12(2)$	$39(3)$
$\mathrm{C}(36)$	$63(3)$	$86(4)$	$41(3)$	$-4(2)$	$-16(2)$	$26(3)$
$\mathrm{C}(37)$	$47(2)$	$59(3)$	$31(2)$	$3(2)$	$-6(2)$	$4(2)$
$\mathrm{C}(38)$	$47(2)$	$40(2)$	$40(2)$	$-1(2)$	$3(2)$	$11(2)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for SI-6.

	X	y	z	$\mathrm{U}(\mathrm{eq})$
H(4)	1970(30)	2800(110)	560(20)	78(17)
H(1)	-307	11401	327	39
H(2)	408	10622	679	39
H(3)	157	13244	702	39
H(3A)	2789	9424	374	38
H(4A)	2052	5279	1559	107
H(4B)	2411	7978	1480	107
H(4C)	2937	5576	1421	107
H(5A)	2687	6004	-681	42
H(5B)	2035	7997	-563	42
H(6A)	2932	11221	-706	44
H(6B)	3568	9197	-847	44
H(7A)	2892	7988	-1796	54
H(7B)	2222	9882	-1649	54
H(8A)	3004	11505	-2440	92
H(8B)	3727	11365	-1943	92
H(8C)	3045	13238	-1813	92
H(9A)	3706	5046	248	42
H(10A)	4084	9774	668	46
H(11A)	5338	8163	491	78
H(11B)	5013	5424	579	78
H(11C)	5097	7243	1188	78
H(12A)	-843	12383	1311	35
H(14A)	-250	14507	2203	75
H(15A)	612	14695	3102	87
H(16A)	1478	11637	3288	77
H(17A)	1555	8385	2587	80
H(18A)	683	8037	1698	68
H(19A)	-1168	8622	793	54
H(19B)	-1121	8203	1558	54
H(19C)	-438	7300	1129	54
H(8)	3020(30)	2100(130)	4360(30)	100(20)

Supporting Information: Brett E. Howard and K. A. Woerpel

H(5)	5342	10419	4686	37
H(6)	4614	9556	4369	37
H(7)	4856	12173	4300	37
H(22A)	2235	8265	4749	40
H(23A)	2989	5883	3304	54
H(23B)	2608	8270	3614	54
H(23C)	2093	5928	3413	54
H(24A)	2187	3656	5433	70
H(24B)	2876	5565	5534	70
H(25A)	1347	6592	5831	112
H(25B)	2035	8508	5930	112
H(26A)	2152	3929	6575	211
H(26B)	2555	6461	6775	211
H(27A)	1857	5332	7457	311
H(27B)	1151	5081	6945	311
H(27C)	1509	7745	7107	311
H(28A)	1210	4230	4464	45
H(29A)	969	9271	4465	59
H(30A)	-129	7852	3809	110
H(30B)	-329	7764	4555	110
H(30C)	-83	5288	4195	110
H(31A)	5937	10765	3771	37
H(33A)	5969	11274	2640	58
H(34A)	5368	12528	1671	80
H(35A)	4042	12909	1603	84
H(36A)	3327	11964	2479	77
H(37A)	3936	10621	3449	55
H(38A)	5894	6731	3377	64
H(38B)	5093	6265	3696	64
H(38C)	5846	6673	4146	64
				54

Table 6. Torsion angles [${ }^{\circ}$] for SI-6.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$-160.7(3)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$21.7(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$77.5(4)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$-100.1(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-44.5(5)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$137.9(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	$-63.4(4)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	$58.4(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	$177.1(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$61.0(4)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$-177.2(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$-58.5(4)$
$\mathrm{C}(9)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$-68.8(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$167.1(3)$
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-178.0(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$176.6(4)$
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$113.9(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$-121.4(4)$
$\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$178.5(3)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$104.2(4)$
$\mathrm{C}(19)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-134.7(4)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$-71.3(4)$
$\mathrm{C}(19)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$-59.3(4)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$49.8(5)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-2.6(7)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-178.2(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$1.3(8)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$1.2(9)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$-2.2(9)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$1.6(7)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$177.3(4)$
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{O}(6)$	$0.7(8)$
$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{O}(6)$	$179.8(3)$
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(23)$	$-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(23)$
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$-4(4)$

$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$121.3(3)$
$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(28)$	$-60.8(4)$
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(28)$	$59.0(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(28)$	$177.5(3)$
$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)$	$62.6(4)$
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)$	$-177.5(3)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)$	$-59.1(4)$
$\mathrm{C}(28)-\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{C}(25)$	$-66.4(5)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{C}(25)$	$168.5(4)$
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$-179.8(6)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$-156.7(12)$
$\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(28)-\mathrm{C}(29)$	$113.1(5)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(28)-\mathrm{C}(29)$	$-122.4(4)$
$\mathrm{C}(22)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$-177.9(4)$
$\mathrm{N}(2)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	$-31.0(5)$
$\mathrm{C}(38)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	$92.7(4)$
$\mathrm{N}(2)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$150.8(3)$
$\mathrm{C}(38)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$-85.5(4)$
$\mathrm{C}(37)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$-0.4(6)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$177.8(4)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$0.9(7)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$-0.7(8)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$0.1(8)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{C}(36)$	$-0.2(7)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{C}(36)$	$-178.5(4)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(32)$	$0.4(8)$

VII. Selected Spectra

$=$

79

- \quad, out

S－5

