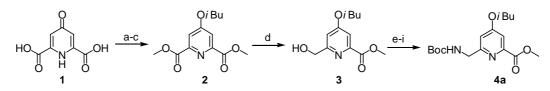
Supporting information to:

The herringbone helix: a noncanonical folding pattern

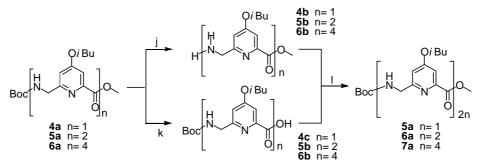
in mixed aliphatic-aromatic amide sequences

Nicolas Delsuc, Frédéric Godde, Brice Kauffmann, Jean-Michel Léger, and Ivan Huc*

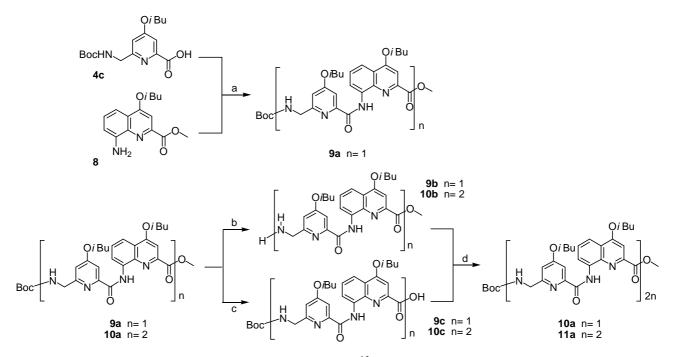
TABLE OF CONTENTS


Description of syntheses	page S1
NMR solution studies	page S2
Experimental section	page S6
NMR spectra	page S9
References	page S11

Description of syntheses. The synthesis of protected "P" monomer **4a** is depicted in Scheme S1. A key step is the desymmetrization of dimethyl 2,6-pyridinedicarboxylate **2**. The monoreduction of **2** using an optimized stoichiometry of NaBH₄ (2 equiv) yields the ester-alcohol in 77% yield. The hydroxyl group can then be converted into a Boc protected amine using conventional methods. Thus, reaction with SOCl₂ yielded the corresponding chloride, which was substituted with sodium azide. The benzylic azide was reduced via a Staudinger reaction and the obtained amine was protected with a Boc group to give **4a**.

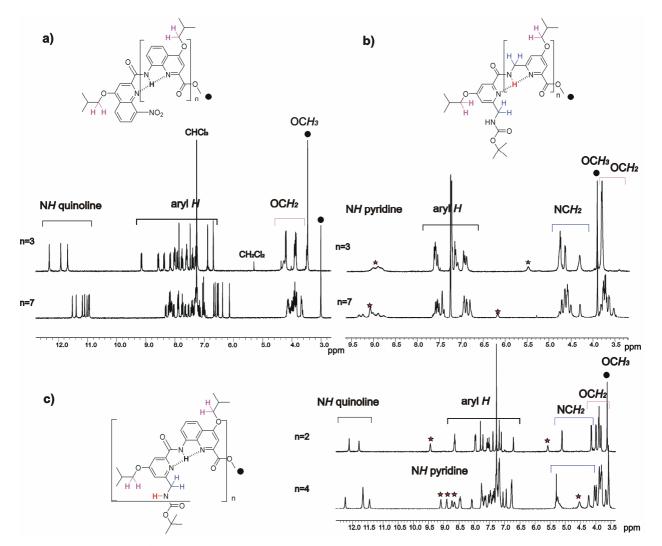

The elongation of the oligomer $Bo-(P)_n$ -OMe was achieved through a convergent strategy consisting in doubling

the oligomer length at each cycle (Scheme S2). Before each coupling step, part of the Boc ester protected starting material was saponified to give access to the corresponding acid, and part was treated with trifluoroacetic acid to cleave the Boc group and produce the corresponding amine. The coupling steps were handled using classical peptide synthesis conditions.


The synthesis of Boc-(PQ)_n-OMe oligomers was achieved in a similar way (Scheme 3). For the preparation of the Boc-(PQ)₁-OCH₃ dimer **9a** from pyridine acid **4b** and quinoline amine **6**, PyBOP was preferred to HBTU as a coupling agent because of the low reactivity of the aromatic amine.

Scheme S1: synthesis of BocNH-P-OCH₃. a) HCl, MeOH, dimethoxypropane, 60° C, 12h; b) K₂CO₃, DMF, 120°C 1.5h; c) *i*BuI, DMF, 70°C, 3h; d) NaBH₄, DCM, MeOH, r.t. 2h; e) SOCl₂, toluene, r.t., 3h; f) NaN₃, DMF, r.t., 3h; g) PPh₃, THF, r.t., 3h; h) H₂O, r.t., 5h; i) BocOboc, DMAP, toluene, r.t., 12h.

Scheme S2: synthesis of BocNH-P₈-OCH₃, j) TFA, DCM, r.t., 6h. k) LiOH, THF, MeOH, r.t., 16h. l) HBTU, HOBt, DIEA, DMF, r.t., 16h.


Scheme S3: synthesis of BocNH-(PQ)₄-OCH₃: a) PyBop, DIEA, DCM, r.t., 3h^{1,2}. b) TFA, DCM, r.t., 6h. c) KOH, THF, MeOH, r.t., 16h. d) HBTU, HOBt, DIEA, DMF, r.t., 16h.

NMR solution studies.

Reconstitution of the sequence of Boc-(PQ)₄-OCH₃. Solution studies were performed in toluene-d8 at 75°C where sharp peaks are observed and where the signals spread over a large chemical shift range despite the repetitive nature of sthe sequence, consistent with folding phenomena (Figure S2). The spin systems of the different residues were partially identified from COSY experiments: strong correlations between H5, H6, H7 protons of the quinoline rings were observed and strong correlations between H3 and H5 were also observed for the pyridine rings (Figure S3). However, these experiments do not allow to distinguish H5 from H7 protons on a given residue and to associate them with the corresponding H3 of the same residue. The whole spin systems were unambigously identified from HMBC experiments and required the assignment of ¹³C NMR signals corresponding to the aromatic backbone of the oligomer. Long range correlations between protons and carbons, namely H6-C10 (³J), C10-H3 (³J), H3-C4 (²J), and C4-H5 (³J) allowed a complete assignment of all spin systems (Figure S4)

The whole sequence was then reconstituted on the basis of 2D HMBC, HSQC and NOESY experiments. As shown in Figure S5, the strong proton-carbon correlations H3p-COp, COp-NHq, NHq-C7 (where p and q stand for pyridine and quinoline, respectively) allowed to hop from a pyridine residue to a quinoline residue. In the same way, proton-carbon correlations H3q-COq, COq-NHp, NHp-CH₂ allowed to hop from a quinoline residue to the CH₂ group of a pyridine residue. Finally, NOE correlations between this CH₂ protons and the neighbour H5 proton allowed to connect each CH₂ group to the correct pyridine spin system (Figure S6a)

All the experiments have allowed to assign the signals of all aromatic, amide and methylene protons and carbons. The final sequence is presented in the figure. The NOE correlations have been then fully assigned.

Figure S1: Part of 400 MHz ¹H NMR spectra of various oligomers in CDCl₃ at 25°C: a) $O_2N-Q_n-OCH_3$ in CDCl₃ at 25°C; b) Boc-P_n-OCH₃; c) Boc-(PQ)_n-OCH₃. The spectra illustrate the extent to which NMR signals spread over a large chemical shift for $O_2N-Q_n-OCH_3$ and Boc-(PQ)_n-OCH₃ oligomers but not for Boc-P_n-OCH₃ oligomers.

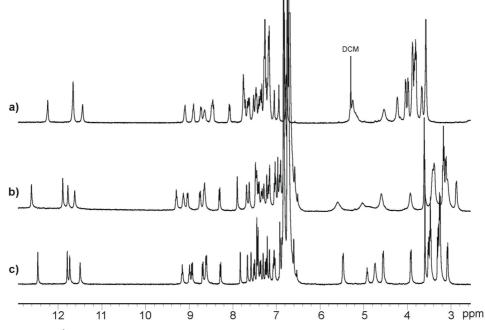
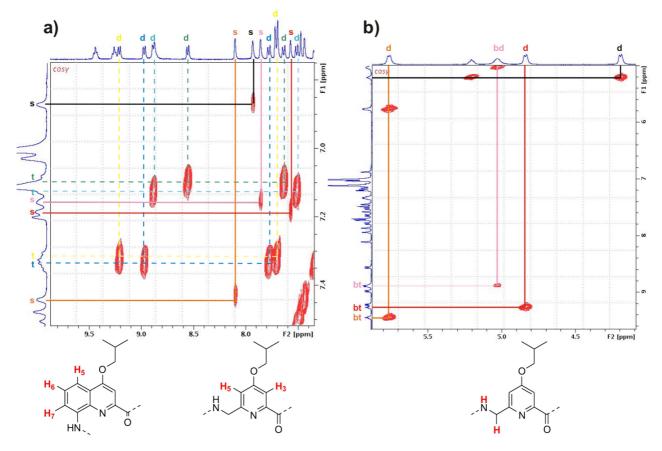



Figure S2: Part of the 400 MHz ¹H NMR spectra of oligomer Boc-(PQ)₄-OCH₃: a) in CDCl₃ at 25°C; b) in toluene-d₈ at 25°C. c) in toluene-d₈ at 75°C.

Figure S3: Part of the 400 MHz COSY plot of Boc-(PQ)₄-OCH₃. at 75°C in toluene-d₈ showing cross-peaks between: a) protons H5, H6, H7 of quinoline rings as well as between H3 and H5 of pyridine rings; and b) between NH and CH_2 of pyridine rings. See Figure S6 for the color code.

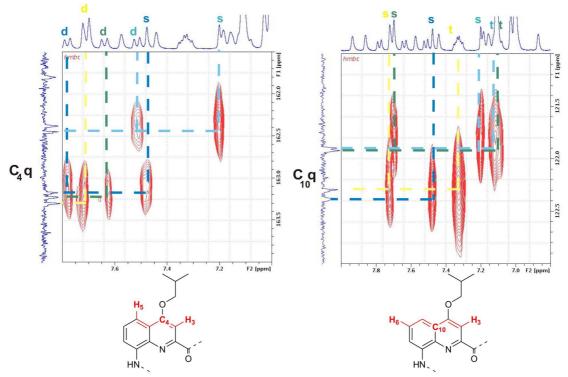


Figure S4: Part of the 400 MHz HMBC plot of Boc-(PQ)₄-OCH₃. at 75°C in toluene- d_8 showing cross-peaks between protons H3, H5 and carbon C4 (left) and cross-peaks between H3 and H6 and carbon C10 of the quinoline rings. See Figure S6 for the color code.

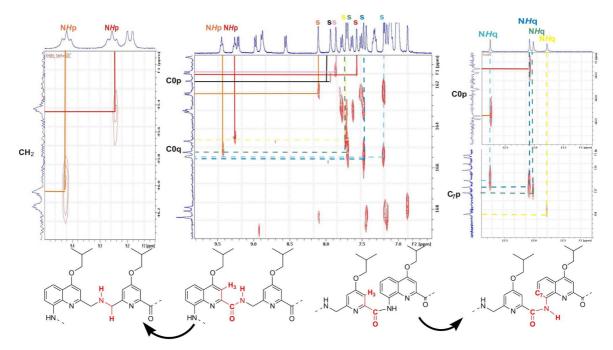
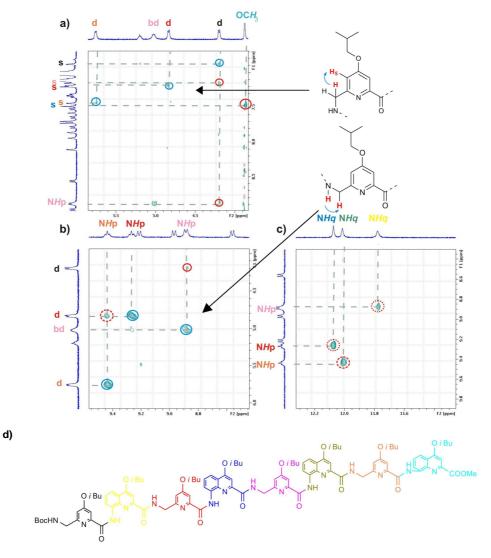



Figure S5: Part of the 400 MHz HMBC plot of Boc- $(PQ)_4$ -OCH₃. at 75°C in toluene-d₈ showing, cross-peaks between protons H3 and CO, and NHp and CO (center); between and NHp and CH₂ (left); and between NHq and COp, and NHq and C7q (right). See Figure S6 for the color code.

Figure S6: Part of the 400 MHz NOESY plots of Boc-(PQ)₄-OCH₃. at 75° C in toluene-d₈ showing cross-peaks between: a) CH₂ and H5 of pyridine rings; b) NH and CH₂ of pyridines; c) NHq and NHp. Blue circles show the NOE correlations that were used to reconstitute the sequence. Red solid-lines circles show correlations consistent with a herringbone helix only, red dotted-lines circles show correlations consistent with a canonical helix only and red dashed-lines show correlations compatible with both types of helices; d) Final color-coded sequence. The same color code was used in Figures S3, S4 and S5.

Table S1. Plausible assignment of observed NOE correlations to possible conformers of $Boc-(PQ)_4$ -OMe. The distances compatible with the observed correlations are shown in bold blue.

Observed NOE correlations	Corresponding atomic distance (Å) in the folded conformations			
	Canonical helix	Non canonical helices		
		II in Fig. 2c (solid state structure, PQ unit flipped at the C terminus)	I in Fig. 2c	III in Fig. 2c (PQ units flipped at both C and N termini)
NH-3/NH-4	3.1	5.6	5.6	5.6
NH-6/NH-7	2.9	3.0	3.0	3.0
NH-2/NH-5	4.3	6.6	6.6	7.3
H3-4/OCH ₃	7.8	9.5	5.9	9.5
CH ₂ -1/H5-5	8.2	3.1	3.1	6.0
CH2-1/NH-5	6.1	3.9	3.9	5.1
CH2-3/NH-7	6.5	3.9	3.9	3.9

Experimental section

General Procedures and Materials. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. THF was distilled from Ma/I₂ and CH₂Cl₂, diisopropylethylamine (DIEA) and DMF were distilled from CaH₂ prior to use. Chemical shifts are reported in ppm and are calibrated against residual solvent signals of CDCl₃ (δ 7.26, 77.0), DMSO-d₃ (δ 2.50, 39.4), or CD₃OD (δ 3.31, 49.1). All coupling constants are reported in Hz. Silica gel chromatography was performed using Merck Kieselgel Si 60. Electronic impact mass spectra were obtained in the positive ion mode and matrix assisted laser desorption ionization time of flight (MALDI) mass spectra were obtained in positive ion mode using α -cyanohydroxycinnamic acid as a matrix.

General procedures, Boc-Pn-OCH3 serie.

Saponification. The methyl ester (2.74 mmol 1 equiv.) was dissolved in a mixture THF/water 1:1 vol/vol (10:10 mL). LiOH (1.5 equiv.) was added and the solution was stirred at room temperature for 16 h. The solution was neutralized using excess AcOH. The solvents were evaporated, the crude mixture was diluted in DCM and washed once with water. The organic phase was dried over Na₂SO₄, filtered and evaporated to provide a solid characterized by ¹H NMR and used without further purification.

Boc cleavage. The Boc protected amine (1.51 mmol, 1 equiv.) was dissolved in DCM (26 mL). TFA was added dropwise (16 equiv.) and the solution was stirred at room temperature for 6h. Toluene was then added and the solvents were evaporated under vacuum.

Peptide couplings. To a solution of the acid (1.51 mmol, 1 equiv.), HBTU (1.5 equiv.), HOBt (1 equiv.) in DMF (30 mL) was added DIEA (5 equiv.) under a nitrogen atmosphere. The solution was stirred 0.5 h at room temperature. The amine (1 equiv.) dissolved in DMF (10 mL) was added and the reaction mixture was stirred at room temperature for 16 h. The solution was diluted with toluene and washed once with a 1 M citric acid solution and twice with water. The organic phase was dried over Na₂SO₄, filtered and evaporated to provide a solid. **General procedures, Boc-(PQ)_n-OCH₃ serie.**

Saponification. The methyl ester (0.17 mmol, 1 equiv.) was dissolved in a mixture THF/MeOH 3:1 vol/vol (3:1 mL). KOH (3 equiv.) was added and the solution was stirred at room temperature for 16 h. The solvents were evaporated, AcOH (3 equiv.) and water (2 mL) was added and the precipitate was filtered to provide a yellow solid characterized by ¹H NMR and used without further purification.

Boc cleavage. The Boc protected amine (0.17 mmol, 1 equiv.) was dissolved in DCM (1.5 mL). TFA was added dropwise (8 equiv.) and the solution was stirred at room temperature for

6h. Toluene was then added and the solvents were evaporated under vacuum.

Peptide couplings. To a solution of the acid (0.30 mmol 1 equiv.), HBTU (1.5 equiv.), HOBt (1 equiv.) in DMF (7 mL) was added DIEA (5 equiv.) under a nitrogen atmosphere. The solution was stirred 0.5 h at room temperature. The amine (1 equiv.) dissolved in DMF (1 mL) was added and the reaction mixture was stirred at room temperature for 16 h. The solution was diluted with toluene and washed once with a 1 M citric acid solution and twice with water. The organic phase was dried over Na₂SO₄, filtered and evaporated. Cold MeOH was added and the precipitate was filtered to provide a yellow solid.

Dimethyl 4-isobutoxy-2,6-pyridinedicarboxylate 2. To a solution of dimethyl 4-hydroxy-2,6-pyridinedicarboxylate³ (1.03 g, 4.9 mmol, 1.0 equiv.) in DMF (15 mL) was added K_2CO_3 (2.03 g, 14.7 mmol, 3 equiv.) under a nitrogen atmosphere. The reaction mixture was stirred at 120°C for 1.5 hour, then cooled down to 70°C. *i*BuI (840 µL, 7.3 mmol, 1.5 equiv.) was added and the reaction mixture was stirred at 70°C for 3 hours. It was then cooled down to room temperature, diluted with toluene (50 mL) and washed three times with water (50 mL). The organic phase was dried with Na₂SO₄, filtered, and evaporated. The product (1.01g, 77 % yield) was used without purification. ¹H NMR (CDCl₃, 400 MHz): δ = 7.80 (2H, s), 4.01 (6H, s), 3.90 (2H, d, *J* = 6.4), 2.16 (1H, m), 0.93 (6H, d, *J* = 6.8).

Methyl 6-(hydroxymethyl)-4-isobutoxy-2-pyridine carboxylate 3. To a solution of diester 2 (3.73 g, 14 mmol, 1.0 equiv.) in DCM (38 mL) and MeOH (75 mL) was added NaBH₄ (1.06 g, 28 mmol, 2 equiv.) under a nitrogen atmosphere at 0°C. The reaction mixture was stirred at 0°C for 0.5 hour then at room temperature for 2 hours. The reaction mixture was neutralized with 1N HCl solution (10 mL). The solvents were removed and the crude product was diluted in DCM and washed three times with water. The organic phase was dried with Na2SO4, filtered, and evaporated. The product was purified by silica gel chromatography using DCM/MeOH 98:2 vol/vol to provide 2.57 g (77 % yield). ¹H NMR (CDCl₃, 400 MHz): δ = 7.55 (1H, d, J = 2.0), 7.02 (1H, d, J = 2.0), 4.79 (2H, s), 3.98 (3H, s), 3.83 (2H, d, *J* = 6.8), 2.12 (1H, m), 1.03 (6H, d, *J* = 6.4); ¹³C NMR (CDCl₃, 100 MHz): δ = 166.7, 165.6, 162.3, 148.3, 110.9, 109.5, 74.6, 64.7, 52.8, 27.9, 19.0; IR (NaCl), v (cm⁻¹) 3388, 3034, 2961, 2921, 2872, 1729, 1601, 1444, 1335, 1267, 1243, 1122, 1044, 892, 867, 791, 738; MS (EI): m/z = 240 $[M+H]^+$, 239 $[M]^+$.

Methyl 6-chloromethyl-4-isobutoxy-2pyridinecarboxylate. To a solution alcohol 3 (1.0 g, 4.2 mmol, 1.0 equiv.) in anhydrous toluene (15 mL) under a nitrogen atmosphere was added SOCl₂ (1.4 mL, 18.9 mmol, 4.5 equiv.). The reaction mixture was stirred at room temperature for three hours. The solvents were removed to yield the product (1.06 g , quant. yield) which was used without further purification. ¹H NMR (CDCl₃, 400 MHz): δ = 7.63 (1H, d, *J* = 2.0), 7.28 (1H, d, *J* = 2.0), 4.85 (2H, s), 4.02 (3H, s), 3.90 (2H, d, *J* = 6.8), 2.15 (1H, m), 1.06 (6H, d, *J* = 6.8); MS (EI): m/z= 261 [M(Cl³⁷)+2H]⁺, 260 [M(Cl³⁷)+H]⁺), 258 [M(Cl³⁵)+H]⁺.

Methyl 6-azidomethyl-4-isobutoxy-2-pyridinecarboxylate. To a solution of methyl 6-chloromethyl-4-isobutoxy-2pyridine-carboxylate (1.06 g, 4.11 mmol, 1.0 equiv.) in DMF (15 mL) was added NaN₃ (321 mg, 4.93 mmol, 1.2 equiv.) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for three hours. DMF was removed and DCM (10 mL) was added. Undissolved salts were filtered off and the DCM was evaporated to yield the product (1.08 g, 98%) which was used without further purification. ¹H NMR (CDCl₃, 400 MHz): δ = 7.50 (1H, d, *J* = 2.4), 7.27 (1H, d, *J* = 2.4), 4,54 (2H, s), 3.93 (2H, d, *J* = 6.8), 3.87 (3H, s), 2.05 (1H, m), 0.99 (6H, d, *J* = 6.4); MS (EI): m/z = 265 [M+2H]⁺, 264 [M+H]⁺.

Methyl 6-{[(tert-butoxycarbonyl)amino]methyl}-4isobutoxy-2-pyridinecarboxylate 4a. To a solution of Methyl 6-azidomethyl-4-isobutoxy-2-pyridinecarboxylate (2.26 g, 8.58 mmol, 1.0 equiv.) in anhydrous THF (30 mL) was added PPh₃ (2.25 g, 8.58 mmol, 1.0 equiv.) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for three hours. Then water (2.80 mL) was added and the reaction mixture was heated to reflux for 5 hours. Toluene (60 mL) was added and the solvents were reduced by evaporation down to a volume 30 mL. (Boc)₂O (2.8 g, 12.87 mmol, 1.5 equiv.) and DMAP (200 mg, 1.64 mmol, 0.2 equiv.) were added and the reaction mixture was stirred at room temperature for 16 hours. All volatiles were removed, the crude material was diluted in DCM, washed three times with water, dried over Na₂SO₄, filtered and evaporated. The product was purified by silica gel chromatography using Et₂O/cyclohexane/DCM 6:3:1 vol/vol/vol to yield 4a (2.18 g, 75 % yield).¹H NMR (CDCl₃, 400 MHz): δ = 7.54 (1H, d, J = 2.0), 6.98 (1H, d, J = 2.0), 4.45 (2H, d, J = 6.0), 3.98 (3H, s), 3.82 (2H, d, J = 6.8), 2.11 (1H, m), 1.46 (9H, s), 1.03 (6H, d, J = 6.8); ¹³C NMR (CDCl₃, 100 MHz): δ = 166.7, 165.7, 160.1, 155.9, 148.9, 111.0, 110.9, 79.6, 74.7, 52.9, 46.0, 28.3, 28.0, 19.0; IR (NaCl), v (cm⁻¹) 3390, 3105, 2967, 2873, 1716, 1688, 1598, 1471, 1436, 1419, 1367, 1332, 1286, 1269, 1252, 1171, 1110, 1045, 894, 865, 791, 765; MS (EI): m/z = 339 $[M+H]^+$, 338 $[M]^+$

Boc-P2-OCH3 5a. Boc-P1-OCH3 4a (511 mg, 1.51 mmol, 1 equiv.) was saponified to the corresponding acid 4c in quantitative yield using the general procedure with LiOH (95 mg, 2,27 mmol, 1.5 equiv.) in THF (5.5 mL), water (5.5 mL). Boc-P₁-OCH₃ 4a (510 mg, 1.51 mmol, 1 equiv.) was separately submitted to Boc cleavage to produce the corresponding amine 4b in quantitative yield using the general procedure with TFA (931 µL, 12.08 mmol, 12 equiv.), DCM (5 mL). The acid 4c (490 mg, 1.51 mmol, 1 equiv.) and the amine 4b (360 mg, 1.51 mmol, 1 equiv.) were coupled following the general coupling procedure with DIEA (1.31 mL, 7.55 mmol, 5 equiv.), HBTU (860 mg, 2.27 mmol, 1.5 equiv.), HOBt (204 mg, 1.51 mmol, 1.0 equiv.), in DMF (40 mL). The crude product was purified by silica gel chromatography using Et₂O/cyclohexane/DCM 60:30:10 vol/vol/vol to provide 707 mg (86 % yield). ¹H NMR (CDCl₃, 400 MHz) : δ = 8.90 (1H, bs), 7.63 (1H, d, J = 2.0), 7.57 (1H, d, J = 2.0), 7.06 (1H, d, J = 2.0), 6.90 (1H, d, J = 2.0), 4.79 (2H, d, J = 6.0), 4.39 (2H, d, J = 5.2), 4.01 (3H, s), 3.83 (4H, m), 2.11 (2H, m), 1.45 (9H, s), 1.02 (12H, d, J = 6.4); ¹³C NMR (CDCl₃, 100 MHz): δ= 167.2, 166.0, 164.7, 159.8, 158.7, 156.3, 151.2, 149.2, 112.1, 111.3, 111.0, 107.1, 75.0, 75. 0, 55.9, 53.3, 45.2, 28.7, 28.3, 19.5; IR (NaCl), *v* (*cm*⁻¹) 3385, 3307, 3109, 3068, 2953, 2874, 1716, 1685, 1602, 1576, 1527, 1473, 1445, 1356, 1335, 1270, 1248, 1207, 1173, 1140, 1115, 1041, 895, 866, 790, 767.; MS (EI): m/z = 545 [M+H]⁺, 544 [M]⁺.

Boc-P₄-OCH₃ 6a. Boc-P₂-OCH₃ 5a (301 mg, 0.55 mmol, 1 equiv.) was saponified to the corresponding acid 5c in quantitative yield using the general procedure with LiOH (36 mg, 0.83 mmol, 1.5 equiv.), THF (3 mL), water (3 mL). Boc-P₂-OCH₃ 5a (301 mg, 0.55 mmol, 1 equiv.) was separately submitted to Boc cleavage to produce the corresponding amine 5b in quantitative yield using the general procedure with TFA (1.02 mL, 8.8 mmol, 16 equiv.), DCM (5 mL). The acid 5c (292 mg, 0.55 mmol, 1 equiv.) and the amine 5b (253 mg, 0.55 mmol, 1 equiv.) were coupled following the general coupling procedure with DIEA (476 µL, 2.75 mmol, 5 equiv.), HBTU (325 mg, 0.86 mmol, 1.5 equiv.), HOBT (77 mg, 0.55 mmol, 1.0 equiv.), DMF (15 mL). The product was purified by silica gel chromatography using toluene/EtOAc 60:40 vol/vol to provide the desired product 6a (402 mg, 73 % yield). ¹H NMR (CDCl₃, 400 MHz) : δ = 9.03 (1H, bs), 8.94 (1H, bs), 8.86 (1H, bs), 7.80 (1H, d, J = 6.8), 7.69 (1H, d, J =7.6), 7.58 (2H, s), 7.52 (1H, s), 7.06 (1H, s), 6.96 (1H, s), 6.88 (1H, s), 5.58 (1H, bs), 4.75 (4H, s), 4.61 (2H, d, J = 4.8), 4.28 (2H, d, J = 4.0), 3.87 (3H, s), 3.78 (8H, d, J = 5.6), 2.07 (4H, m), 1.37 (9H, s), 0.99 (24H, d, J = 5.6); ¹³C NMR (CDCl₃, 100 MHz): δ= 166.9, 166.9, 166.5, 165.2, 164.3, 164.2, 159.2, 158.3, 157.6, 157.5, 150.4, 150.3, 148.3, 128.5, 127.7, 124.8, 111.5, 111.4, 111.2, 110.6, 110.5, 110.2, 110.1, 74.5, 74.3, 52.4, 45.1, 44.3, 44.1, 44.0, 27.8, 27.5, 18.6; IR (NaCl), v (*cm*⁻¹) 3351, 3094, 3053, 2962, 2916, 2875, 1718, 1668, 1600, 1568, 1520, 1445, 1361, 1328, 1251, 1174, 1141, 1041, 877, 844, 790, 736; MS (maldi): $m/z = 957.35 [M+H]^+$, 974.34 $[M+Na]^+$

Boc-P₈-OCH₃ 7a. Boc-P₆-OCH₃ 6a (100 mg, 0.10 mmol, 1 equiv.) saponified to the corresponding acid 6c in quantitative vield using the general procedure with LiOH (20 mg, 0.45 mmol, 4.5 equiv.), THF (1 mL), water (1 mL). Boc-P₆-OCH₃ 6a (100 mg, 0.10 mmol, 1 equiv.) was separately submitted to Boc cleavage to produce the corresponding amine 6b in quantitative yield using the general procedure with TFA (130 µL, 1.6 mmol, 16 equiv.), DCM (1 mL). .The acid 6c (99 mg, 0.10 mmol, 1 equiv.) and the amine 6b (90 mg, 0.10 mmol, 1 equiv.) were coupled following the general coupling procedure with DIEA (91 µL, 0.5 mmol, 5 equiv.), HBTU (60 mg, 0.15 mmol, 1.5 equiv.), HOBt (14 mg, 0.10 mmol, 1 equiv.), DMF (3 mL). The crude was submitted to silica gel chromatography using toluene/EtOAc 60:40 vol/vol to provide 121 mg of the product (65 % yield). ¹H NMR (CDCl₃, 400 MHz): δ = 9.34 (1H, bs), 9.26 (1H, bs), 9.09 (2H, bs), 9.04 (1H, bs), 8.91 (1H, bs), 8.79 (1H, bs), 7.60 (1H, d, J = 2.0), 7.57 (1H, d, J = 2.0), 7.56 (1H, d, J = 2.4), 7.52 (1H, d, J = 1.6), 7.45 (3H, bs), 7.41 (1H, s), 6.96 (1H, s), 6.95 (2H, d, J = 2.0, 6.94 (1H, s), 6.90 (1H, s), 6.88 (1H, s), 6.82 (1H, s), 6.79 (1H, s), 6.19 (1H, bs), 4.78 (2H, d, *J* = 4.0), 4.72 (2H, d, *J* = 5.6), 4.65 (4H, d, *J* = 2.0), 4.60 (4H, m), 4.52 (2H, d, *J* = 3.2), 4.31 (2H, d, *J* = 3.6), 3.91 (3H, s), 3.83 (2H, d, *J* = 4.8), 3.79-3.70 (10H, m), 3.64 (2H, d, J = 5.2), 3.54 (2H, d, J = 4.8), 2.05 (8H, m), 1.18 (9H, s), 1.03-0.94 (42H, m), 0.87 (6H, d, J = 6.0); ¹³C NMR (CDCl₃, 100 MHz): δ = 167.3 ; 167.1, 167.1, 167.0, 166.7, 165.6, 165.0, 164.7, 164.4, 164.2, 164.1, 159.7, 158.5, 158.3, 158.2, 157.7, 157.0, 156.8, 156.0, 151.1, 151.1, 150.9, 150.9, 150.9, 150.8, 150.4, 148.7, 111.7, 111.4, 111.4, 111.2, 111.1, 110.9, 110.9, 110.6, 107.5, 107.3, 107.2, 107.1, 107.0, 106.9, 106.8, 79.1, 74.8, 74.7, 74.6, 52.8, 45.6, 45.0, 44.8, 44.6, 44.0, 43.9, 28.1, 28.0, 27.9, 27.8, 19.0, 19.0, 18.9; IR (NaCl), v (cm⁻¹) 3339, 3077, 3044, 2962, 2916, 2875, 1704, 1671, 1601, 1568, 1527, 1444, 1357, 1327, 1263, 1163, 1138, 1039, 871, 790, 737; MS (maldi): m/z = 1803.94 [M+Na]⁺.

Boc-(PQ)₁-OCH₃ 9a. To a solution of Boc-P₁-COOH 4b (486 mg, 1.50 mmol, 1 equiv.) and PyBOP (781 mg, 1.50 mmol, 1 equiv.) in DCM (15 mL) was added DIEA (520 µL, 3 mmol, 2 equiv.) followed by H_2N -Q-OCH₃ $\mathbf{8}^{1,2}$ (452 mg, 1.65 mmol, 1.1 equiv.) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2 h, then washed twice with a saturated NaHCO₃ solution and once with a citric solution (1 M). The organic phase was dried over Na₂SO₄, filtered, and evaporated. Precipitation from cold MeOH (5 mL) yielded the pure product (696 mg, 80% yield). ¹H NMR $(CDCl_3, 400 \text{ MHz}): \delta = 12.61 (1H, s), 8.96 (1H, d, J = 7.2),$ 7.96 (1H, d, J = 8.4), 7.73 (1H, d, J = 2.0), 7.65 (1H, t, J = 8.0 and J = 8.0), 7.60 (1H, s) 6.98 (1H, d, J = 2.0), 6.09 (1H, s), 4.58 (2H, d, J = 5.6), 4.11 (3H, s), 4.07 (2H, d, J = 6.8), 3.89 (2H, d, J = 6.4), 2.31 (1H, m), 2.14 (1H, m), 1.37 (9H, s), 1.16 (6H, d, J = 6.4), 1.05 (6H, d, J = 6.8); ¹³C NMR (CDCl₃, 100 MHz): δ= 167.8, 166.1, 163.3, 162.6, 159.0, 156.7, 151.7, 147.2, 139.7, 135.2, 128.7, 122.5, 117.6, 116.1, 111.2, 107.3, 101.5, 79.7, 75.4, 70.9, 53.4, 45.9, 28.6, 28.5, 28.3, 19.5, 19.4; IR (NaCl), v (cm⁻¹) 3340, 3300, 3081, 2963, 2932, 2874, 1721, 1682, 1602, 1574, 1531, 1470, 1441, 1421, 1384, 1360, 1333, 1265, 1177, 1110, 1043, 994, 966, 913, 867, 818, 761, 723; MS (maldi): $m/z = 581.16 [M+H]^+$, 603.15 $[M+Na]^+$, 619.11 [M+K]⁺.

BocNH-(PQ)2-OCH3 10a. Boc-(PQ)1-OCH3 9a (100 mg, 0.17 mmol, 1 equiv.) was saponified to the corresponding acid **9c** in quantitative yield using the general procedure with KOH (32 mg, 0.57 mmol, 3 equiv.), THF (3 mL), MeOH (1 mL). Boc-(PQ)₁-OCH₃ 9a (100 mg, 0.17mmol, 1 equiv.) was separately submitted to Boc cleavage to produce the corresponding amine 9b in quantitative yield using the general procedure with TFA (104 µL, 1.36 mmol, 8 equiv.), DCM (1.5 mL). The acid 9c (86 mg, 0.17 mmol, 1 equiv.) and the amine 9b (82 mg, 0.17 mmol, 1 equiv.) were coupled following the general coupling procedure with DIEA (147 μ L, 0.85 mmol, 5 equiv.), HBTU (97 mg, 0.26 mmol, 1.5 equiv.), HOBt (23 mg, 0.17 mmol, 1 equiv.), DMF (4.5 mL). The crude product was purified by silica gel chromatography using EtOAc/cyclohexane 70:30 vol/vol to provide 104 mg (65% yield). ¹H NMR (CDCl₃, 400 MHz): δ = 12.14 (1H, s), 11.79 (1H, s), 9.52 (1H, s), 8.65 (2H, s), 7.96 (2H, d, *J* = 8.4), 7.79 (1H, s), 7.71 (1H, s), 7.57 (1H, t, J = 7.6 and J = 7.6), 7.52 (1H, t, J = 7.6 and J = 7.6), 7.42 (1H, s), 7.21 (1H, s), 7.12 (1H, d, J = 2.0), 6.75 (1H, s), 5.64 (1H, s), 5.11 (2H, d, J = 4.8), 4.14 (2H, d, J = 6.8), 3.99 (2H, d, J = 6.4), 3.94 (2H, d, *J* = 3.2), 3.89 (2H, d, *J* = 6,4), 3.84 (2H, d, *J* = 6.4), 3.66 (3H, s), 2.33 (2H, m), 2.14 (2H, m), 1.21 (9H, s), 1.19 (6H, d, J = 6.8), 1.18 (6H, d, J = 6.8), 1.05 (12H, m); ¹³C NMR (CDCl₃, 100 MHz): δ= 167.6, 167.1, 165.2, 164.7, 163.2, 162.7, 161.9, 161.4, 158.8, 157.6, 155.7, 151.6, 150.8, 149.7, 146.4, 139.3, 138.3, 134.5, 134.0, 127.9, 127.3, 122.0, 117.4, 117.0, 116.2, 115.9, 110.7, 109.6, 107.5, 107.0, 101.0, 99.1, 79.2, 75.3, 75.0, 74.8, 74.6, 52.5, 45.3, 44.9, 28.2, 28.0, 19.3, 19.2, 19.0; IR (NaCl), v (cm⁻¹) 3395, 3319, 3082, 2962, 2931, 2874, 1720, 1683, 1602, 1572, 1531, 1470, 1421, 1385, 1358, 1330, 1267, 1173, 1114, 1045, 993, 967, 916, 867, 818, 760, 724; MS (maldi): $m/z = 1029.20 [M+H]^+$, $1051.22 [M+Na]^+$.

BocNH-(PQ)₄-OCH₃ 11a. Boc-(PQ)₂-OCH₃ **10a** (72 mg, 0.07 mmol, 1 equiv.) was saponified to the corresponding acid **10c** in quantitative yield using the general procedure with KOH (12 mg, 0.21 mmol, 3 equiv.), THF (1.5 mL), MeOH (0.5 mL). Boc-(PQ)₂-OCH₃ **10a** (72 mg, 0.07 mmol, 1 equiv.) was separately submitted to Boc cleavage to produce the corresponding amine **9b** in quantitative yield using the general procedure with TFA (44 μ L, 0.56 mmol, 8 equiv.), DCM. The acid 10c (71 mg, 0.07 mmol, 1 equiv.) and the

amine 10b (65 mg, 0.07 mmol, 1 equiv.) were coupled following the general coupling procedure with DIEA (61 μ L, 0.35 mmol, 5 equiv.), HBTU (40 mg, 0.105 mmol, 1.5 equiv.), HOBt (10 mg, 0.07 mmol, 1 equiv.), DMF (2 mL). The crude product was purified by silica gel chromatography using EtOAc/cyclohexane 70:30 vol/vol to provide 103 mg (77% yield). X-ray quality single crystals were obtained by slow diffusion of of MeOH into a DMSO-CHCl₃ solution. ¹H NMR (CDCl₃, 400 MHz): δ = 12.24 (1H, s), 11.66 (2H, s), 11.44 (1H, s), 9.09 (1H, bs), 8.90 (1H, bs), 8.72 (1H, d, J =7.2), 8.64 (1H, bs), 8.45 (2H, m), 8.07 (1H, d, J = 7.2), 7.76-7.23 (10H, m), 7.18 (5H, m), 7.05 (1H, s), 6.94 (1H, s), 6.77 (1H, s), 6.76 (3H, m), 5.24 (1H, bs), 4.53 (2H, bs), 4.23 (2H, bs), 4.03 (2H, d, J = 6.0), 3.97 (2H, d, J = 6.0), 3.88-3.81 (12H, m), 3.66 (2H, d, J = 6.0), 3.57 (5H, m), 2.32 (3H, m), 2.20 (1H, m), 2.06 (3H, m), 1.90 (1H, m), 1.27 (9H, s), 1.25-0.88 (48H, m); ¹³C NMR (CDCl₃, 100 MHz): δ= 167.7, 167.4, 167.3, 164.8, 164.7, 164.1, 162.9, 162.8, 162.1, 161.9, 161.4, 161.0, 159.3, 158.5, 155.6, 151.7, 151.4, 151.3, 151.2, 148.6, 148.5, 146.3, 138.5, 138.0, 137.6, 137.5, 134.3, 133.8, 133.5, 133.1, 128.1, 127.6, 127.3, 127.1, 126.7, 125.6, 121.7, 121.6, 121.3, 121.2, 117.5, 116.5, 116.4, 116.3, 116.2, 116.0, 115.7, 115.6, 110.7, 109.9, 109.6, 107.3, 107.0, 106.8, 106.5, 100.6, 99.0, 98.4, 79.4, 75.1, 74.7, 74.6, 52.5, 45.9, 45.3, 45.1, 44.4, 28.3, 28.2, 28.1, 28.0, 27.9, 27.3, 19.7, 19.4, 19.3, 19.2, 19.1, 19.0. IR (NaCl), v (cm⁻¹) 3386, 3307, 3055, 2960, 2934, 2874, 1715, 1681, 1601, 1566, 1531, 1469, 1422, 1385, 1356, 1330, 1265, 1176, 1117, 1046, 994, 969, 916, 868, 819, 736, 705; MS (maldi): $m/z = 1925.38 [M+H]^+$, 1947.49 $[M+Na]^+$, 1963.39 [M+K]⁺.

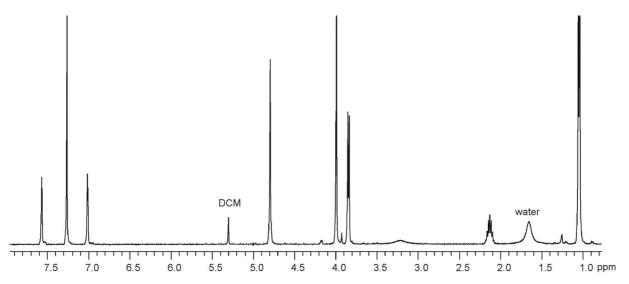
NMR solution studies. Spectra were recorded with a Bruker Avance 400 NB US NMR spectrometer by means of a 5 mm direct QNP ¹H/X probe with gradient capabilities. The temperature was maintained at 348K for the structure determination. ¹H, ¹³C, correlated spectroscopy (DQF-COSY), heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple bond correlation (HMBC), and nuclear Overhauser spectroscopy (NOESY), spectra were used for sequence-specific assignements of the BocNH-(PQ)₄-OMe. Data processing was performed with TOP SPIN 2.0 sofware.

The COSY: acquisition with 2048 $(t_2) \times 256 (t_1)$ data points; relaxation delay of 2s; sweep width of 6000 Hz in both dimensions, QF mode in t_1 and 24 scans per increment. Processing was done after a sine-bell multiplication in both dimensions, and Fourier transformed in 1k × 1k real data points.

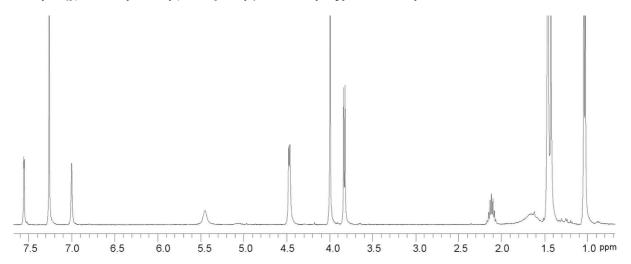
The HMQC acquisition was performed with 2048 (t_2) × 512 (t_1) data points in QF mode in t_1 ; a relaxation delay of 1.5 s and 20 scans per increment; and a sweep width of 5600 Hz for the proton dimension and 25000 Hz for the carbon dimension. Processing was done after a qsine multiplication in both dimensions (ssb = 2), and Fourier transformed in 2k × 1k real data points.

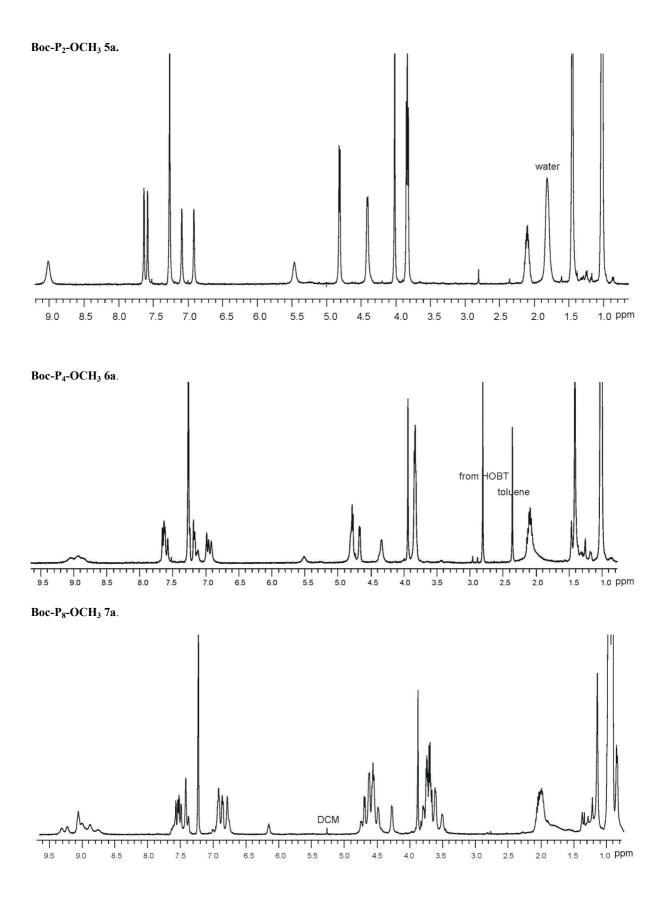
The HMBC acquisition was performed with 2048 (t_2) × 512 (t_1) data points in QF mode in t_1 ; a relaxation delay of 1.5 s and 32 scans per increment ; and a sweep width of 5600 Hz for the proton dimension and 25000 Hz for the carbon dimension. Processing was done after a qsine multiplication in both dimensions (ssb = 2), and Fourier transformed in 2k × 1k real data points.

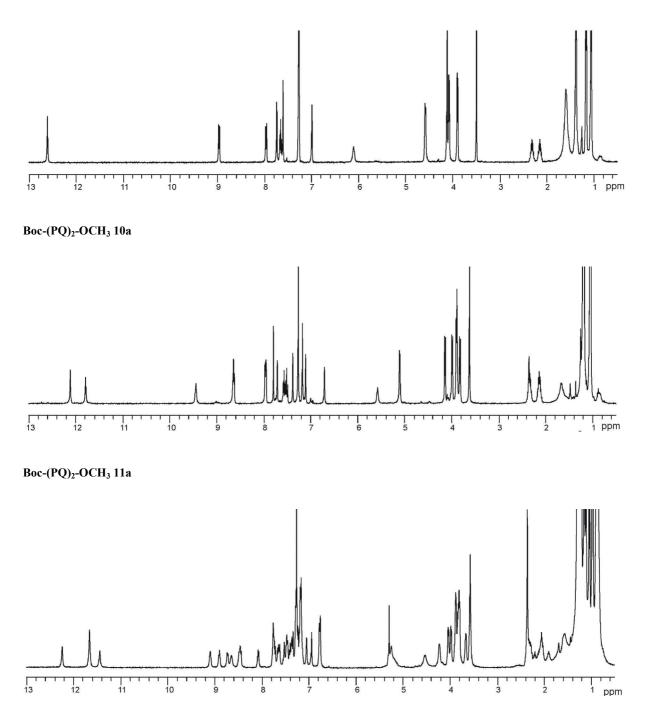
The NOESY acquisition was performed with 2048 (t_2) × 512 (t_1) data points in States-TPPI mode; a relaxation delay of 2s and 24 scans per increment; and a sweep width of 5600 Hz in both dimensions; and a mixing time of 300 ms. Processing was done after a qsine multiplication in both dimensions (ssb = 2), and Fourier transformed in 1k × 1k real data points.


X-ray crystallography. A single crystal of **11a** was mounted on a Rigaku R-Axis Rapid diffractometer equipped with a MM007 micro focus rotating anode generator with monochromatized Cu-K α radiation (1.54178 Å). The data collection, unit cell refinement, and data reduction were performed using the CrystalClear software package. The positions of non-H atoms were determined by the program SHELXD, and the position of the H atoms were deduced from coordinates of the non-H atoms and confirmed by Fourier synthesis. H atoms were included for structure factor calculations but not refined.

A summary of crystallographic for **11a** (BocNH-(PQ)₄-OCH₃) data is as follows. Formula (asymmetric unit):


C₁₀₆H₁₂₄N₁₆O₁₉(H₂O)₃(CH₃OH)₉, Crystal dimensions (mm): 0.3 × 0.3 × 0.5; crystal aspect: Colorless prism; Cryst. System: triclinic; Space group *P*-1; *Z* = 2; Cell parameters: *a* = 16.1046 (10) Å, *b* = 20.9270 (13) Å, *c* = 22.4266 (12) Å, α = 116.022 (4)°, β = 99.677 (4)°, γ = 99.965 (4)°; *T* = 183(2) K; *V* = 6430.3 (7) Å³; *FW* = 2253.26 g.mol⁻¹; ρ = 1.164 g.cm⁻³; λ = 1.5418 Å (Cu(K_α)); 6.52 ≤ θ ≤ 71.95; refl. measured = 89008; refl. unique = 22080; GOF = 1.091; R₁ (I>2σ(I)) = 0.0946; wR₂ (all data) = 0.3243.


NMR spectra


Methyl 6-(hydroxymethyl)-4-isobutoxy-2-pyridine carboxylate 3.

Methyl 6-{[(tert-butoxycarbonyl)amino]methyl}-4-isobutoxy-2-pyridinecarboxylate 4a.

Complete reference 6a of the manuscript:

References :

- 1 H. Jiang, J.-M. Léger, I. Huc, J. Am. Chem. Soc. 2003, 125, 3448-3449.
- 2 H. Jiang, J.-M. Léger, C. Dolain, P. Guionneau, I. Huc, Tetrahedron. 2003, 59, 8365-8374.
- 3 V. Berl, I. Huc, R. Khoury, J.-M. Lehn, Chem. Eur. J. 2001, 7, 2798-2809.

Gong, B.; Zeng, H.; Zhu, J.; Yuan, L.; Han, Y.; Cheng, S.; Furukawa, M; Parra, R. D.; Kovalevsky, A. Y.; Mills, J. L.; Skrzypczak-Jankun, E.; Martinovic, S.; Smith, R. D.; Zheng, C.; Szyperski, T.; Cheng Zeng, X. *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 11583– 11588