Dong Song, Ali Rostami and F. G. West*

Department of Chemistry, University of Alberta, Edmonton, Alta., Canada T6G 2G2. Fax 780-492-8231.
frederick.west@ualberta.ca

Supporting Information

Contents

References

Experimental Procedures

General Information. Reactions were carried out in flame-dried glassware under a positive nitrogen atmosphere unless otherwise stated. Transfer of anhydrous solvents and reagents was accomplished with oven-dried syringes or cannulae. Solvents were distilled before use: methylene chloride from calcium hydride, tetrahydrofuran, diethylether and benzene from sodium/benzophenone ketyl, toluene from sodium metal. Thin layer chromatography was performed on glass plates precoated with 0.25 mm Kieselgel $60 \mathrm{~F}_{254}$ (Merck). Flash chromatography columns were packed with 230-400 mesh silica gel (Silicycle). Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were recorded at 400 MHz or 500 MHz and coupling constants (J) are reported in Hertz (Hz). Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) were recorded at 100 MHz or 125 MHz and are reported (ppm) relative to the center line of the triplet from chloroform- d (77.23 ppm). Infrared (IR) spectra were measured with a Mattson Galaxy Series FT-IR 3000 spectrophotometer. Mass spectra were determined on a PerSeptive Biosystems Mariner high-resolution electrospray positive ion mode spectrometer.

Preparation of Dienones

1b
Preparation of $\mathbf{1 b}$. To a solution of 2-bromopropene ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}$) in THF (10 mL) was added $\mathrm{Mg}(0.60 \mathrm{~g}, 25 \mathrm{mmol})$. The reaction mixture was refluxed for 30 min . The resulting solution was transferred dropwise to a solution of \square-methyl-trans-cinnamaldehyde ($1.50 \mathrm{~g}, 10$ mmol) in THF (10 mL). The reaction mixture was stirred for 2 h at room temperature. Saturated
$\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added to quench the reaction. The resulting mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the organic layer was washed with brine (10 mL) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford the desired dienol as a colorless oil ($1.5 \mathrm{~g}, 80 \%$): $\mathrm{R}_{f} 0.54$ ($5: 1$ hexanes/EtOAc); IR (thin film) 3375, 1649, 1599, 1491, $1445 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.38-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.02-$ $4.98(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 1.82(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 1.73(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 145.2,137.9,137.6,129.0,128.1,126.7,126.5,111.6,81.0,18.5$, 13.5; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ 188.1201, found: $\mathrm{m} / \mathrm{z} 188.1206$.

To a solution of the dienol ($500 \mathrm{mg}, 2.66 \mathrm{mmol}$) in dichloromethane (25 mL) was added $\mathrm{BaMnO}_{4}(1.4 \mathrm{~g}, 5.32 \mathrm{mmol})$. The reaction mixture was stirred for 24 h at room temperature before filtration through celite. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford dienone 1b ($297 \mathrm{mg}, 60 \%$) as a colorless oil: $\mathrm{R}_{f} 0.73$ ($5: 1$ hexanes/EtOAc); IR (thin film) 1643, 1622, 1574, 1491, 1447; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.42-7.24(\mathrm{~m}, 6 \mathrm{H}), 5.70$ (app pentet, $1 \mathrm{H}, J=1.5 \mathrm{~Hz}$), 5.59 (app pentet, $1 \mathrm{H}, J=1.0 \mathrm{~Hz}$), $2.14\left(\mathrm{~d}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz}\right.$), 2.03 (app t, $3 \mathrm{H}, J=1.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 200.9,143.9,140.1,136.5,135.9,129.7,128.4,128.3,123.5,19.3$, 14.2; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ 186.1044, found: $\mathrm{m} / \mathrm{z} 186.1042$.

1c
Preparation of 1c. To a solution of \square-methyl-trans-cinnamaldehyde ($1.5 \mathrm{~g}, 0.011 \mathrm{mmol}$) in THF (10 mL) was added vinyl magnesium bromide (Aldrich; 1.0 M in THF; $12 \mathrm{~mL}, 0.012$ mmol). The reaction mixture was stirred for 2 h at room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ was then added to quench the reaction. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the organic layer was washed with brine (10 mL) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford the desired dienol as a colorless oil ($1.48 \mathrm{~g}, 85 \%$): $\mathrm{R}_{f} 0.53$ ($5: 1$ hexanes/EtOAc); IR (thin film) 3363 (broad), 1641, 1600, 1492, $1443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.39-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.96$ (ddd, $1 \mathrm{H}, J=$ $5.8,10.4,16.7 \mathrm{~Hz}$), $5.38(\mathrm{dt}, 1 \mathrm{H}, J=1.4,16.7 \mathrm{~Hz}), 5.24(\mathrm{dt}, 1 \mathrm{H}, J=1.4,10.4 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J$ $=5.8 \mathrm{~Hz}), 1.88(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 138.9,138.8,137.5,129.0$, 128.1, 126.5, 126.0, 115.7, 78.6, 13.9; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O} 173.0966$, found: m / z 173.0962; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.72 ; \mathrm{H}, 8.10$. Found: C, 82.71; H, 8.13.

To a solution of the dienol ($70.5 \mathrm{mg}, 0.402 \mathrm{mmol}$) in dichloromethane (5 mL) was added $\mathrm{BaMnO}_{4}(412 \mathrm{mg}, 1.60 \mathrm{mmol})$. The reaction mixture was stirred for 24 h at room temperature before filtration through celite. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford dienone 1c ($44.7 \mathrm{mg}, 65 \%$) as colorless oil: $\mathrm{R}_{f} 0.82$ ($5: 1$ hexanes $/ E t O A c$); IR (thin film) 1720, 1657, 1658, $1605,1491,1447 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.54-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=10.6$, $17.0 \mathrm{~Hz}), 6.33(\mathrm{dd}, 1 \mathrm{H}, J=1.8,17.0 \mathrm{~Hz}), 5.81(\mathrm{dd}, 1 \mathrm{H}, J=1.8,10.6 \mathrm{~Hz}), 2.16(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 193.3,139.8,137.7,135.8,132.2,129.7,128.6,128.47,128.46,13.5$;

HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$ 172.0888, found: m/z 172.0882; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$: C, 83.69; H, 7.02. Found: C, 84.10; H, 7.37.

1d
Preparation of 1d. To a solution of 2-bromopropene ($1.20 \mathrm{~mL}, 13.6 \mathrm{mmol}$) in THF (10 mL) was added Mg ($653 \mathrm{mg}, 27.2 \mathrm{mmol}$). The reaction mixture was refluxed for 30 min and the resulting solution was then transferred to a solution of 1-cyclohexene-1-carboxaldehyde (1.0 g , 9.1 mmol) in THF (10 mL). The reaction mixture was stirred for 2 h at room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added to quench the reaction. The resulting mixture was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Then organic layer was washed with brine (10 mL) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford the desired dienol as a colorless oil ($1.15 \mathrm{~g}, 83 \%$): $\mathrm{R}_{f} 0.60$ ($5: 1$ hexanes/EtOAc); IR (thin film) $3372,1650,1447 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 5.79-5.75 (m, 1H), 5.05-5.04 (m, 1H), 4.92-4.90 (m, 1H), 4.39-4.38 $(\mathrm{m}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 145.5,137.6,124.0,110.7,79.7,25.1,23.6,22.6,22.5,18.5$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ 152.1201, found: m/z 152.1201 .

To a solution of the dienol ($570 \mathrm{mg}, 3.75 \mathrm{mmol}$) in dichloromethane (20 mL) was added $\mathrm{BaMnO}_{4}(1.92 \mathrm{~g}, 7.5 \mathrm{mmol})$. The reaction mixture was stirred for 24 h at room temperature before filtration through celite. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford dienone 1d ($337 \mathrm{mg}, 60 \%$) as a colorless oil: $\mathrm{R}_{f} 0.65$ (5:1 hexanes/EtOAc); IR (thin film) 1642, 1450, 1435; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 6.68-6.67 (m, 1H), 5.57-5.56 (m, 1H), 5.42-5.29 (m, 1H), 2.29$2.21(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 199.9$, 143.7, 141.6, 138.1, 122.3, 25.9, 23.7, 22.0, 21.7, 19.2; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ 150.1044, found: m/z 150.1044 .

Trapping of Dienones

$4 a / 5 a$
Trapping of 1a with Benzyl Azide 2a: Formation of 6-Methylenepiperidones 4a and 5a. To a solution of dibenzylidenepentanone $\mathbf{1 a}(100 \mathrm{mg}, 0.038 \mathrm{mmol})$ and benzyl azide ${ }^{1} \mathbf{2 a}(100 \mathrm{mg}$, $0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.058 \mathrm{~mL}, 0.46 \mathrm{mmol})$. After 15 min , the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min .; saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the resulting mixture was allowed to warm to room temperature. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic phases were concentrated to give a mixture of two isomeric products by crude NMR. The two products were then separated and purified by flash column chromatography (silica gel; 15:1 hexanes/EtOAc) to give

52 mg of all-trans diastereomer $\mathbf{4 a}$ and 50 mg of cis/trans diastereomer 5a as colorless oils in a combined yield of 72%.
4a: $\mathrm{R}_{f} 0.1\left(15: 1\right.$ hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.36-6.90 (m, 15H), $5.13(\mathrm{~d}$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.50(\operatorname{app~t}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.90(\operatorname{app~dt}, 1 \mathrm{H}, J=$ $11.8,1.7 \mathrm{~Hz}), 3.77(\operatorname{app} \mathrm{t}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 3.05(\mathrm{app} \mathrm{t}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 2.85-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.14$ $(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 172.6,148.2,141.4,141.0,137.6,129.3$, $128.8,128.5,128.2,128.1,127.1,126.9,126.8,126.7,97.4,53.2,51.5,48.2,44.0,15.8$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}$: calcd 368.2008, Found: $m / z 368.2008$.
5a: $\mathrm{R}_{f} 0.26\left(15: 1\right.$ hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square .35-7.05(\mathrm{~m}, 15 \mathrm{H}), 5.15(\mathrm{~d}$, $1 \mathrm{H}, J=15.2 \mathrm{~Hz}$), $5.12(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 4.09-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.40$ (app t, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}$), 2.87 (app dq, $1 \mathrm{H}, J=7.1,5.5 \mathrm{~Hz}$), $1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 172.6,144.9,143.3,140.2,137.6,128.82,128.80,128.73,128.72,127.95$, $127.91,127.4,127.1,127.0,97.6,50.8,49.9,47.4,37.0,14.2 ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}$: calcd 368.2008, found: $m / z 368.2004$.

6b/7b
Trapping of 1a with Azide 2b. Dienone 1a was treated with 1-azido-3-phenylpropane ${ }^{2}$ 2b following the procedure given in the Experimental Section for $\mathbf{6 a} / 7 \mathbf{a}$. Purification by column chromatography (silica gel; hexanes/EtOAc 5:1) afforded trans isomer $\mathbf{6 b}(81.0 \mathrm{mg}, 54 \%)$ and cis isomer 7b ($36.0 \mathrm{mg}, 24 \%$) as colorless oils.

6b: $\mathrm{R}_{f} 0.49$ (5:1 hexanes/EtOAc); IR (film microscope) 1668, 1617, 1495, 1452, $1394 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.34-7.18 (m, 11H), 7.04-6.98 (m, 4H), 4.01 (ddd, $1 \mathrm{H}, J=6.2,9.8$, 14.0 Hz), 3.53 (ddd, $1 \mathrm{H}, J=5.6,10.0,14.3 \mathrm{~Hz}$), $3.51(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 3.14 (app pentet, $1 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 171.6,141.4,140.9,137.6,132.0,129.2,128.7,128.4,128.3,128.3$, $128.2,127.0,126.6,126.0,123.0,50.3,42.3,40.3,33.5,30.4,16.5,12.8$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ON} 395.2249$, found: m/z 395.2252. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ON}: \mathrm{C}, 82.98 ; \mathrm{H}, 7.60 ; \mathrm{N}$, 4.40. Found: C, 82.71 ; H, 7.63; N, 3.92.

7b: $\mathrm{R}_{f} 0.46$ (5:1 hexanes/EtOAc); IR (film microscope) 1667, 1599, 1494, 1453, $1394 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.32-7.06(\mathrm{~m}, 15 \mathrm{H}), 4.03$ (ddd, $1 \mathrm{H}, J=6.5,9.3,14.1 \mathrm{~Hz}$), 3.45 (ddd, $1 \mathrm{H}, J=6.5,8.8,14.1 \mathrm{~Hz}), 3.44(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 2.83(\mathrm{dq}, 1 \mathrm{H}, J=1.7,7.2 \mathrm{~Hz}), 2.71-2.59(\mathrm{~m}, 2 \mathrm{H})$, $1.96-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 172.3$, $141.4,141.3,140.9,131.7,129.2,128.6,128.4,128.3,128.2,127.3,126.8,126.7,126.0,118.5$, $51.2,44.1,41.6,33.3,30.7,17.6,16.3$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ON} 395.2249$, found: m / z 395.2245. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ON}: \mathrm{C}, 82.98 ; \mathrm{H}, 7.60 ; \mathrm{N}, 4.40$. Found: C, $82.02 ; \mathrm{H}, 7.61$; N, 4.03.

6c/7c
Trapping of 1a with Azide 2c. Dienone 1a was treated with cinnamyl azide ${ }^{3}$ 2c following the procedure given in the Experimental Section for $\mathbf{6 a} / \mathbf{7 a}$. Purification by column chromatography (silica gel; hexanes/EtOAc 5:1) afforded trans isomer $\mathbf{6 c}(85 \mathrm{mg}, 57 \%)$ and cis isomer $7 \mathbf{c}$ (42 $\mathrm{mg}, 28 \%$) as colorless oils.

6c: $\mathrm{R}_{f} 0.28$ (5:1 hexanes/EtOAc); IR (cast film) 1667, 1598, 1492,1431, $1391 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.42-7.01(\mathrm{~m}, 15 \mathrm{H}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 6.37(\mathrm{ddd}, 1 \mathrm{H}, J=5.9,6.9$, 16.0 Hz), 4.83 (ddd, $1 \mathrm{H}, J=1.5,5.9,15.4 \mathrm{~Hz}$), 4.34 (ddd, $1 \mathrm{H}, J=1.2,6.9,15.4 \mathrm{~Hz}$), 3.56 (d, 1 H , $J=7.1 \mathrm{~Hz}), 3.22(\operatorname{app}$ pentet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.04(\mathrm{~d}, 3 \mathrm{H}, J=0.6 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 171.5,140.6,137.3,136.6,132.5,132.1,129.1,128.7,128.5$, $128.3,128.1,127.6,126.9,126.6,126.3,125.3,123.2,50.2,44.3,40.3,16.6,12.8$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ON} 393.2092$, found: $\mathrm{m} / \mathrm{z} 393.2093$.
7c: $\mathrm{R}_{f} 0.25$ (5:1 hexanes/EtOAc); IR (film microscope) 1668, 1599, 1491, 1449, $1392 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.38-7.10(\mathrm{~m}, 15 \mathrm{H}), 6.51(\mathrm{td}, 1 \mathrm{H}, J=1.5,16.0 \mathrm{~Hz}), 6.22(\mathrm{ddd}, 1 \mathrm{H}, J$ $=5.2,6.9,16.0 \mathrm{~Hz}), 4.85(\mathrm{ddd}, 1 \mathrm{H}, J=1.6,5.2,15.9 \mathrm{~Hz}), 4.24(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,6.8,15.9 \mathrm{~Hz})$, 3.52 (app s, 1H), $2.91(\mathrm{dq}, 1 \mathrm{H}, J=1.8,7.2 \mathrm{~Hz}), 2.06(\mathrm{~d}, 3 \mathrm{H}, J=0.6 \mathrm{~Hz}), 1.51(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 172.2,141.0,140.6,136.5,131.8,131.7,129.1,128.5,128.4$, $128.1,127.6,127.3,126.7,126.6,126.3,125.5,118.5,51.1,44.0,43.6,17.5,16.4$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ON} 393.2092$, found: $\mathrm{m} / \mathrm{z} 393.2096$.

Trapping of 1b with Benzyl Azide 2a. To a solution of dienone 1b ($76.0 \mathrm{mg}, 0.41 \mathrm{mmol}$) and benzyl azide ${ }^{1} \mathbf{2 a}$, ($109.2 \mathrm{mg}, 0.82 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(116$ $\square \mathrm{L}, 0.82 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath). The reaction mixture was stirred for 60 min before saturated NaHCO_{3} solution (2 mL) was added to quench the reaction. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the organic layer was washed with brine (10 mL) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford only the trans product, $\mathbf{6 d}(89.5 \mathrm{mg}, 75 \%): \mathrm{R}_{f} 0.56$ ($5: 1$ hexanes/EtOAc); IR (film microscope) 1673, 1670, $1604,1495,1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.39-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H})$, $5.22(\mathrm{dd}, 1 \mathrm{H}, J=1.0,5.3 \mathrm{~Hz}), 4.94(\mathrm{AB}, 2 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.65(\mathrm{qdd}, 1 \mathrm{H}, J=1.3,5.3,6.0 \mathrm{~Hz})$, 2.97 (app pentet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $2.02(\mathrm{app} \mathrm{t}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 173.2,139.2,138.3,136.0,128.5,128.3,128.2,127.1,127.0,126.7$, 108.3, 45.2, 42.4, 40.9, 19.5, 12.1; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ON} 291.1623$, found: m / z 291.1622.

$6 e$
Trapping of 1b with Azide 2b. Dienone 1b was treated with 1-azido-3-phenylpropane ${ }^{2}$ 2b following the procedure given above for $\mathbf{6 d}$. Purification by column chromatography (silica gel; hexanes/EtOAc 5:1) afforded trans isomer $\mathbf{6 e}(127.6 \mathrm{mg}, 80 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.36$ (5:1 hexanes/EtOAc); IR (film microscope) 1665, 1660, 1602, 1551, 1496, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.36-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.22(\mathrm{qd}, 1 \mathrm{H}, J=1.1,5.4 \mathrm{~Hz}), 3.8(\mathrm{ddd}, 1 \mathrm{H}, J=5.8,9.9$, 13.9 Hz), $3.58(\mathrm{ddd}, 1 \mathrm{H}, J=5.6,9.9,14.0 \mathrm{~Hz}$), $3.54(\mathrm{dd}, 1 \mathrm{H}, J=5.4,7.0 \mathrm{~Hz}$), 2.87 (app pentet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.70-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{app} \mathrm{s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 172.7,141.3,139.5,135.6,128.3,128.3,128.2,128.1$, $126.8,125.9,108.5,42.5,41.7,40.7,33.2,30.5,19.2,12.1$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}$ 319.1936, found: m/z 319.1931.

Trapping of 1b with Azide 2c. Dienone 1b was treated with cinnamyl azide ${ }^{3}$ 2c following the procedure given above for 6d. Purification by column chromatography (silica gel; hexanes/EtOAc 6:1) afforded trans isomer $\mathbf{6 f}(159.7 \mathrm{mg}, 72 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.33$ (6:1 hexanes/EtOAc); IR (film microscope) 1674, 1670, 1600, 1495, 1450, $1389 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.40-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 6.29(\mathrm{td}, 1 \mathrm{H}, J=6.1,16.0 \mathrm{~Hz})$, 5.25 (qd, $1 \mathrm{H}, J=1.0,5.5 \mathrm{~Hz}$), 4.60 (ddd, $1 \mathrm{H}, J=1.4,5.8,15.8 \mathrm{~Hz}), 4.37$ (ddd, $1 \mathrm{H}, J=1.2,6.2$, 15.8 Hz), 3.58 (app t, $1 \mathrm{H}, J=5.8 \mathrm{~Hz}$), 2.95 (app pentet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 2.09 (app t, $3 \mathrm{H}, J=1.2$ $\mathrm{Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 172.8,139.4,136.6,135.9,132.0$, 128.6, 128.4, 128.3, 127.7, 126.9, 126.4, 125.4, 108.7, 43.8, 42.7, 40.8, 19.4, 12.3; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ON} 317.1779$, found: $\mathrm{m} / \mathrm{z} 317.1764$.

6 g
Trapping of 1c with Benzyl Azide 2a: To a solution of dienone $\mathbf{1 c}(53.0 \mathrm{mg}, 0.31 \mathrm{mmol})$ and benzyl azide ${ }^{1} \mathbf{2 a}(82 \mathrm{mg}, 0.62 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(43 \square \mathrm{~L}$, 0.34 mmol) at room temperature. The reaction mixture was stirred for 15 min before saturated NaHCO_{3} solution (2 mL) was added to quench the reaction. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the organic layer was washed with brine (10 mL) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford only trans product, $\mathbf{6 g}$ (53.2 mg , 62%): $\mathrm{R}_{f} 0.62$ ($5: 1$ hexanes/EtOAc); IR (film microscope) 1668, 1603, 1494, 1453, $1406 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.39-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=1.1,7.7$
$\mathrm{Hz}), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=5.2,7.7 \mathrm{~Hz}), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 3.66$ (app t, 1H, $J=7.0 \mathrm{~Hz}$), 2.98 (app pentet, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $1.01(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 171.8,138.9,137.1,129.2,128.7,128.4,128.21,128.20,127.6,127.0$, 110.1, 49.4, 43.7, 41.0, 12.1; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ON} 277.1467$, found: $\mathrm{m} / \mathrm{z} 277.1463$.

Trapping of 1c with Azide 2b: Dienone 1c was treated with 1-azido-3-phenylpropane ${ }^{2} \mathbf{~ 2 b}$ following the procedure given above for $\mathbf{6 g}$. Purification by column chromatography (silica gel; hexanes/EtOAc 5:1) afforded trans isomer $\mathbf{6 h}(106 \mathrm{mg}, 40 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.38$ (5:1 hexanes/EtOAc); IR (film microscope) 1666, 1602, 1495, $1453 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 7.34-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.17(\mathrm{dd}, 1 \mathrm{H}, J=1.2,7.8 \mathrm{~Hz}), 5.34(\mathrm{dd}, 1 \mathrm{H}, J=5.0,7.8 \mathrm{~Hz}$), 3.66 (dd, $1 \mathrm{H}, J=5.0,7.0 \mathrm{~Hz}$), 3.64 (ddd, $1 \mathrm{H}, J=6.4,8.1,13.6 \mathrm{~Hz}$), 3.51 (ddd, $1 \mathrm{H}, J=6.5,8.1,13.8$ Hz), 2.88 (app pentet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $2.69(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), 2.02-1.94 (m, 2H), 0.97 (app s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 171.7,141.3,139.2,129.6,128.4,128.3,128.2,128.1$, $126.9,125.9,109.4,46.1,43.5,40.9,33.0,30.0,11.9$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ON} 305.1779$, found: m/z 305.1775.

$6 i$
Trapping of 1c with Azide 2c. Dienone 1c was treated with cinnamyl azide ${ }^{3} \mathbf{2 c}$ following the procedure given above for $\mathbf{6 g}$. Purification by column chromatography (silica gel; hexanes/EtOAc 5:1) afforded trans isomer $\mathbf{6 i}(83.3 \mathrm{mg}, 43 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.35$ (6:1 hexanes/EtOAc); IR (film microscope) 1666, 1600, 1578, 1494, 1450, 1405, $1386 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.41-7.10(\mathrm{~m}, 10 \mathrm{H}), 6.60(\mathrm{td}, 1 \mathrm{H}, J=1.3,15.8 \mathrm{~Hz}), 6.28-6.20(\mathrm{~m}, 2 \mathrm{H}), 5.38$ (dd, $1 \mathrm{H}, J=5.0,7.7 \mathrm{~Hz}$), 4.36 (ddd, $1 \mathrm{H}, J=1.3,6.4,15.1 \mathrm{~Hz}$), 4.29 (ddd, $1 \mathrm{H}, J=1.3,6.4,15.1$ Hz), 3.68 (app t, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 2.96 (app pentet, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $1.00(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\square 171.6,139.1,136.4,133.3,129.1,128.6,128.5,128.2,127.8,127.0$, $126.5,124.3,110.1,47.8,43.7,41.0,12.1$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ON} 303.1623$, found: m/z 303.1618.

6j/7j
Trapping of 1d with Benzyl Azide 2a. To a solution of dienone 1d ($100 \mathrm{mg}, 0.67 \mathrm{mmol}$) and benzyl azide ${ }^{1} \mathbf{2 a}(178 \mathrm{mg}, 1.34 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(190 \square \mathrm{~L}$, 1.34 mmol) at $0{ }^{\circ} \mathrm{C}$ (ice-water bath). The reaction mixture was stirred for 60 min before saturated NaHCO_{3} solution $(2 \mathrm{~mL})$ was added to quench the reaction. The resulting mixture was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the organic layer was washed with brine $(10 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (silica gel; hexanes/EtOAc 5:1) to afford the trans isomer $\mathbf{6 j} \mathbf{~} 90.5 \mathrm{mg}$, 53%) and the cis isomer $7 \mathbf{j}(46.1 \mathrm{mg}, 27 \%$) as colorless oils.
$\mathbf{6 j}: \mathrm{R}_{f} 0.55$ (5:1 hexanes/EtOAc); IR (film microscope) $1675,1664,1605,1496,1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 7.32-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 4.94(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 4.58$ $(\mathrm{d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{app} \mathrm{t}, 3 \mathrm{H}, J$ $=1.4 \mathrm{~Hz}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.18(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \square 175.3,139.6$, 136.2, 129.7, 128.0, 127.2, 114.1, 46.2, 45.7, 37.0, 33.2, 27.5, 26.7, 26.6, 19.1; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ON} 255.1623$, found: $\mathrm{m} / \mathrm{z} 255.1628$.
$7 \mathrm{j}: \mathrm{R}_{f} 0.54$ (5:1 hexanes/EtOAc); IR (film microscope) 1674, 1670, 1605, 1496, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.34-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=4.2$ $\mathrm{Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz})$, 2.64-2.61 (m, 1H), 2.56-2.48 (m, 1H), 2.16-2.02 (m, 1H), 1.85 (app t, 3H, $J=1.6 \mathrm{~Hz}$), 1.60-1.49 (m, 4H), 1.48-1.36 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square $173.2,138.7,134.9,128.6,126.8,126.4,109.7,44.8,42.3,32.3,28.7,24.6,23.8,23.6,19.4$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ON} 255.1623$, found: $\mathrm{m} / \mathrm{z} 255.1629$.

6k/7k
Trapping of 1d with Azide 2b: Dienone 1d was treated with 1-azido-3-phenylpropane ${ }^{2}$ 2b following the procedure given above for $\mathbf{6 j} / 7 \mathbf{j}$. Purification by column chromatography (silica gel; hexanes/EtOAc 5:1) afforded trans isomer $\mathbf{6 k}$ ($138 \mathrm{mg}, 53 \%$) and cis isomer $7 \mathbf{k}(46 \mathrm{mg}$, 17%) as colorless oils.

6k: $\mathrm{R}_{f} 0.57$ (3:1 hexanes/EtOAc); IR (microscope) 1671, 1616, 1496, 1447, 1389; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \square 7.16-6.98(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{ddd}, 1 \mathrm{H}, J=5.6$, $8.9,14.0 \mathrm{~Hz}), 2.52-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45$ (dd, $3 \mathrm{H}, J=1.4,2.5 \mathrm{~Hz}$), 1.38-1.35 (m, 1H), 1.16-0.90 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square $172.9,141.6,134.4,128.33,128.29,125.9,112.5,45.0,41.3,35.6,33.2,32.1,30.8,26.3,25.7$, 25.5, 18.9; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ON} 283.1936$, found: $\mathrm{m} / \mathrm{z} 283.1934$.

7k: $\mathrm{R}_{f} 0.53$ (3:1 hexanes/EtOAc); IR (microscope) 1672, 1670, 1496, 1446, $1392 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\square 7.18-6.98(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}$), $3.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.50-2.41 (m, 3H), $2.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.51-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{app} \mathrm{t}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 1.39-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.08(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\square 171.6,142.0,135.0,128.7,128.6,126.2,109.4,42.0,41.3$, 33.5, 33.2, 31.4, 29.1, 25.3, 25.1, 23.6, 19.1; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ON} 283.1936$, found: m/z 283.1933.

Trapping of 1d with Azide 2c. Dienone 1d was treated with cinnamyl azide ${ }^{3}$ 2c following the procedure given above for $\mathbf{6 j} / \mathbf{7} \mathbf{j}$. Purification by column chromatography (silica gel; hexanes/EtOAc 4:1) afforded trans isomer $\mathbf{6 1}(150 \mathrm{mg}, 52 \%)$ and cis isomer $7 \mathbf{1}(60 \mathrm{mg}, \mathbf{2 1 \%}$) as colorless oils.

61: $\mathrm{R}_{f} 0.45$ (4:1 hexanes/EtOAc); IR (film microscope) 1672, 1494, 1447, $1387 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \square 7.38-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{td}, 1 \mathrm{H}, J=1.5,15.8 \mathrm{~Hz}), 6.18(\mathrm{td}, 1 \mathrm{H}, J=5.4$, $16.0 \mathrm{~Hz}), 4.94(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 4.61(\mathrm{ddd}, 1 \mathrm{H}, J=1.8,5.0,16.8 \mathrm{~Hz}), 4.20(\mathrm{ddd}, 1 \mathrm{H}, J=1.6,5.6,16.8$ $\mathrm{Hz}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dd}, 3 \mathrm{H}, J=1.4,2.3 \mathrm{~Hz})$, 1.90-1.82 (m, 2H), 1.77-1.72 (m, 1H), 1.31-1.18 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) \square $175.0,138.1,136.1,132.0,129.6,128.6,127.3,126.6,113.8,46.2,44.3,37.1,33.3,27.4,26.7$, 26.6, 19.0; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ON} 281.1779$, found: $\mathrm{m} / \mathrm{z} 281.1776$.

71: $\mathrm{R}_{f} 0.43$ (4:1 hexanes/EtOAc); IR (film microscope) 1673, 1670, 1495, 1447, $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.45(\mathrm{td}, 1 \mathrm{H}, J=1.5,16.0 \mathrm{~Hz}), 6.18(\mathrm{td}, 1 \mathrm{H}, J=$ $5.4,16.0 \mathrm{~Hz}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.42(\mathrm{dd}, 1 \mathrm{H}, J=5.4,16.8 \mathrm{~Hz}), 4.37(\mathrm{dd}, 1 \mathrm{H}, J=5.4$, $16.8 \mathrm{~Hz}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{t}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz})$, 1.60-1.42 (m, 4H), 1.42-1.36 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 172.7, 136.7, 134.7, 130.7, 128.4, 127.4, 126.2, 126.0, 109.6, 43.1, 42.1, 32.2, 28.6, 24.5, 23.8, 23.4, 19.1; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ON}$ 281.1779, found: $\mathrm{m} / \mathrm{z} 281.1775$.

References

(1) Reddy, D. S.; Judd, W. R.; Aube, J. Org. Lett. 2003, 5, 3899.
(2) Koziara, A.; Zwierzak, A. Synthesis 1992, 11, 1063.
(3) Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 4, 413.

S- 10

S-11

S- 14

$$
0.4 \mathrm{~Hz} / \mathrm{pt}
$$

カカ6•9

\cong

（udd
 む
○て 8
same
med 8
meter
$\stackrel{N}{\text { N }}$
－
\qquad
s8て＇とऽ－
カ七6．9L
09て．
$6 \angle S$ LL

$$
0 \varsigma 99^{\circ} Z
$$

S-16
\qquad

$\angle 89^{\circ} \angle 6$

S-18

S-32

S-47

