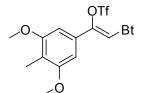
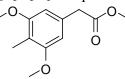
Supporting Information

Total Synthesis, Stereochemical Reassignment and Absolute Configuration of Chlorofusin

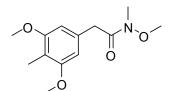
Sang Yeul Lee, Ryan C. Clark and Dale L. Boger*


Department of Chemistry and the Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037

NMR solvent residual peaks used in all data collection

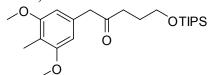

DMSO-*d*₆ ¹H NMR: 2.52 ppm (Used by Williams) ¹³C NMR: 39.6 ppm (Used by Williams) CDCl₃ ¹H NMR: 7.26 ppm ¹³C NMR: 77.23 ppm CD₃OD ¹³C NMR: 49.05

ROESY mixing time: 300 ms



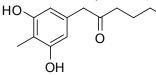
(Z)-2-(1H-Benzo[d]-[1,2,3]-triazol-1-vl)-1-(3,5-dimethoxy-4-methylphenyl)vinvl trifluoromethanesulfonate (S1). A mixture of commercially available 3,5-dimethoxy-4methylbenzoic acid (5.0 g, 25 mmol) in thionyl chloride (19 mL, 260 mmol) was warmed at 60 °C for 2 h. The volatiles were removed under reduced pressure to provide the crude acid chloride, which was dissolved in THF (30 mL), treated with 1-(trimethylsilylmethyl)benzotriazole (5.2 g, 25 mmol) and warmed at 85 °C for 24 h. The reaction mixture was cooled to 0 °C and the precipitate was collected. The residue was washed with cold THF (20 mL) and dried under reduced pressure to afford the crude Nacylmethylbenzotriazole as a gray solid which used in the next step without purification. A suspension of the crude intermediate (7.1 g) in anhydrous CH₂Cl₂ (46 mL) under nitrogen was cooled to 0 °C. The reaction mixture was treated with 2,6-lutidine (5.4 mL, 150 mmol), freshly distilled trifluoromethanesulfonic anhydride (4.3 mL, 25 mmol), and stirred at 23 °C for 4 h. The reaction mixture was quenched with the addition of saturated aqueous NH₄Cl (20 mL), extracted with EtOAc (3×20 mL) and the combined organic phases were dried (Na₂SO₄) and concentrated under reduced pressure. Flash chromatography (SiO₂, 15% EtOAc-hexanes) afforded S1 as a gray solid (86% over three steps, 9.9 g): mp 129–133 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.15 (d, J = 8.4 Hz, 1H), 7.61–7.65 (m, 2H), 7.61 (s, 1H), 7.48 (ddd, J = 8.1, 6.2, 1.7 Hz, 1H), 6.87 (s, 2H), 3.91 (s, 6H), 2.16 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 158.9 (2C), 145.6, 143.6, 132.8, 129.2, 128.9, 125.1, 120.7, 118.8, 118.2 (q, J = 321 Hz), 113.3, 110.3, 101.8 (2C), 56.1 (2C), 8.7; IR (film) v_{max} 1584, 1456, 1417, 1215, 1140, 1047, 745 cm⁻¹; HR ESI-TOF m/z 444.0831 (M + H⁺, C₁₈H₁₆F₃N₃O₅S requires 443.0763).

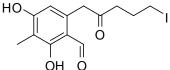
Methyl 2-(3,5-dimethoxy-4-methylphenyl)acetate (S2). A solution of **S1** (9.0 g, 20 mmol) in anhydrous MeCN (130 mL) was treated with NaOMe (2.7 g, 49 mmol) and stirred at 60 °C for 12 h. The reaction mixture was cooled and concentrated under reduced pressure. The residue was dissolved in MeOH (130 mL), treated with aqueous 12 N HCl (5.0 mL) and warmed at 70 °C for 18 h. The volatiles were removed under reduced pressure and the residue was dissolved in EtOAc (150 mL), washed with saturated aqueous NaHCO₃ (50 mL), H₂O (30 mL), saturated aqueous NaCl (50 mL), dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, 10% EtOAc–hexanes) to yield **S2** as a colorless oil (75% over two steps, 3.4 g): ¹H NMR (CDCl₃, 400 MHz) δ 6.46 (s, 2H), 3.82 (s, 6H), 3.70 (s, 3H), 3.59 (s, 2H), 2.06 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 172.3, 158.4 (2C), 132.3, 113.5, 104.8 (2C), 55.9 (2C), 52.2, 41.8, 8.2; IR (film) v_{max} 2952, 2839, 1738, 159, 1455, 1243, 1138 cm⁻¹; HR ESI-TOF *m/z* 225.1126 (M + H⁺, C₁₂H₁₆O₄ requires 224.1049).



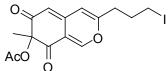
2-(3,5-Dimethoxy-4-methylphenyl)-*N***-methoxy-***N***-methylacetamide** (S3). A suspension of S2 (2.80 g, 12.5 mmol) and NH(OMe)Me·HCl (2.07 g, 21.2 mmol) in anhydrous THF (25 mL) at -20 °C under argon was treated with a solution of *i*-PrMgCl (2.0 M in THF, 21.2 mL, 42.4 mmol) over 30 min. The reaction mixture was stirred at -10 °C for 30 min before being quenched with the addition of saturated aqueous NH₄Cl. The resulting mixture was extracted with Et₂O (3 × 30 mL), and the combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, 40% EtOAc–hexanes) to yield S3 as a white solid (95%, 3.01 g): mp 50–53 °C; ¹H NMR (CDCl₃, 500 MHz) δ 6.48 (s, 2H), 3.80 (s, 6H), 3.73 (s, 2H), 3.62 (s, 3H), 3.20 (s, 3H), 2.05 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.6, 158.3 (2C), 133.2, 113.0, 104.8 (2C), 61.5, 55.9 (2C), 39.9, 32.4, 8.1,; IR (film) v_{max} 2928, 2857, 1659, 1586, 1457, 1418, 1379, 1239, 1138, 1007 cm⁻¹; HR ESI-TOF *m/z* 254.1378 (M + H⁺, C₁₃H₁₉NO₄ requires 253.1315).

1

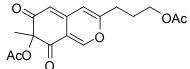

3-Iodo-1-triisopropylsilyloxypropane (S4). Commercially available 3-iodopropan-1-ol (2.85 mL, 29.7 mmol) in anhydrous CH₂Cl₂ (30 mL) under argon was cooled to 0 °C, with 2,6-lutidine (7.60)mL, 65.3 mmol). triisopropylsilyltreated trifluoromethanesulfonate (10.0 g, 32.6 mmol) and stirred at 23 °C for 18 h. The reaction mixture was diluted with EtOAc (100 mL), washed with aqueous 1 N HCl (30 mL), saturated aqueous NaHCO₃ (30 mL), H₂O (30 mL), saturated aqueous NaCl (30 mL), dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, heptane) to yield S4 as a colorless oil (95%, 9.65 g): 1 H NMR (CDCl₃, 400 MHz) δ 3.75 (t, J = 5.6 Hz, 2H), 3.32 (t, J = 6.7 Hz, 2H), 2.01 (m, 2H), 1.07 (m, 21H); ¹³C NMR (CDCl₃, 100 MHz) & 62.7, 36.5, 18.0 (6C), 11.9 (3C), 3.8; IR (film) v_{max} 2941, 2861, 1463, 1104, 882, 682 cm⁻¹; HR ESI-TOF m/z 343.0950 (M + H^+ , $C_{12}H_{27}IOSi$ requires 342.0877).


1-(3,5-Dimethoxy-4-methylphenyl)-5-(triisopropylsilyloxy)pentan-2-one (S5).

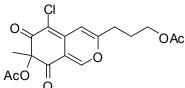
A solution of *tert*-butyl lithium (1.7 M in pentane, 17.3 mL, 29.4 mmol) in anhydrous Et₂O (83 mL) was cooled to -78 °C under argon, treated with **S4** (4.58 g, 13.4 mmol) in Et₂O (27 mL) and stirred at -78 °C for 20 min before a solution of **S3** (2.82 g, 11.2 mmol) in anhydrous THF (22 mL) was added. The reaction mixture was stirred at -78 °C for 3 h before being quenched with the addition of saturated aqueous NH₄Cl. The resulting mixture was stirred at 23 °C for 1 h, extracted with EtOAc (3 × 50 mL) and the combined organic layers were dried (Na₂SO₄). The solvent was removed under reduced pressure and the residue was purified by flash chromatography (SiO₂, 10% EtOAc–hexanes) to afford **S5** as a pale yellow oil (90%, 4.10 g): ¹H NMR (CDCl₃, 600


MHz) δ 6.37 (s, 2H), 3.80 (s, 6H), 3.64 (dd, J = 7.3, 4.6 Hz, 4H), 2.58 (t, J = 7.2 Hz, 2H), 2.06 (s, 3H), 1.78 (app quint, J = 6.6 Hz, 2H), 0.97–1.08 (m, 21H); ¹³C NMR (CDCl₃, 150 MHz) δ 209.0, 158.6 (2C), 132.8, 113.3, 104.9 (2C), 62.4, 55.9 (2C), 51.1, 38.2, 27.1, 18.2 (6C), 12.1 (3C), 8.2; IR (film) v_{max} 2932, 2868, 1713, 1590, 1463, 1413, 1137, 1100 cm⁻¹; HR ESI-TOF m/z 409.2766 (M + H⁺, C₂₃H₄₀O₄Si requires 408.2696).

1-(3,5-Dihydroxy-4-methylphenyl)-5-iodopentan-2-one (S6). A solution of **S5** (412 mg, 1.01 mmol) in anhydrous MeCN (14.5 mL) was treated with iodotrimethylsilane (2.15 mL, 15.1 mmol) and warmed at 120 °C for 50 min at the normal absorption level in a microwave reactor. The cooled reaction mixture was treated with saturated aqueous Na₂S₂O₃ (1 mL), stirred at 23 °C for 30 min and extracted with EtOAc (3×10 mL). The combined organic layers were dried (Na₂SO₄), concentrated under reduced pressure and purified by flash chromatography (SiO₂, 3% MeOH–CH₂Cl₂) to afford **S6** as an oil (95%, 321 mg): ¹H NMR (CDCl₃, 400 MHz) δ 6.26 (s, 2H), 4.81 (br s, 2H), 3.54 (s, 1H), 3.17 (t, *J* = 6.7 Hz, 2H), 2.60 (t, *J* = 6.9 Hz, 2H), 2.11 (s, 3H), 2.03 (app quint, *J* = 6.8 Hz, 2H), one OH was not observed; ¹³C NMR (CDCl₃, 125 MHz) δ 208.7, 155.4 (2C), 132.4, 109.8, 108.8 (2C), 50.1, 42.3, 27.3, 8.1, 6.4; IR (film) v_{max} 3383, 2922, 1702, 1598, 1431, 1371, 1081 cm⁻¹; HR ESI-TOF *m*/*z* 335.1042 (M + H⁺, C₁₂H₁₅IO₃ requires 334.0967).

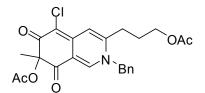


2,4-Dihydroxy-6-(5-iodo-2-oxopentyl)-3-methylbenzaldehyde (**S7**). A suspension of AlCl₃ (1.06 g, 7.92 mmol) in anhydrous toluene (53 mL) was cooled to -45 °C under argon, treated with a solution of **S6** (882 mg, 2.64 mmol) in triethyl orthoformate (8.80 mL, 52.8 mmol) and stirred at -30 °C for 1 h. The reaction mixture was treated at -15 °C with aqueous 2 N HCl (10 mL), warmed to 23 °C and extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with saturated aqueous NaCl (30 mL), dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, 3% MeOH–CH₂Cl₂) to provide **S7** as a gray solid (75%, 717 mg): ¹H NMR (CDCl₃, 500 MHz) δ 9.88 (s, 1H), 6.24 (s, 1H), 5.52 (br s, 1H), 3.92 (s, 2H), 3.21 (t, *J* = 6.6 Hz, 2H), 2.70 (t, *J* = 6.9 Hz, 2H), 2.10 (s, 3H), 2.06 (app quint, *J* = 6.7 Hz, 2H), one OH was not observed; ¹³C NMR (CD₃OD, 125 MHz) δ 208.3, 194.9, 165.2, 164.6, 139.1, 113.8, 111.7, 111.5, 46.7, 43.5, 28.7, 7.3, 5.9; IR (film) v_{max} 3335, 2923, 1712, 1620, 1428, 1303, 125,2 1121 cm⁻¹; HR ESI-TOF *m/z* 384.9913 (M + Na⁺, C₁₃H₁₅IO₄ requires 362.0015).

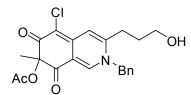


7-Acetoxy-3-(3-iodopropyl)-7-methyl-6H-isochromene-6,8-dione (S8). A solution of **S7** (547 mg, 1.51 mmol) in acetic acid (150 mL) was treated with *p*-TsOH (2.60 g, 15.1

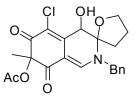
mmol). The reaction mixture was stirred at 95 °C under argon. After 90 min, the reaction mixture was cooled to 15 °C, degassed with nitrogen for 30 min, treated portionwise with 95% lead tetraacetate (803 mg, 1.81 mmol) over 15 min, stirred at 15 °C for 30 min, and allowed to stand at 15–17 °C for 20 min. The reaction mixture was poured into ice water (200 mL), extracted with EtOAc (3×100 mL), and the combined extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 50% EtOAc–hexanes) afforded **S8** as an oil (48%, 291 mg): ¹H NMR (CDCl₃, 500 MHz) δ 7.86 (d, J = 0.8 Hz, 1H), 6.15 (s, 1H), 5.53 (d, J = 1.0 Hz, 1H), 3.18-3.26 (m, 2H), 2.56 (app t, J = 7.5 Hz, 2H), 2.16 (s, 3H), 2.11 (app quint, J = 6.7 Hz, 2H), 1.52 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 193.3, 192.9, 170.3, 160.3, 154.0, 142.4, 115.5, 109.8, 107.6, 84.6, 34.0, 29.9, 22.4, 20.3, 4.4; IR (film) v_{max} 3458, 2926, 1720, 1641, 1444, 1249 cm⁻¹; HR ESI-TOF *m*/*z* 403. 0043 (M + H⁺, C₁₅H₁₅IO₅ requires 401.9965).



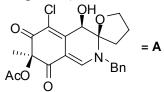
7-Acetoxy-3-(3-acetoxypropyl)-7-methyl-6*H***-isochromene-6,8-dione (S9). A solution of S8 (140 mg, 0.35 mmol) in acetic acid (3.50 mL) was treated with silver acetate (174 mg, 1.05 mmol) and stirred at 50 °C for 4 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. Chromatography (SiO₂, 50% EtOAc–hexanes) afforded S9 as an oil (87%, 86.0 mg): ¹H NMR (CDCl₃, 500 MHz) \delta 7.86 (d,** *J* **= 0.9 Hz, 1H), 6.12 (s, 1H), 5.52 (d,** *J* **= 1.1 Hz, 1H), 4.13 (t,** *J* **= 6.2 Hz, 2H), 2.50 (app t,** *J* **= 7.6 Hz, 2H), 2.16 (s, 3H), 2.06 (s, 3H), 1.93–2.00 (m, 2H), 1.52 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta 193.4, 192.9, 171.1, 170.3, 161.1, 154.0, 142.5, 115.4, 109.3, 107.5, 84.6, 63.1, 30.1, 25.9, 22.5, 21.1, 20.3; IR (film) v_{max} 3359, 2929, 1713, 1618, 1427, 1302, 1252, 1121 cm⁻¹; HR ESI-TOF** *m/z* **335.1127 (M + H⁺, C₁₇H₁₈O₇ requires 334.1053).**



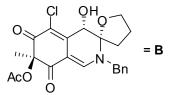
7-Acetoxy-3-(3-acetoxypropyl)-5-chloro-7-methyl-6*H***-isochromene-6,8-dione (S10). A solution of S9 (91 mg 0.27 mmol) in acetic acid (2.7 mL) was treated with** *N***-chlorosuccinimide (39 mg, 0.29 mmol). The reaction mixture was stirred at 23 °C for 24 h before being quenched with the addition of saturated aqueous Na₂S₂O₃ (0.5 mL). The reaction mixture was diluted with EtOAc (30 mL), washed with saturated aqueous NaHCO₃ (3 × 10 mL), H₂O (10 mL), saturated aqueous NaCl (10 mL) and the organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 40% EtOAc–hexanes) afforded S10** as a yellow solid (87%, 86 mg): mp 177–178 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.91 (s, 1H), 6.62 (s, 1H), 4.16 (t, *J* = 6.1 Hz, 2H), 2.60 (t, *J* = 7.5 Hz, 2H), 2.17 (s, 3H), 2.08 (s, 3H), 2.02 (m, 2H), 1.55 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 191.8, 186.5, 171.1, 170.4, 163.1, 153.1, 138.3, 115.1, 111.1, 106.5, 84.8, 63.1, 30.5, 26.0, 22.5, 21.1, 20.3; IR (film) v_{max} 3212, 3086, 2959, 1743, 1647,


1558, 1472, 1241, 852, 773 cm⁻¹; HR ESI-TOF m/z 369.0729 (M + H⁺, C₁₇H₁₇ClO₇ requires 368.0657). Spectral data was in accordance with the literature values.¹

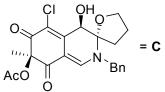
7-Acetoxy-3-(3-acetoxypropyl)-2-benzyl-5-chloro-7-methyl-2H,7H-isoquinoline-6,8-dione (S11). A solution of **S10** (63 mg, 0.17 mmol) in anhydrous CH₂Cl₂ (1.7 mL) was treated with benzylamine (21 μ L, 0.19 mmol), stirred at 23 °C for 1 h and concentrated under reduced pressure. Chromatography (SiO₂, 70% EtOAc–hexanes) afforded **S11** as a red solid (77 mg, 99%): mp 154–155 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.82 (s, 1H), 7.40 (m, 3H), 7.13 (d, *J* = 7.4 Hz, 2H), 6.80 (s, 1H), 5.04 (s, 2H), 4.10 (t, *J* = 6.0 Hz, 2H), 2.57 (m, 2H), 2.17 (s, 3H), 2.02 (s, 3H), 1.95 (dt, *J* = 6.4, 12.7 Hz, 2H), 1.56 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 193.9, 185.1, 171.0, 170.4, 149.8, 144.1, 142.1, 134.1, 129.9 (2C), 129.3, 126.3 (2C), 115.2, 113.9, 102.8, 85.0, 63.0, 57.1, 28.8, 27.6, 23.3, 21.1, 20.5; IR (film) v_{max} 1729,1617, 1513, 1368, 1234, 1085, 855 cm⁻¹; HR ESI-TOF *m/z* 458.1360 (M + H⁺, C₂₄H₂₄CINO₆ requires 458.1365). Spectral data was in accordance with the literature values.¹


7-Acetoxy-2-benzyl-5-chloro-3-(3-hydroxypropyl)-7-methyl-2H,7H-isoquinoline-6,8dione (S12). A solution of **S11** (40 mg, 0.087 mmol) in H₂O (90 μ L) and MeOH (0.9 mL) was cooled to 0 °C and treated with K₂CO₃ (24 mg, 0.18 mmol). The reaction mixture was stirred at 0 °C for 30 min before being quenched with aqueous 0.1 N HCl (2.5 mL). The resulting mixture was acidified to pH 3 and extracted with EtOAc (3 × 3 mL). The combined organic phases were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 90% EtOAc–hexanes) afforded **S12** as a red solid (75%, 27 mg) along with recovered **S11** (25 %, 10 mg): mp 159–161 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.82 (s, 1H), 7.35–7.46 (m, 3H), 7.14 (d, *J* = 6.9 Hz, 2H), 6.83 (s, 1H), 5.09 (s, 2H), 3.72 (t, *J* = 5.6 Hz, 2H), 2.66 (app t, *J* = 7.6 Hz, 2H), 2.17 (s, 3H), 1.82–1.91 (m, 2H), 1.56 (s, 3H), OH proton was not observed; ¹³C NMR (CDCl₃, 125 MHz) δ 193.9, 184.8, 170.4, 151.2, 144.7, 142.1, 134.3, 129.8 (2C), 129.2, 126.5 (2C), 115.4, 114.2, 102.7, 85.0, 61.1, 57.0, 31.5, 28.7, 23.4, 20.5; IR (film) v_{max} 3400, 2925, 2853, 1704, 1593, 1503, 1234, 1146, 1081 cm⁻¹; HR ESI-TOF *m/z* 416.1254 (M + H⁺, C₂₂H₂₂CINO₅ requires 415.1187).

S13. A solution of **S12** (12.3 mg, 0.0296 mmol) in H₂O (0.6 mL) and DMSO (3.0 mL) was treated with iodine (22.5 mg, 0.0887 mmol), silver trifluoroacetate (10.5 mg, 0.0473 mmol) and stirred at 23 °C for 2 days. The reaction mixture was quenched with the addition of saturated aqueous Na₂S₂O₃ (2 mL), diluted with EtOAc (50 mL), washed with saturated aqueous NaHCO₃ (20 mL), H₂O (10 mL), and saturated aqueous NaCl (10 mL). The organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (preparative TLC, SiO₂, 3 × 70% EtOAc–hexanes) afforded diastereomers A (24%, 3.1 mg), B (30%, 3.8 mg), C (10%, 1.3 mg) and D (6%, 0.8 mg) as well as recovered S12 (23%, 2.8 mg).

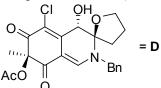

Isomerization of B to D: A solution of **B** (4.8 mg, 0.011 mmol) in anhydrous CH_2Cl_2 (1.1 ml) at 23 °C was treated with anhydrous *p*-toluenesulfonic acid (5.7 mg, 0.033 mmol). The reaction mixture was stirred at 23 °C for 16 h and quenched with the addition of saturated aqueous NaHCO₃ (1 mL). The resulting mixture was extracted with CH_2Cl_2 (3 × 1 mL), and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (preparative TLC, SiO₂, 3 × 70% EtOAc–hexanes) afforded **D** (0.3 mg, 11%) and recovered **B** (2.0 mg, 74%).

Isomerization of C to A: A solution of **C** (1.7 mg, 0.004 mmol) in anhydrous MeCN (0.4 ml) at 23 °C was treated with anhydrous *p*-toluenesulfonic acid (3.4 mg, 0.020 mmol). The reaction mixture was stirred at 23 °C for 16 h and quenched with the addition of saturated aqueous NaHCO₃ (1 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 1 mL), and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (preparative TLC, SiO₂, 3 × 70% EtOAc–hexanes) afforded **A** (0.9 mg, 51%) and recovered **C** (0.3 mg, 18%).



(relative stereochemistry depicted, confirmation of structure by x-ray²)

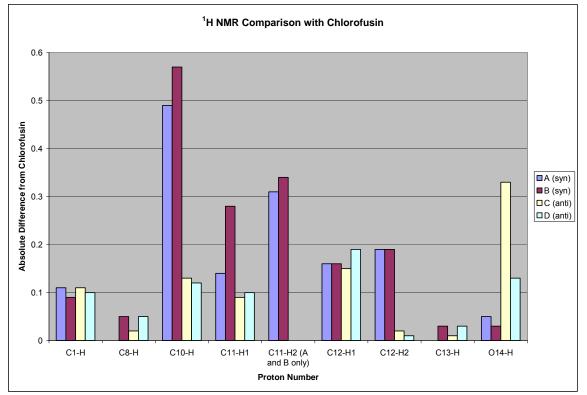
For **S13-A**: Recrystallization from Et₂O provided **A** as yellow needles from which a single-crystal x-ray structure was determined: mp 148–151 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ 7.88 (s, 1H), 7.42–7.45 (m, 2H), 7.36–7.40 (m, 2H), 7.30–7.34 (m, 1H), 6.31 (d, J = 5.6 Hz, 1H), 4.79 (d, J = 15.1 Hz, 1H), 4.72 (d, J = 15.1 Hz, 1H), 4.53 (d, J = 5.5 Hz, 1H), 4.15–4.20 (m, 1H), 3.97 (dd, J = 14.9, 7.1 Hz, 1H), 2.07 (s, 3H), 1.85-1.99 (br m, 3H), 1.75–1.84 (m, 1H), 1.43 (s, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 189.1, 188.9, 168.9, 150.2, 148.4, 137.4, 128.5 (2C), 128.1 (2C), 127.6, 113.9, 101.0, 97.9, 84.9, 70.3, 68.7, 52.1, 34.5, 24.5, 23.6, 20.0; IR (film) v_{max} 3372, 2921, 2852, 1732, 1638, 1567, 1456, 1251, 1077 cm⁻¹; HR ESI-TOF *m*/*z* 432.1203 (M + H⁺, C₂₂H₂₂ClNO₆ requires 431.1136).



(relative stereochemistry depicted, confirmation of structure by x-ray³) For **S13-B**: Recrystallization from Et₂O provided **B** as yellow needles from which a single-crystal x-ray structure was determined: mp 136–138 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ 7.86 (s, 1H), 7.42–7.45 (m, 2H), 7.36–7.40 (m, 2H), 7.30–7.34 (m, 1H), 6.23 (d, *J* = 4.9 Hz, 1H), 4.79 (d, *J* = 15.0 Hz, 1H), 4.72 (d, *J* = 15.0 Hz, 1H), 4.58 (d, *J* = 4.9 Hz, 1H), 4.18 (m, 1H), 3.97 (dd, *J* = 15.2, 7.0 Hz, 1H), 2.08 (s, 3H), 1.87–1.95 (m, 1H), 1.71–1.86 (br m, 3H), 1.40 (s, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 188.8, 188.4, 169.2, 149.8, 148.3, 137.4, 128.6 (2C), 128.2 (2C), 127.7, 114.1, 100.6, 97.9, 84.7, 70.4, 68.8, 52.2, 35.0, 24.5, 22.9, 20.0; IR (film) v_{max} 3355, 2923, 2853, 1732, 1636, 1562, 1454, 1241, 1077, 1056, 703 cm⁻¹; HR ESI-TOF *m*/*z* 432.1206 (M + H⁺, C₂₂H₂₂ClNO₆ requires 431.1136).

(relative stereochemistry depicted)

For **S13-C**: mp 135–138 °C; ¹H NMR (DMSO- d_6 , 600 MHz) δ 7.88 (s, 1H), 7.37–7.43 (m, 4H), 7.31–7.35 (m, 1H), 6.59 (d, J = 6.4 Hz, 1H), 4.95 (d, J = 16.6 Hz, 1H), 4.82 (d, J = 16.6 Hz, 1H), 4.55 (d, J = 6.4 Hz, 1H), 3.85–3.90 (m, 1H), 3.80 (dd, J = 15.3, 7.1 Hz, 1H), 2.20–2.30 (m, 2H), 2.10 (s, 3H), 1.95–2.06 (m, 2H), 1.42 (s, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 189.4, 188.6, 168.9, 151.5, 148.0, 137.7, 128.7 (2C), 127.5, 126.7 (2C), 115.6, 102.0, 97.2, 84.9, 68.9, 68.6, 53.7, 30.6, 25.2, 23.5, 20.0; IR (film) v_{max} 3369, 2920, 1736, 1687, 1638, 1563, 1240, 1077, 736 cm⁻¹; HR ESI-TOF *m*/*z* 432.1205 (M + H⁺, C₂₂H₂₂CINO₆ requires 431.1136).

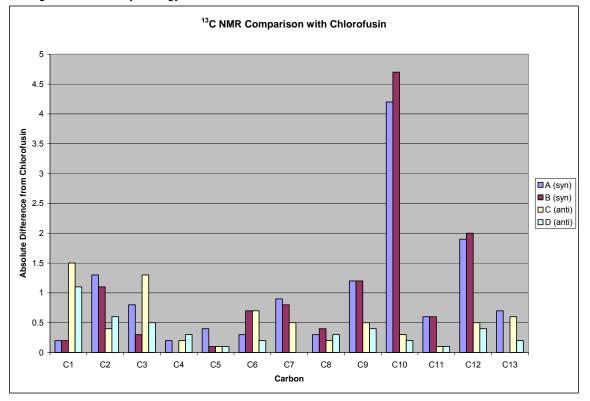


(relative stereochemistry depicted)

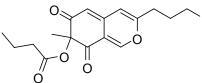
For **S13-D**: mp 131–135 °C; ¹H NMR (DMSO- d_6 , 600 MHz) δ 7.88 (s, 1H), 7.37–7.43 (m, 4H), 7.31–7.35 (m, 1H), 6.39 (d, J = 5.2 Hz, 1H), 4.94 (d, J = 16.6 Hz, 1H), 4.83 (d, J = 16.6 Hz, 1H), 4.58 (d, J = 5.1 Hz, 1H), 3.80–3.85 (m, 1H), 3.77 (dd, J = 14.8, 7.1 Hz, 1H), 2.22–2.32 (m, 2H), 2.10 (s, 3H), 1.96–2.03 (m, 2H), 1.46 (s, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 188.8, 188.6, 169.1, 151.1, 147.5, 137.6, 128.7 (2C), 127.6, 126.7 (2C), 115.8, 101.5, 97.1, 85.0, 68.8, 68.7, 53.9, 30.5, 25.2, 23.1, 20.0; IR (film) v_{max} 3318, 2922, 2853, 1737, 1642, 1571, 1453, 1249, 1077, 1043, 698 cm⁻¹; HR ESI-TOF m/z 432.1213 (M + H⁺, C₂₂H₂₂CINO₆ requires 431.1136).

Proton Number		δ (¹ H NMR) ^a					
	chlorofusin	A (syn)	B (syn)	C (anti)	D (anti)		
Configuration		R*,R*,R*	R*,S*,S*	R*,R*,S*	R*,S*,R*		
C1-H	7.77 (s)	7.88 (s)	7.86 (s)	7.88 (s)	7.87 (s)		
С8-Н	4.53 (d)	4.53 (d)	4.58 (d)	4.55 (d)	4.58 (d)		
С10-Н	2.38 (br m)	1.89 (m)	1.81 (m)	2.25 (m)	2.26 (m)		
C11-H	2.0-2.2 (m)	1.79, 1.96 (m)	1.76, 1.82 (m)	2.01 (m)	2.00 (m)		
C12-H ¹	4.02 (m)	4.18 (m)	4.18 (m)	3.87 (m)	3.83 (m)		
C12-H ²	3.78 (q)	3.97 (dd)	3.97 (dd)	3.80 (dd)	3.77 (m)		
C13-H	1.43 (s)	1.43 (s)	1.40 (s)	1.42 (s)	1.46 (s)		
O14-H	6.26 (d)	6.31 (d)	6.23 (d)	6.59 (d)	6.39 (d)		

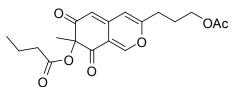
^a Assignment was assisted by COSY and HMQC NMR.

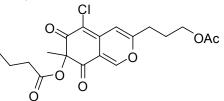

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

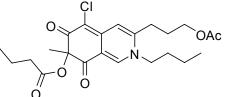
Carbon Number	δ (¹³ C NMR) ^a						
	chlorofusin A (<i>syn</i>)		B (syn)	C (anti)	D (anti)		
Configuration		R*,R*,R*	R*,S*,S*	R*,R*,S*	R*,S*,R*		
C1	150.0	150.2	149.8	151.5	151.1		
C2 ^b	115.2	113.9	114.1	115.6	115.8		
C3	188.1	188.9 ^c	188.4 ^c	189.4 ^c	188.6 ^c		
C4	84.7	84.9	84.7	84.9	85.0		
C5	188.7	189.1 ^c	188.8 ^c	188.6 ^c	188.8 ^c		
C6 ^b	101.3	101.0	100.6	102.0	101.5		
C7	147.5	148.4	148.3	148.0	147.5		
C8	68.4	68.7	68.8	68.6	68.7		
C9	96.7	97.9	97.9	97.2	97.1		
C10	30.3	34.5	35.0	30.6	30.5		
C11	25.1	24.5	24.5	25.2	25.2		
C12	68.4	70.3	70.4	68.9	68.8		
C13	22.9	23.6	22.9	23.5	23.1		


^a Assignment was assisted by COSY and HMQC NMR.

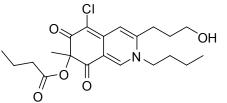
^b Original assignments may be switched (i.e. δ 101.3 for C2, 115.2 for C6) based on HMBC data for **10–13**. This tentative reassignment is under continued investigation.


^c Assignments made by analogy to **10–13**.

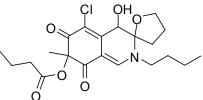

The x-ray crystal structures of the S13 diastereomers A^2 and B^3 , the major products of the oxidative spirocyclization reaction, were determined and it was found that the C8 and C9 oxygen substituents of both compounds were oriented *syn* with respect to one another. N.O-Ketal equilibration studies defined the respective S13 syn/anti pairs and unambiguously established the structures and corresponding stereochemistry of C and D. Particularly indicative of the relative orientation of the C8 and C9 substituents were the ¹H NMR signals of the tetrahydrofuran ring. The chemical shifts of the C10-H signals for C (m, 2.25 ppm) and D (m, 2.26 ppm) are similar to each other and to the C10-H signal reported for chlorofusin (br m, 2.38 ppm) compared to the analogous signals from the spectra of A (m, 1.89) and B (m, 1.81). Similarly the C11-H signals for C (m, 2.01 ppm) and **D** (m, 2.00 ppm) possess chemical shifts that are closer to chlorofusin (m, 2.0–2.2 ppm) than A (m, 1.79 ppm; m, 1.96 ppm) and B (m, 1.76 ppm; m, 1.82 ppm), and the C12-H signals for C (m, 3.80 ppm; m, 3.87 ppm) and D (m, 3.77 ppm; m, 3.83 ppm) were also similar to one another and chlorofusin (q, 3.78 ppm; m, 4.02 ppm), and different from those of A (m, 3.97 ppm; m, 4.18 ppm) and B (m, 3.97 ppm; m, 4.18 ppm). The ¹³C NMR data show similar trends with the most striking difference coming at C10 with C (30.6 ppm) and D (30.5 ppm) being very similar to each other and to chlorofusin (30.3 ppm) but 4 ppm farther upfield than the C10 signals for A (34.5 ppm) and **B** (35.0 ppm). Although these initial results indicated that the C8 and C9 oxygen substituents of chlorofusin are oriented *anti* with respect to one another, the potential perturbation of the chromophore NMR signals by the appended benzyl ring led to the analogous examination of A-D incorporating an N-butyl substituent as well as a C4 butyrate versus acetate.


7-Butyryloxy-3-(3-iodopropyl)-7-methyl-6H-isochromene-6,8-dione (S14). A solution of **S7** (561 mg 1.55 mmol) in butyric acid (155 mL) was treated with *p*-TsOH (2.67 g, 15.5 mmol). The reaction mixture was stirred at 100 °C under argon. After 90 min, the reaction mixture was cooled to 15 °C, degassed with nitrogen for 30 min, treated portionwise with 95% lead tetraacetate (824 mg, 1.86 mmol) over 15 min, stirred at 15 °C for 30 min, and allowed to stand at 15–17 °C for 20 min. The reaction mixture was poured into ice water (200 mL), extracted with EtOAc (3 × 100 mL), and the combined extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 40% EtOAc–hexanes) afforded **S14** as an oil (31%, 207 mg): ¹H NMR (CDCl₃, 400 MHz) δ 7.86 (s, 1H), 6.16 (s, 1H), 5.54 (s, 1H), 3.22 (td, *J* = 1.8, 6.7 Hz, 2H), 2.56 (t, *J* = 7.2 Hz, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.12 (dt, *J* = 12.2, 6.0 Hz, 2H), 1.66 (m, 2H), 1.53 (s, 3H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 193.5, 193.2, 173.2, 160.2, 154.0, 142.4, 115.4, 109.8, 107.6, 84.3, 35.3, 34.0, 29.9, 22.3, 18.4, 13.7, 4.5; IR (film) v_{max} 2917, 1728, 1645, 1626, 1449, 1249, 1177, 1081, 1028 cm⁻¹; HR ESI-TOF *m/z* 431.0351 (M + H⁺, C₁₇H₁₉IO₅ requires 430.0278).

3-(3-Acetoxypropyl)-7-butyryloxy-7-methyl-6*H***-isochromene-6,8-dione (S15). A solution of S14 (77 mg, 0.18 mmol) in butyric acid (1.80 mL) was treated with silver acetate (90 mg, 0.54 mmol) and stirred at 57 °C for 3 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. Chromatography (SiO₂, 40% EtOAc–hexanes) afforded S15 as an oil (63%, 41 mg): ¹H NMR (CDCl₃, 400 MHz) \delta 7.87 (d,** *J* **= 0.9 Hz, 1H), 6.13 (s, 1H), 5.53 (d,** *J* **= 1.1 Hz, 1H), 4.13 (t,** *J* **= 6.2 Hz, 2H), 2.50 (app t,** *J* **= 7.6 Hz, 2H), 2.42 (t,** *J* **= 7.3 Hz, 2H), 2.07 (s, 3H), 1.92–2.01 (m, 2H), 1.66 (app sext,** *J* **= 7.4 Hz, 2H), 1.52 (s, 3H), 0.96 (t,** *J* **= 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) \delta 193.5, 193.1, 173.2, 171.1, 161.0, 154.0, 142.5, 115.4, 109.3, 107.5, 84.3, 63.1, 35.3, 30.1, 25.9, 22.3, 21.1, 18.4, 13.7; IR (film) v_{max} 2922, 2858, 1728, 1624, 1450, 1367, 1244, 1092 cm⁻¹; HR ESI-TOF** *m/z* **363.1442 (M + H⁺, C₁₉H₂₂O₇ requires 362.1366).**

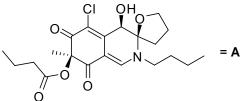


3-(3-Acetoxypropyl)-7-butyryloxy-5-chloro-7-methyl-6*H***-isochromene-6,8-dione (S16). A solution of S15 (44 mg 0.11 mmol) in acetic acid (1.1 mL) at 23 °C was treated with** *N***-chlorosuccinimide (16 mg, 0.12 mmol). The reaction mixture was stirred at 23 °C for 24 h before being quenched with the addition of saturated aqueous Na₂S₂O₃ (0.2 mL). The reaction mixture was diluted with EtOAc (15 mL), washed with saturated aqueous NaHCO₃ (3 × 5 mL), H₂O (5 mL), saturated aqueous NaCl (5 mL) and the organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 40% EtOAc–hexanes) afforded S16 as a yellow solid (85%, 37 mg): mp 89–91 °C; ¹H NMR (CDCl₃, 500 MHz) \delta 7.89 (s, 1H), 6.61 (s, 1H), 4.14 (t,** *J* **= 6.2 Hz, 2H), 2.59 (app t,** *J* **= 7.6 Hz, 2H), 2.41 (td,** *J* **= 7.3, 1.0 Hz, 2H), 2.06 (s, 3H), 1.97–2.04 (m, 2H), 1.65 (app sext,** *J* **= 7.4 Hz, 2H), 1.54 (s, 3H), 0.96 (t,** *J* **= 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta 191.9, 186.5, 173.2, 171.1, 163.0, 153.1, 138.2, 115.1, 111.0, 106.5, 84.5, 63.1, 35.2, 30.5, 25.9, 22.4, 21.1, 18.4, 13.7; IR (film) v_{max} 2918, 1736, 1644, 1536, 1429, 1368, 1242, 1129, 1043 cm⁻¹; HR ESI-TOF** *m***/***z* **397.1045 (M + H⁺, C₁₉H₂₁ClO₇ requires 396.0977).**

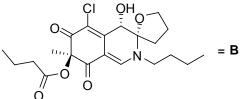


3-(3-Acetoxypropyl)-2-butyl-7-butyryloxy-5-chloro-7-methyl-2H,7H-isoquinoline-6,8-dione (S17). A solution of **S16** (31 mg, 0.078 mmol) in anhydrous CH₂Cl₂ (1.4 mL) was treated with *n*-butylamine (9.3 μ L, 0.094 mmol) and SiO₂ (16 mg). The reaction

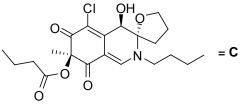
mixture was stirred at 23 °C for 1 h and concentrated under reduced pressure. Chromatography (SiO₂, 60% EtOAc–hexanes) afforded **S17** as a red foam (99%, 35 mg): ¹H NMR (CDCl₃, 600 MHz) 7.72 (s, 1H), 6.75 (s, 1H), 4.18 (t, J = 6.0 Hz, 2H), 3.77 (dd, J = 9.0, 6.6 Hz, 2H), 2.64 (app t, J = 7.9 Hz, 2H), 2.36–2.46 (m, 2H), 2.08 (s, 3H), 1.98–2.04 (m, 2H), 1.70–1.77 (m, 2H), 1.64 (app sext, J = 7.4 Hz, 2H), 1.51 (s, 3H), 1.41 (app sext, J = 7.5 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 194.0, 184.9, 173.1, 171.0, 149.3, 144.2, 141.2, 115.3, 113.8, 102.6, 84.7, 63.0, 53.2, 35.3, 33.3, 28.7, 27.9, 23.2, 21.0, 19.9, 18.4, 13.8, 13.7; IR (film) v_{max} 2930, 1737, 1612, 1505, 1228, 1179 cm⁻¹; HR ESI-TOF *m*/z 452.1841 (M + H⁺, C₂₃H₃₀ClNO₆ requires 451.1762).



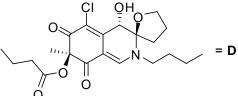
2-Butyl-7-butyryloxy-5-chloro-3-(3-hydroxypropyl)-7-methyl-2H,7H-isoquinoline-6,8-dione (S18). A solution of **S17** (51.7 mg, 0.115 mmol) in H₂O (0.12 mL) and MeOH (1.2 mL) was cooled to 0 °C and treated with K₂CO₃ (31.8 mg, 0.230 mmol) and stirred at 0 °C for 30 min. The reaction mixture was quenched with aqueous 0.2 N HCl (1.6 mL), acidified to pH 3 and extracted with EtOAc (3 × 5 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 60% EtOAc–hexanes) afforded **S18** as a red solid (91%, 43.1 mg): mp 83–89 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.76 (s, 1H), 6.80 (s, 1H), 3.79–3.89 (m, 2H), 3.78 (t, *J* = 5.7 Hz, 2H), 2.73 (app t, *J* = 7.8 Hz, 2H), 2.38–2.48 (m, 2H), 1.84–1.95 (m, 3H), 1.75 (app quint, *J* = 7.7 Hz, 2H), 1.66 (app sext, *J* = 7.4 Hz, 2H), 1.54 (s, 3H), 1.41 (app sext, *J* = 7.5 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H), 0.96 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 194.1, 184.6, 173.2, 150.9, 144.9, 141.3, 115.5, 114.1, 102.2, 84.7, 61.1, 53.4, 35.4, 33.3, 31.6, 28.5, 23.3, 20.0, 18.4, 13.79, 13.77; IR (film) v_{max} 3400, 2932, 2875, 1732, 1704, 1592, 1503, 1230, 1180, 1081 cm⁻¹; HR ESI-TOF *m/z* 410.1728 (M + H⁺, C₂₁H₂₈CINO₅ requires 409.1657).


S19. A solution of **S18** (11.6 mg, 0.0284 mmol) in H₂O (0.28 mL) and DMSO (2.8 mL) was treated with iodine (21.6 mg, 0.0852 mmol), and silver nitrate (9.6 mg, 0.057 mmol), and the mixture was stirred at 23 °C for 2 days before being quenched with the addition of saturated aqueous Na₂S₂O₃ (2 mL). The resulting mixture was diluted with EtOAc (50 mL), washed with saturated aqueous NaHCO₃ (20 mL), H₂O (10 mL) and saturated aqueous NaCl (10 mL). The organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (preparative TLC, SiO₂, 3 × 50% EtOAc–hexanes) afforded diastereomers A (24%, 2.9 mg), B (22%, 2.7 mg), C (7%, 0.9 mg), D (6%, 0.7 mg) and recovered S18 (13%, 1.5 mg).

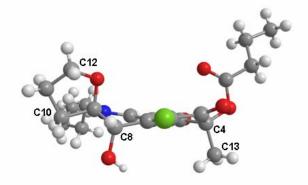
Isomerization of B to D: A solution of **B** (2.7 mg, 0.006 mmol) in acetic acid (0.6 mL) at 23 °C was treated with CF₃CO₂H (5 μ L, 0.06 mmol) and stirred at 23 °C for 16 h and quenched with the addition of saturated aqueous NaHCO₃ (2 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 1 mL) and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (preparative TLC, SiO₂, 3 × 60% EtOAc–hexanes) afforded **D** (0.3 mg, 11%) and recovered **B** (2.0 mg, 74%).


(relative stereochemistry depicted)

For **S19-A**: mp 158–160 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ 7.86 (s, 1H), 6.18 (d, J = 5.6 Hz, 1H), 4.48 (d, J = 5.4 Hz, 1H), 4.19–4.25 (m, 1H), 4.03 (dd, J = 15.0, 7.0 Hz, 1H), 3.48–3.55 (m, 1H), 3.42–3.48 (m, 1H), 2.35 (t, J = 7.1 Hz, 2H), 1.91–2.06 (m, 3H), 1.82–1.89 (m, 1H), 1.58–1.69 (m, 2H), 1.55 (app sext, J = 7.3 Hz, 2H), 1.41 (s, 3H), 1.28–1.40 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 189.04, 188.97, 171.4, 149.9, 148.7, 113.1, 100.5, 98.0, 84.7, 70.5, 68.6, 49.7, 34.6, 34.5, 32.5, 24.7, 23.7, 19.2, 18.1, 13.7, 13.3; IR (film) v_{max} 3438, 2925, 2855, 1737, 1644, 1574, 1454, 1236, 1181, 1075 cm⁻¹; HR ESI-TOF *m*/*z* 426.1671 (M + H⁺, C₂₁H₂₈CINO₆ requires 425.1606).

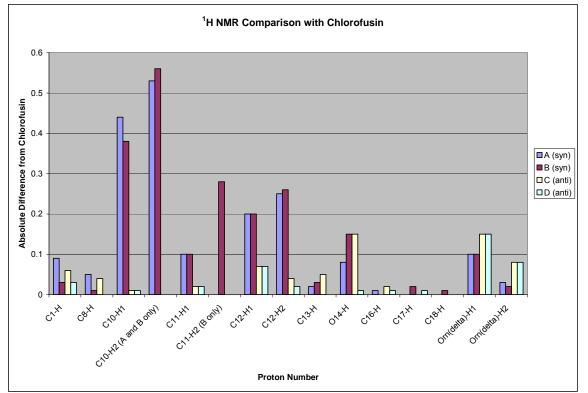

(relative stereochemistry depicted)

For **S19-B**: mp 155–158 °C; ¹H NMR (DMSO- d_6 , 600 MHz) δ 7.80 (s, 1H), 6.11 (d, J = 4.8 Hz, 1H), 4.54 (d, J = 4.8 Hz, 1H), 4.22 (dd, J = 13.4, 7.4 Hz, 1H), 4.04 (dd, J = 14.9, 7.4 Hz, 1H), 3.49–3.56 (m, 1H), 3.40–3.47 (m, 1H), 2.34 (t, J = 7.1 Hz, 2H), 1.94–2.06 (m, 2H), 1.77–1.87 (m, 2H), 1.56–1.70 (m, 2H), 1.53 (app sext, J = 7.3 Hz, 2H), 1.40 (s, 3H), 1.27–1.39 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 188.9, 188.3, 171.7, 149.6, 148.7, 113.5, 100.2, 97.9, 84.6, 70.6, 68.7, 49.8, 35.0, 34.6, 32.6, 24.6, 23.0, 19.2, 18.0, 13.7, 13.3; IR (film) v_{max} 3416, 2928, 2874, 1734, 1644, 1573, 1454, 1236, 1076 cm⁻¹; HR ESI-TOF *m*/*z* 426.1671 (M + H⁺, C₂₁H₂₈CINO₆ requires 425.1606).


(relative stereochemistry depicted)

For **S19-C**: mp 136–140 °C; ¹H NMR (DMSO- d_6 , 600 MHz) δ 7.83 (s, 1H), 6.41 (d, J = 6.7 Hz, 1H), 4.49 (d, J = 6.5 Hz, 1H), 3.93–3.97 (m, 1H), 3.82 (dd, J = 7.0, 15.3 Hz, 1H), 3.54–3.60 (m, 1H), 3.46–3.53 (m, 1H), 2.32–2.42 (m, 2H), 2.36 (t, J = 7.1 Hz, 2H), 2.08 (app quint, J = 7.1 Hz, 2H), 1.51–1.61 (m, 4H), 1.38 (s, 3H), 1.34 (app sext, J = 7.4 Hz, 2H), 0.92 (t, J = 7.4 Hz, 6H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 189.3, 188.8, 171.5, 150.9, 148.3, 115.0, 101.5, 96.9, 84.7, 68.6, 68.4, 50.5, 34.5, 32.9, 30.2, 25.3, 23.5, 19.2, 18.1, 13.7, 13.3; IR (film) v_{max} 3370, 2923, 2853, 1695, 1650, 1576, 1459, 1237, 1080, 1042 cm⁻¹; HR ESI-TOF m/z 426.1675 (M + H⁺, C₂₁H₂₈ClNO₆ requires 425.1606).

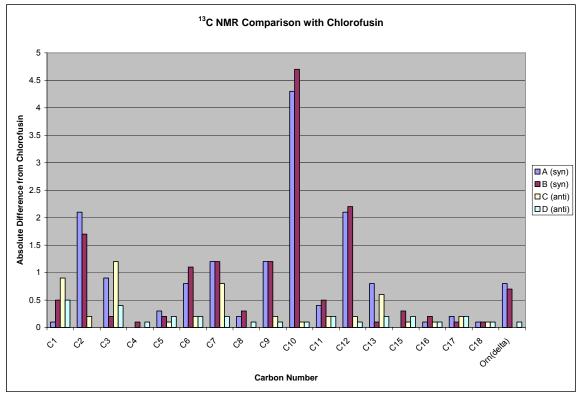
(relative stereochemistry depicted, confirmation of structure by x-ray⁴)


For **S19-D**: Recrystallization from Et₂O provided **D** as yellow prisms from which a single-crystal x-ray structure was determined: mp 133–136 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ 7.80 (s, 1H), 6.25 (d, *J* = 5.3 Hz, 1H), 4.53 (d, *J* = 5.1 Hz, 1H), 3.95 (dd, *J* = 14.9, 6.6 Hz, 1H), 3.80 (dd, *J* = 15.3, 7.1 Hz, 1H), 3.54–3.60 (m, 1H), 3.46–3.53 (m, 1H), 2.37–2.40 (m, 2H), 2.35 (t, *J* = 7.1 Hz, 2H), 2.05–2.12 (m, 2H), 1.51–1.62 (m, 4H), 1.43 (s, 3H), 1.34 (app sext, *J* = 7.5 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 188.9, 188.5, 171.6, 150.5, 147.7, 115.2, 101.2, 96.8, 84.8, 68.5, 68.4, 50.6, 34.5, 33.0, 30.2, 25.3, 23.1, 19.2, 18.1, 13.7, 13.3; IR (film) v_{max} 3440, 2924, 2849, 1735, 1693, 1645, 1574, 1454, 1236, 1077 cm⁻¹; HR ESI-TOF *m*/z 426.1677 (M + H⁺, C₂₁H₂₈CINO₆ requires 425.1606).

CIF file of S19-D opened with Chem3D.

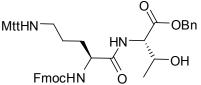
Proton Number		δ (¹ H NMR) ^a					
	chlorofusin	A (syn)	B (syn)	C (anti)	D (anti)		
Configuration		R*,R*,R*	R*,S*,S*	<i>R*,R*,</i> S*	R*,S*,R*		
C1-H	7.77 (s)	7.86 (s)	7.80 (s)	7.83 (s)	7.80 (s)		
C8-H	4.53 (d)	4.48 (d)	4.54 (d)	4.49 (d)	4.53 (d)		
C10-H	2.38 (br m)	1.85, 1.94 (m)	1.82, 2.00 (m)	2.37 (m)	2.39 (m)		
C11-H	2.1 (m)	2.00 (m)	1.82, 2.00 (m)	2.08 (app quint)	2.08 (m)		
C12-H ¹	4.02 (m)	4.22 (m)	4.22 (dd)	3.95 (m)	3.95 (dd)		
C12-H ²	3.78 (q)	4.03 (dd)	4.04 (dd)	3.82 (dd)	3.80 (dd)		
C13-H	1.43 (s)	1.41 (s)	1.40 (s)	1.38 (s)	1.43 (s)		
O14-H	6.26 (d)	6.18 (d)	6.11 (d)	6.41 (d)	6.25 (d)		
C16-H	2.34 (t)	2.35 (t)	2.34 (t)	2.36 (t)	2.35 (t)		
C17-H	1.55 (sextet)	1.55 (app sext)	1.53 (app sext)	1.55 (m)	1.54 (m)		
C18-H	0.92 (t)	0.92 (t)	0.91 (t)	0.92 (t)	0.92 (t)		
$Orn\operatorname{-CH}_2^\delta$	3.42 (t)	3.45, 3.52 (m)	3.44, 3.52 (m)	3.50, 3.57 (m)	3.50, 3.57 (m)		

^a Assignment was assisted by COSY and HMQC NMR.

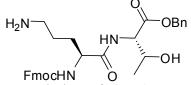


Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

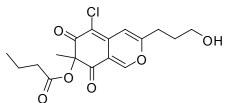
Carbon Number			δ (¹³ C NMR) ^a			
	chlorofusin A (<i>syn</i>)		B (syn)	C (anti)	D (anti)	
Configuration		R*,R*,R*	R*,S*,S*	R*,R*,S*	R*,S*,R*	
C1	150.0	149.9	149.5	150.9	150.5	
C2 ^b	115.2	113.1	113.5	115.0	115.2	
C3	188.1	189.0	188.3 ^c	189.3 ^c	188.5 ^c	
C4	84.7	84.7	84.6	84.7	84.8	
C5	188.7	189.0	188.9 ^c	188.8 ^c	188.9 ^c	
C6 ^b	101.3	100.5	100.2	101.5	101.1	
C7	147.5	148.7	148.7	148.3	147.7	
C8	68.4	68.6	68.7	68.4	68.5	
C9	96.7	97.9	97.9	96.9	96.8	
C10	30.3	34.6	35.0	30.2	30.2	
C11	25.1	24.7	24.6	25.3	25.3	
C12	68.4	70.5	70.6	68.6	68.5	
C13	22.9	23.7	23.0	23.5	23.1	
C15	171.4	171.4	171.7	171.5	171.6	
C16	34.4	34.5	34.6	34.5	34.5	
C17	17.9	18.1	18.0	18.1	18.1	
C18	13.2	13.3	13.3	13.3	13.3	
Orn δ	50.5	49.7	49.8	50.5	50.6	

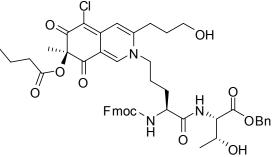

 ^a Assignment was assisted by COSY and HMQC NMR.
^b Original assignments may be switched (i.e. δ 101.3 for C2, 115.2 for C6) based on HMBC data for 10–13. This tentative reassignment is under continued investigation.

^c Assignments made by analogy to **10–13**.

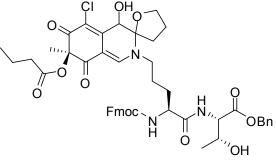


As with the benzylamine incorporated case, the NMR data collected from C and D in the S19 series better matched that of chlorofusin than A or B. An x-ray crystal structure of \mathbf{D} ,⁴ the best match with chlorofusin by NMR, confirmed that the relative orientation of the C8 and C9 oxygen substituents is *anti* and that the C4-methyl group is *cis* to the C8-OH and *trans* to the C9 oxygen of the tetrahydrofuran. As the similarity of the model to the chromophore of chlorofusin increased, the trends in the NMR data distinguishing the C8/C9 syn diastereomers from the anti diastereomers became even stronger. For C10-H, A (m, 1.85 ppm; m, 1.94 ppm) and B (m, 1.82 ppm; m, 2.00 ppm) each display two signals, neither of which is within 0.3 ppm of chlorofusin (br m, 2.38 ppm) whereas the signals for C (m, 2.37 ppm) and D (m, 2.39 ppm) only differ from chlorofusin by 0.01 ppm. In the same manner the C12-H signals, for A (dd, 4.03 ppm; m, 4.22 ppm) and B (dd, 4.04 ppm; dd, 4.22 ppm), are much farther downfield than the analogous signals seen for C (dd, 3.82 ppm; m, 3.95 ppm), D (dd, 3.80 ppm; dd, 3.95 ppm) and chlorofusin (q, 3.78 ppm; m, 4.02 ppm). An additional and important trend emerges linking **B** with **D**, which share the same relative stereochemistry at C8. The signals for C8-H observed in the spectra from A (d, 4.48 ppm) and C (d, 4.49 ppm) are similar to one another while the signals for **B** (d, 4.54 ppm) and **D** (d, 4.53 ppm) are not only similar to one another but also to that of chlorofusin (d, 4.53 ppm). This distinguishes the two *anti* diastereomers, with **D** (not **C**) being representative of the stereochemistry found in chlorofusin. Finally, the C8-OH signal in this series appears to diagnostically differentiate A (d, 6.18 ppm), B (d, 6.11 ppm), C (d, 6.41 ppm) and D (d, 6.25 ppm) as well as link the relative stereochemistry of **D** with that of chlorofusin (d, 6.26 ppm). The 13 C NMR data show similar trends to both the proton NMR data and to the benzylamine incorporated diastereomers. Differences between the syn and anti compounds become either slightly more exaggerated or remain the same in this series for C10, C11, C12 and C9 in the absence of a proximal aryl ring. With x-ray structures of both representative C8/C9 syn and anti diastereomers in hand, the dramatic difference seen between their ¹³C NMR chemical shifts at C10 can be attributed to its axial (syn) or equatorial (anti) orientation with regard to the tetrahydropyridine ring of the chromophore. For C10, with C (30.2 ppm) and **D** (30.2 ppm) the shifts became closer to chlorofusin (30.3 ppm) but remained over 4 ppm farther upfield than the C10 signals for A (34.6 ppm) and B (35.0 ppm). The use of butylamine as an Orn side chain analog also allowed comparison of the chemical shift of the methylene adjacent to the chromophore ring system, with C (50.5 ppm) and D (50.6 ppm) matching chlorofusin (50.5 ppm) as opposed to A (49.7 ppm) and B (49.8 ppm).


Although intuitively surprising but which may be expected from the x-ray crystal structure of **D** which clearly shows an unobstructed path between C8-H and C4-Me (4.761 Å, C8-H–C13) the ROESY NMR data for **D** shows a weak cross-peak between C4-Me and C8-H as seen by Williams as a long range NOE in chlorofusin. Also observed in the x-ray structure is the di-axial orientation of the C8 and C9 oxygen substituents. In this conformation, the equatorial C8-H can exhibit NOEs to both C10-H and C12-H. Although these NOEs were not quantitated, it is notable that C8-H is closer to C10-H (2.484 Å) than C12-H (2.592 Å) in this x-ray. With the data from both the **S13** and **S19** model systems in hand, the stereochemistry of the chlorofusin chromophore was confidently assigned as either (4S, 8R, 9S) or (4R, 8S, 9R).


Fmoc-L-Orn(Mtt)-L-Thr-OBn (S20). A flask containing commercially available Fmoc-L-Orn(Mtt)-OH (1.50 g, 2.46 mmol), H-L-Thr-OBn oxalate (591 mg, 2.58 mmol), HOAt (1.00 g, 7.37 mmol), and EDCI (1.41 g, 7.37 mmol) was cooled to 0 °C and treated with anhydrous DMF (8.2 mL) and stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (100 mL), washed with aqueous 1 N HCl (2×10 mL), saturated aqueous NaHCO₃ (2 \times 10 mL), H₂O (10 mL) and saturated aqueous NaCl (20 mL). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 40% EtOAc-hexanes) afforded S20 as a white foam (82%, 1.62 g): ¹H NMR (DMSO- d_6 , 600 MHz) δ 7.97 (d, J = 8.4 Hz, 1H), 7.91 (dd, J = 7.5, 3.3 Hz, 2H), 7.76 (dd, J = 10.8, 7.6 Hz, 2H), 7.57 (d, J = 8.3 Hz, 1H), 7.42 (m, 6H), 7.34 (m, 4H), 7.29 (m, 2H), 7.9H), 7.18 (t, J = 7.3 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 5.14 (d, J = 12.7 Hz, 1H), 5.10 (d, J = 12.8 Hz, 1H), 5.06 (d, J = 5.4 Hz, 1H), 4.37 (dd, J = 8.4, 3.1 Hz, 1H), 4.06–4.31 (m, 4H), 4.14 (m, 1H), 2.42 (t, J = 7.8 Hz, 1H), 2.26 (s, 3H), 1.95 (m, 2H), 1.65–1.77 (m, 1H), 1.54 (m, 3H), 1.09 (d, J = 6.4 Hz, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 172.8, 170.6, 160.0, 146.5 (2C), 144.0, 143.8, 143.3, 140.8 (2C), 136.0, 135.1, 128.41 (6C), 128.36 (3C), 128.3 (2C), 127.9 (2C), 127.7 (6C), 127.1 (2C), 126.0 (2C), 125.4 (2C), 120.2 (2C), 70.2, 66.3, 65.9, 65.7, 57.9, 54.7, 46.8, 43.2, 30.2, 26.8, 20.6, 20.2; IR (film) v_{max} 3306, 3019, 2944, 1662, 1509, 1449, 1245, 1216, 1105, 752, 700 cm⁻¹; HR ESI-TOF m/z 802.3851 (M + H⁺, C₅₁H₅₁N₃O₆ requires 800.3778); $[\alpha]^{23}_{D}$ -4 (c 1.1, CHCl₃).

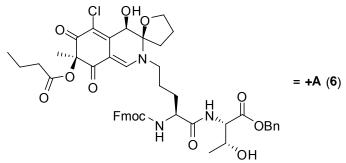
Fmoc-L-Orn-L-Thr-OBn (3). A solution of **S20** (662 mg, 0.825 mmol) in anhydrous CH₂Cl₂ (30 mL) was treated with trifluoroacetic acid (0.30 mL) and stirred at 23 °C for 1 h. The reaction mixture was concentrated under reduced pressure and the residue purified by flash chromatography (SiO₂, CHCl₃(80):MeOH(20):H₂O(1):NH₄OH(1)) to provide **3** as a white foam (97%, 450 mg): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 2H), 7.78 (s, 2H), 7.74 (dd, *J* = 7.2, 4.8 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.33–7.39 (m, 7H), 5.16 (d, *J* = 12.7 Hz, 1H), 5.13 (d, *J* = 12.7 Hz, 1H), 4.38 (dd, *J* = 8.4, 3.1 Hz, 1H), 4.20–4.33 (m, 5H), 3.56 (brs, 1H), 2.77 (m, 2H), 1.72 (m, 1H), 1.60 (m, 3H), 1.09 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 172.5, 170.5, 156.1, 143.92, 143.86, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.39, 125.37, 120.2 (2C), 66.3, 66.0, 65.8, 57.9, 53.7, 46.7, 38.5, 28.8, 23.8, 20.9; IR (film) v_{max} 3271, 3016, 1668, 1526, 1451, 1202, 13²³_D–8 (*c* 1.7, CHCl₃).



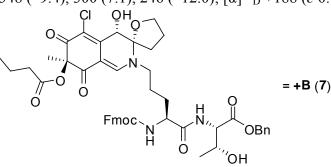
7-Butyryloxy-5-chloro-3-(3-hydroxypropyl)-7-methyl-6H-isochromene-6,8-dione (2). A solution of S16 (62 mg, 0.16 mmol) in MeOH (4 mL) was treated with K₂CO₃ (65 mg, 0.47 mmol) and stirred at 23 °C for 70 min. The reaction mixture was treated with aqueous 1 N HCl (0.7 mL), saturated aqueous NaCl (5 mL), extracted with EtOAc (3×5 mL) and the combined organic layers were dried ($NaSO_4$). The solvent was removed under reduced pressure and the residue was purified by flash chromatography (SiO_2 , EtOAc-hexanes, 50-70% EtOAc-hexanes gradient) to yield 2 as a yellow solid (81%, 45 mg). The enantiomers of 2 were resolved by semi-preparative chiral HPLC (Daicel CHIRALCEL[®] OD column, 2 × 25 cm, 20% EtOH-hexanes, 7 mL/min, 320 nm, t_R : 22.2 min (S)-2, 25.0 min (R)-2, $\alpha = 1.13$). For (S)-2: CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta \epsilon$) 361 (-6.6), 300 (1.2), 274 (1.8), 241 (1.7); $[\alpha]^{23}_{D}$ -236 (c 0.94, MeOH); for (R)-2: CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 363 (6.7), 299 (-2.2), 275 (-2.4), 242 (-2.5); $[\alpha]^{23}_{D}$ +236 (c 1.1, MeOH). mp 107 °C; ¹H NMR (CDCl₃, 600 MHz) & 7.91 (s, 1H), 6.62 (s, 1H), 3.74 (t, J = 6.0 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 2.42 (dt, J = 7.2, 1.5 Hz, 2H), 1.87-1.95 (m, J = 7.2, 1.5 Hz, 2H), 1.87-1.952H), 1.66 (app sext, J = 7.4 Hz, 2H), 1.59 (s, 1H), 1.55 (s, 3H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 192.0, 186.5, 173.1, 163.9, 153.2, 138.5, 115.0, 110.7, 106.3, 84.5, 61.4, 35.2, 30.2, 29.5, 22.4, 18.4, 13.6; IR (film) v_{max} 3495, 2935, 2884, 1719, 1642, 1536, 1449, 1431, 1257, 1181, 1128, 1086, 1061, 836 cm⁻¹; HR ESI-TOF m/z 355.0941 (M + H⁺, C₁₇H₁₉ClO₆ requires 354.0870).

4. A solution of (*R*)-**2** (273 mg, 0.770 mmol) in DMF (4 mL) and CH₂Cl₂ (4 mL) was treated with **3** (462 mg, 0.847 mmol), NaHCO₃ (194 mg, 2.31 mmol) and stirred at 23 °C for 24 h. The reaction mixture was diluted with CH₂Cl₂ (4 mL), treated with aqueous 1 N HCl (4 mL) and stirred vigorously at 23 °C for 4 h. The aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL) and the combined organic layers dried (Na₂SO₄) for 15 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (SiO₂, 80% EtOAc–hexanes – 3% MeOH–EtOAc gradient) to yield **4** as an orange foam (84%, 567 mg): mp 97–101 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ 8.19 (s, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.90 (dd, *J* = 7.5, 3.6 Hz, 2H), 7.73 (t, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.27–7.46 (m, 9H), 6.76 (s, 1H), 5.03–5.20 (m, 3H), 4.69 (s, 1H), 4.14–4.41 (m, 6H), 3.94–4.09 (m, 2H), 3.52 (t, *J* = 5.9 Hz, 2H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.33 (t, *J* = 7.0 Hz, 2H), 1.70–1.84 (m, 5H), 1.58–1.67 (m, 1H), 1.52 (sext, *J* = 7.3 Hz, 2H), 1.40 (s, 3H), 1.08 (d, *J* = 6.3 Hz, 3H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR

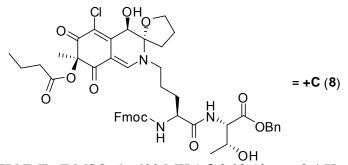
(DMSO- d_6 , 150 MHz) δ 193.1, 182.6, 172.3, 171.7, 170.4, 155.9, 152.7, 144.7, 143.9, 143.8, 142.5, 140.7 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.69, 127.68, 127.12, 127.10, 125.3 (2C), 120.2, 120.1, 114.3, 112.1, 98.9, 84.7, 66.2, 66.0, 65.6, 59.5, 57.8, 53.7, 52.2, 46.7, 34.6, 31.5, 28.7, 27.6, 27.0, 23.0, 20.2, 18.0, 13.2; IR (film) v_{max} 3333, 3060, 2935, 2872, 1730, 1713, 1661, 1589, 1504, 1449, 1267, 1220, 1146, 1081, 739 cm⁻¹; HR ESI-TOF *m*/*z* 882.3353 (M + H⁺, C₄₈H₅₂ClN₃O₁₁ requires 881.3290); CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 375 (11.2), 301 (-9.6), 247 (6.2); [α]²³_D +148 (*c* 0.56, MeOH).

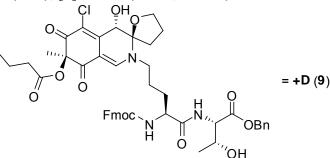


6–9. A solution of **4** (15.1 mg, 0.0171 mmol) in DMSO (1.7 mL) and H₂O (170 μ L) was treated with I₂ (13.0 mg, 0.0513 mmol), AgNO₃ (5.8 mg, 0.034 mmol) and stirred at 23 °C for 3 d. The reaction mixture was treated with saturated aqueous Na₂S₂O₃ (1 mL) and diluted with EtOAc (3 mL). The organic layer was washed with saturated aqueous NaHCO₃ (2 × 2 mL), saturated aqueous NaCl (2 mL), dried (Na₂SO₄) and the solvent was removed by a stream of nitrogen. The residue was purified by preparative TLC (SiO₂, 250 µm, 4 × 4% MeOH–CH₂Cl₂) to yield +A (**6**) (23%, 3.5 mg), +B (**7**) (25%, 3.8 mg), +C (**8**) (6%, 1.0 mg), +D (**9**) (7%, 1.1 mg) and recovered **4** (8%, 1.2 mg).


Isomerization of +A (6) to +C (8): A solution of +**A** (33.0 mg, 0.0367 mmol) in AcOH (2 mL) was treated with CF₃CO₂H (0.2 mL) and stirred at 23 °C for 6 h. The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO₂, 250 μ m, 2 × 4% MeOH–CH₂Cl₂) to yield +**C** (9%, 3.0 mg) and recovered +**A** (74%, 24.3 mg).

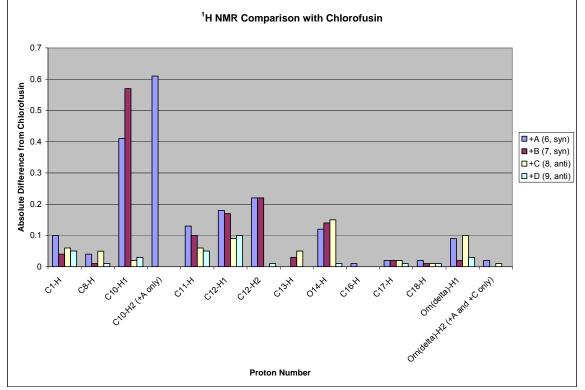
Isomerization of +B (7) to +D (9): A solution of +**B** (82.7 mg, 0.0921 mmol) in AcOH (2 mL) was treated with CF₃CO₂H (0.2 mL) and stirred at 23 °C for 5 h. The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO₂, 250 μ m, 2 × 4% MeOH–CH₂Cl₂) to yield +**D** (8%, 6.8 mg) and recovered +**B** (79%, 65.7 mg).


Isomerization of +C (8) to +A (6): A solution of +C (1.9 mg, 0.0021 mmol) in 1,2dichloroethane (0.5 mL) was treated with CF_3CO_2H (0.5 mL) and stirred at 23 °C for 5 h. The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO₂, 250 µm, 2 × 4% MeOH–CH₂Cl₂) to yield +A (89%, 1.7 mg).


For +**A** (**6**): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 7.98 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.87 (s, 1H), 7.75 (t, J = 7.5 Hz, 2H), 7.64 (d, J = 8.4 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.30–7.41 (m, 7H), 6.14 (d, J = 5.7 Hz, 1H), 5.11–5.19 (m, 3H), 4.49 (d, J = 5.8 Hz, 1H), 4.37 (dd, J = 8.4, 3.0 Hz, 1H), 4.17–4.34 (m, 6H), 4.00 (dd, J = 14.5, 6.9 Hz, 1H), 3.48–3.55 (m, 1H), 3.38–3.44 (m, 1H), 2.33 (dt, J = 7.0, 1.4 Hz, 2H), 1.91–2.04 (m, 3H), 1.80–1.87 (m, 1H), 1.71–1.80 (m, 2H), 1.49–1.69 (m, 2H), 1.53 (app sext, J = 7.3 Hz, 2H) 1.43 (s, 3H), 1.09 (d, J = 6.3 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 189.04, 188.99, 172.6, 171.4, 170.5, 156.1, 149.8, 148.6, 143.93, 143.85, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 113.4, 100.7, 97.8, 84.7, 70.4, 68.7, 66.3, 66.0, 65.8, 57.8, 53.8, 48.9, 46.7, 34.54, 34.51, 28.8, 26.8, 24.7, 23.7, 20.3, 18.1, 13.3; IR (film) v_{max} 3340, 2920, 1736, 1719, 1701, 1686, 1654, 1573, 1458, 1239, 1101, 1079, 1055 cm⁻¹; HR ESI-TOF m/z 898.3305 (M + H⁺, C₄₈H₅₂ClN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 406 (9.0), 348 (–9.4), 300 (7.1), 246 (–12.0); [α]²³_D+188 (*c* 0.76, MeOH).

For +**B** (7): ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.07 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.81 (s, 1H), 7.74 (t, J = 7.7 Hz, 2H), 7.56 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.31–7.40 (m, 7H), 6.12 (d, J = 4.9 Hz, 1H), 5.15 (d, J = 12.6 Hz, 1H), 5.12 (d, J = 12.7 Hz, 1H), 5.09 (d, J = 5.2 Hz, 1H), 4.54 (d, J = 5.0 Hz, 1H), 4.37 (dd, J = 8.4, 3.1 Hz, 1H), 4.16–4.33 (m, 6H), 4.00 (dd, J = 15.1, 7.3 Hz, 1H), 3.37–3.49 (m, 2H), 2.34 (t, J = 7.1 Hz, 2H), 1.93–2.05 (m, 2H), 1.61–1.87 (m, 5H), 1.50–1.61 (m, 1H), 1.53 (app sext, J = 7.3 Hz, 2H), 1.40 (s, 3H), 1.08 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 188.9, 188.4, 172.6, 171.7, 170.6, 155.9, 149.5, 148.6, 143.93, 143.85, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 113.6, 100.3, 97.8, 84.6, 70.6, 68.7, 66.3, 66.0, 65.7, 57.9, 54.0, 49.7, 46.7, 35.0, 34.6, 29.0, 27.2, 24.6, 23.0, 20.2, 18.0, 13.3; IR (film) v_{max} 3335, 2922, 1731, 1695, 1649, 1572, 1453, 1268, 1237, 1079 cm⁻¹; HR ESI-TOF m/z 898.3294 (M + H⁺, C₄₈H₅₂CIN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 404 (2.4), 344 (–20.1), 256 (13.3), 222 (–5.7); [α]²³_D–131 (c 0.18, MeOH).

For +**C** (8): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 8.03 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.83 (s, 1H), 7.74 (t, J = 7.6 Hz, 2H), 7.64 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.30–7.41 (m, 7H), 6.41 (d, J = 6.9 Hz, 1H), 5.16 (d, J = 12.6 Hz, 1H), 5.13 (d, J = 12.8 Hz, 1H), 5.10 (d, J = 5.1 Hz, 1H), 4.48 (d, J = 6.9 Hz, 1H), 4.37 (dd, J = 8.3, 3.0 Hz, 1H), 4.18–4.34 (m, 5H), 3.93 (dd, J = 14.0, 7.1 Hz, 1H), 3.78 (dd, J = 15.3, 7.3 Hz, 1H), 3.49–3.57 (m, 1H), 3.39–3.46 (m, 1H), 2.32–2.39 (m, 2H), 2.34 (t, J = 7.1 Hz, 2H), 1.99–2.09 (m, 2H), 1.62–1.78 (m, 3H), 1.50–1.62 (m, 1H), 1.53 (app sext, J = 7.3 Hz, 2H), 1.38 (s, 3H), 1.08 (d, J = 6.4 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 189.3, 188.7, 172.5, 171.4, 170.5, 156.0, 150.7, 148.2, 143.9, 143.8, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.2, 101.7, 96.9, 84.7, 68.6, 68.4, 66.3, 66.0, 65.8, 57.9, 53.9, 50.4, 46.7, 34.5, 30.3, 28.8, 27.4, 25.3, 23.5, 20.3, 18.1, 13.3; IR (film) v_{max} 3342, 2922, 1731, 1693, 1653, 1576, 1451, 1240, 1081, 1043 cm⁻¹; HR ESI-TOF *m*/*z* 898.3309 (M + H⁺, C₄₈H₅₂ClN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 400 (7.0), 344 (– 12.8), 272 (2.5), 235 (-8.3); [α]²³_D+40 (*c* 0.18, MeOH).

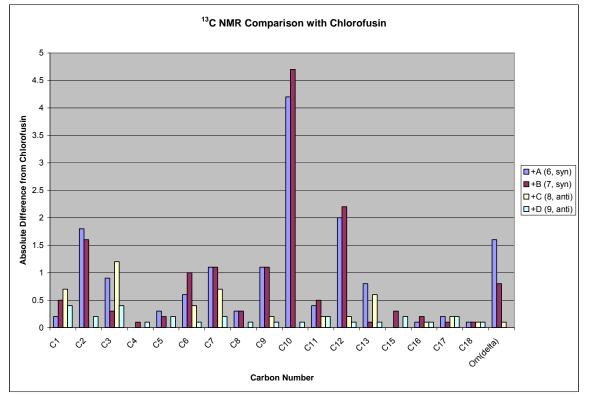


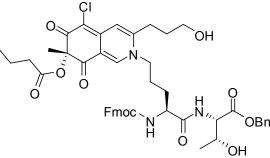
For +**D** (9): ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.05 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.82 (s, 1H), 7.74 (t, J = 8.2 Hz, 2H), 7.64 (d, J = 8.3 Hz, 1H), 7.43 (t, J = 7.4 Hz, 2H), 7.31–7.41 (m, 7H), 6.27 (d, J = 5.5 Hz, 1H), 5.16 (d, J = 12.6 Hz, 1H), 5.13 (d, J = 12.7 Hz, 1H), 5.11 (d, J = 5.0 Hz, 1H), 4.52 (d, J = 5.5 Hz, 1H), 4.37 (dd, J = 8.4, 2.8 Hz, 1H), 4.18–4.34 (m, 5H), 3.92 (dd, J = 14.0, 6.6 Hz, 1H), 3.77 (dd, J = 15.1, 7.0 Hz, 1H), 3.43–3.49 (m, 2H), 2.34 (t, J = 7.0 Hz, 4H), 1.99–2.07 (m, 2H), 1.62–1.78 (m, 3H), 1.50–1.62 (m, 1H), 1.54 (app sext, J = 7.3 Hz, 2H), 1.43 (s, 3H), 1.09 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 188.9, 188.5, 172.6, 171.6, 170.5, 156.0, 150.4, 147.7, 143.9, 143.8, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.4, 101.4, 96.8, 84.8, 68.5 (2C), 66.3, 66.0, 65.8, 57.9, 53.7, 50.5, 46.7, 34.5, 30.2, 28.8, 27.5, 25.3, 23.0, 20.3, 18.1, 13.3; IR (film) v_{max} 3335, 2922, 1733, 1696, 1649, 1574, 1453, 1272, 1239, 1080, 1043 cm⁻¹; HR ESI-TOF *m/z* 898.3288 (M + H⁺, C₄₈H₅₂CIN₃O₁₂ requires 897.3239); CD

(MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 400 (6.0), 343 (-12.7), 292 (3.8), 255 (1.8), 221 (-2.8); $[\alpha]_{D}^{23}$ +71 (*c* 0.18, MeOH).

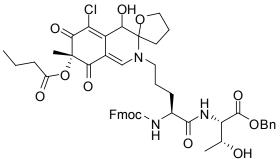
Proton Number	δ (¹ H NMR) ^a						
	chlorofusin	+A (6 , <i>syn</i>)	+B (7 , syn)	+C (8, anti)	+D (9 , <i>anti</i>)		
Configuration		4 <i>R</i> , 8 <i>R</i> , 9 <i>R</i>	4 <i>R,</i> 8 <i>S,</i> 9S	4 <i>R,</i> 8 <i>R,</i> 9S	4 <i>R,</i> 8 <i>S,</i> 9 <i>R</i>		
C1-H	7.77 (s)	7.87 (s)	7.81 (s)	7.83 (s)	7.82 (s)		
C8-H	4.53 (d)	4.49 (d)	4.54 (d)	4.48 (d)	4.52 (d)		
C10-H	2.38 (br m)	1.77, 1.97 (m)	1.81 (m)	2.36 (m)	2.35 (m)		
C11-H	2.0-2.2 (m)	1.97 (m)	2.00 (m)	2.04 (m)	2.05 (m)		
C12-H ¹	4.02 (m)	4.20 (m)	4.19 (m)	3.93 (dd)	3.92 (dd)		
C12-H ²	3.78 (q)	4.00 (dd)	4.00 (dd)	3.78 (dd)	3.77 (dd)		
C13-H	1.43 (s)	1.43 (s)	1.40 (s)	1.38 (s)	1.43 (s)		
O14-H	6.26 (d)	6.14 (d)	6.12 (d)	6.41 (d)	6.27 (d)		
C16-H	2.34 (t)	2.33 (dt)	2.34 (t)	2.34 (t)	2.34 (t)		
C17-H	1.55 (sext)	1.53 (app sext)	1.53 (app sext)	1.53 (app sext)	1.54 (app sext)		
C18-H	0.92 (t)	0.90 (t)	0.91 (t)	0.91 (t)	0.91 (t)		
$Orn-CH_2^\delta$	3.42 (t)	3.40, 3.51 (m)	3.44 (m)	3.41, 3.52 (m)	3.45 (m)		

^a Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.

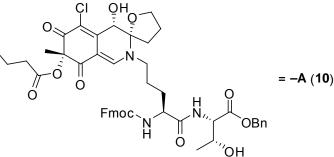

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

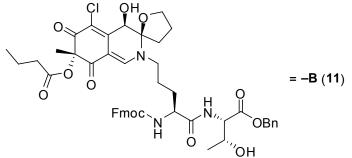

Carbon Number	$\delta (^{13}C NMR)^{a}$					
	chlorofusin	+A (6 , syn)	+B (7 , syn)	+C (8, anti)	+D (9, anti)	
Configuration		4 <i>R,</i> 8 <i>R,</i> 9 <i>R</i>	4 <i>R,</i> 8S, 9S	4 <i>R,</i> 8 <i>R,</i> 9S	4 <i>R,</i> 8S, 9R	
C1	150.0	149.8	149.5	150.7	150.4	
C2 ^b	115.2	113.4	113.6	115.2	115.4	
C3	188.1	189.0 ^c	188.4 ^c	189.3 ^c	188.5	
C4	84.7	84.7	84.6	84.7	84.8	
C5	188.7	189.0 ^c	188.9 ^c	188.7 ^c	188.9	
C6 ^b	101.3	100.7	100.3	101.7	101.4	
C7	147.5	148.6	148.6	148.2	147.7	
C8	68.4	68.7	68.7	68.4	68.5	
C9	96.7	97.8	97.8	96.9	96.8	
C10	30.3	34.5	35.0	30.3	30.2	
C11	25.1	24.7	24.6	25.3	25.3	
C12	68.4	70.4	70.6	68.6	68.5	
C13	22.9	23.7	23.0	23.5	23.0	
C15	171.4	171.4	171.7	171.4	171.6	
C16	34.4	34.5	34.6	34.5	34.5	
C17	17.9	18.1	18.0	18.1	18.1	
C18	13.2	13.3	13.3	13.3	13.3	
Orn δ	50.5	48.9	49.7	50.4	50.5	

^a Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.

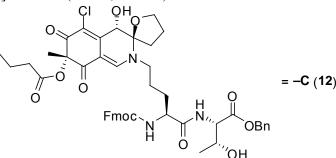

^b Original assignments may be switched (i.e. δ 101.3 for C2, 115.2 for C6) based on HMBC data for **10–13**. This tentative reassignment is under continued investigation.

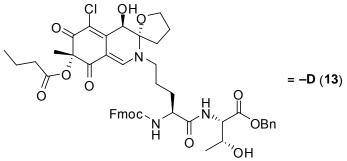
^c Assignments made by analogy to **10–13**.


5. A solution of (S)-2 (52 mg, 0.15 mmol) in DMF (0.75 mL) and CH₂Cl₂ (0.75 mL) was treated with 3 (96 mg, 0.18 mmol), NaHCO₃ (37 mg, 0.44 mmol) and stirred at 23 °C for 18 h. The reaction mixture was diluted with CH₂Cl₂ (1 mL), treated with aqueous 1 N HCl (1 mL) and stirred vigorously at 23 °C for 3 h. The aqueous layer was extracted with CH_2Cl_2 (3 × 1 mL) and the combined organic layers dried (Na₂SO₄) for 15 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (SiO₂, 80% EtOAc-hexanes - 3% MeOH-EtOAc gradient) to yield 5 as an orange foam (71%, 92 mg): mp 97–101 °C; ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.17 (s, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.89 (dd, J = 7.5, 3.8 Hz, 2H), 7.72 (dd, J = 13.0, 7.5 Hz, 2H), 7.63 (d, J = 8.2 Hz, 1H), 7.26–7.47 (m, 9H), 6.76 (s, 1H), 5.03–5.20 (m, 3H), 4.70 (br s, 1H), 4.37 (dd, J = 8.4, 3.1 Hz, 1H), 4.18–4.35 (m, 5H), 3.96–4.07 (m, 2H), 3.52 (t, J = 6.0 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.34 (t, 7.1 Hz, 2H), 1.68–1.83 (m, 5H), 1.58– 1.67 (m, 1H), 1.54 (sext., J = 7.3 Hz, 2H), 1.39 (s, 3H), 1.08 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 193.1, 182.6, 172.3, 171.7, 170.4, 155.9, 152.7, 144.7, 144.0, 143.8, 142.5, 140.7 (2C), 135.9, 128.4 (2C), 128.0, 127.8 (2C), 127.69, 127.67, 127.1 (2C), 125.3 (2C), 120.18, 120.15, 114.3, 112.1, 98.9, 84.7, 66.2, 65.9, 65.6, 59.5, 57.8, 53.7, 52.3, 46.7, 34.6, 31.5, 28.7, 27.6, 27.0, 22.9, 20.2, 18.0, 13.3; IR (film) v_{max} 3333, 3060, 2935, 2872, 1730, 1713, 1666, 1648, 1589, 1504, 1449, 1267, 1220, 1146, 1081, 739 cm⁻¹; HR ESI-TOF m/z 882.3356 (M + H⁺, C₄₈H₅₂ClN₃O₁₁ requires 881.3290); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 375 (-9.9), 300 (8.1), 245 (-5.6); $[\alpha]^{23}_{D}$ –129 (*c* 0.71, MeOH).

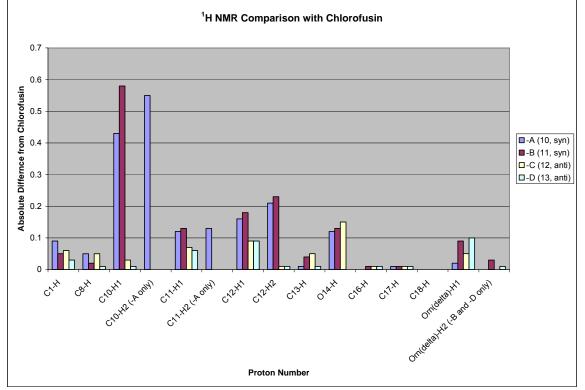

10–13. A solution of **5** (15.0 mg, 0.0170 mmol) in DMSO (1.7 mL) and H₂O (175 μ L) was treated with I₂ (13.0 mg, 0.0512 mmol), AgNO₃ (5.8 mg, 0.0341 mmol) and stirred at 23 °C for 3 d. The reaction mixture was treated with saturated aqueous Na₂S₂O₃ (1 mL) and diluted with EtOAc (3 mL). The organic layer was washed with saturated aqueous NaHCO₃ (2 × 2 mL), saturated aqueous NaCl (2 mL), dried (Na₂SO₄) and the solvent was removed by a stream of nitrogen. The residue was purified by preparative TLC (SiO₂, 250 μ m, 4 × 4% MeOH–CH₂Cl₂) to yield diastereomers –A (**10**) (20%, 3.1 mg), –B (**11**) (22%, 3.3 mg), –C (**12**) (8%, 1.2 mg) and –D (**13**) (7%, 1.1 mg).

Isomerization of –A (10) to –C (12): A solution of –**A** (10.0 mg, 0.0111 mmol) in AcOH (1 mL) was treated with CF₃CO₂H (50 μ L) and stirred at 23 °C for 15 h. The reaction mixture was diluted with EtOAc (15 mL), washed with H₂O (2 × 3 mL), 50% saturated aqueous NaHCO₃ (2 × 3 mL), saturated aqueous NaCl (3 mL) and dried (Na₂SO₄). The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO₂, 250 μ m, 2 × 4% MeOH–CH₂Cl₂) to yield –**C** (15%, 1.5 mg) and recovered –**A** (71%, 7.1 mg).


Isomerization of –B (11) to –D (13): A solution of –**B** (10.0 mg, 0.0111 mmol) in AcOH (1 mL) was treated with CF₃CO₂H (100 μ L) and stirred at 23 °C for 15 h. The reaction mixture was diluted with EtOAc (15 mL), washed with H₂O (2 × 3 mL), 50% saturated aqueous NaHCO₃ (2 × 3 mL), saturated aqueous NaCl (3 mL) and dried (Na₂SO₄). The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO₂, 250 μ m, 2 × 4% MeOH–CH₂Cl₂) to yield –**D** (6%, 0.6 mg) and recovered –**B** (74%, 7.4 mg).


For –**A** (**10**): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 8.05 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.86 (s, 1H), 7.74 (t, J = 7.3 Hz, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.30–7.40 (m, 7H), 6.14 (d, J = 5.8 Hz, 1H), 5.16 (d, J = 12.7 Hz, 1H), 5.13 (d, J = 12.7 Hz, 1H), 5.08 (d, J = 5.2 Hz, 1H), 4.48 (d, J = 5.8 Hz, 1H), 4.37 (dd, J = 8.4, 3.1 Hz, 1H), 4.15–4.34 (m, 6H), 3.99 (dd, J = 14.8, 6.9 Hz, 1H), 3.39–3.48 (m, 2H), 2.34 (t, J = 7.1 Hz, 2H), 1.91–2.05 (m, 3H), 1.80–1.87 (m, 1H), 1.58–1.79 (m, 4H), 1.54 (app sext, J = 7.3 Hz, 2H), 1.42 (s, 3H), 1.08 (d, J = 6.4 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 189.1, 189.0, 172.6, 171.4, 170.6, 156.0, 149.9, 148.6, 143.91, 143.89, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 113.3, 100.6, 97.8, 84.7, 70.4, 68.6, 66.3, 66.0, 65.7, 57.9, 54.0, 49.6, 46.7, 34.5 (2C), 29.0, 27.1, 24.7, 23.7, 20.2, 18.0, 13.3; IR (film) v_{max} 3358, 2918, 2845, 1732, 1715, 1695, 1684, 1649, 1572, 1454, 1270, 1236, 1102, 1076 cm⁻¹; HR ESI-TOF *m*/z 898.3307 (M + H⁺, C₄₈H₅₂CIN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 407 (-9.5), 347 (9.0), 301 (-7.8), 246 (10.2); [α]²³_D -204 (*c* 0.18, MeOH).

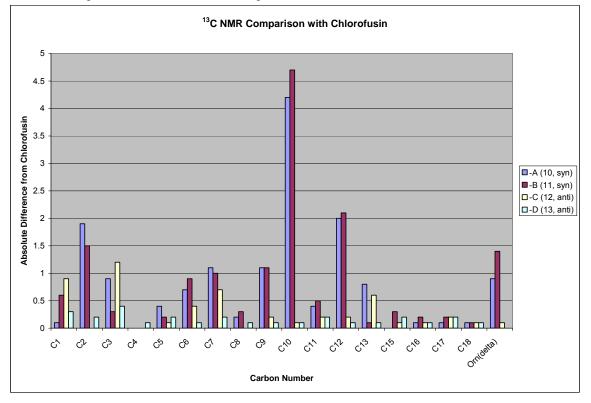
For -**B** (11): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 7.98 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.82 (s, 1H), 7.74 (dd, J = 12.8, 7.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.29–7.40 (m, 7H), 6.13 (d, J = 4.9 Hz, 1H), 5.08–5.18 (m, 3H), 4.55 (d, J = 4.8 Hz, 1H), 4.37 (dd, J = 8.4, 3.1 Hz, 1H), 4.15–4.33 (m, 6H), 4.01 (dd, J = 15.2, 7.3 Hz, 1H), 3.47–3.55 (m, 1H), 3.37–3.43 (m, 1H), 2.35 (t, J = 7.1 Hz, 2H), 1.89–2.04 (m, 2H), 1.70–1.88 (m, 4H), 1.56–1.69 (m, 2H), 1.54 (app sext, J = 7.3 Hz, 2H), 1.39 (s, 3H), 1.09 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 188.9, 188.4, 172.5, 171.7, 170.5, 156.1, 149.4, 148.5, 144.0, 143.8, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.41, 125.37, 120.2 (2C), 113.7, 100.4, 97.8, 84.7, 70.5, 68.7, 66.3, 66.0, 65.8, 57.9, 53.8, 49.1, 46.7, 35.0, 34.6, 28.8, 26.9, 24.6, 23.0, 20.3, 18.1, 13.3; IR (film) v_{max} 3355, 2918, 2850, 1716, 1649, 1571, 1559, 1455, 1273, 1101, 1077 cm⁻¹; HR ESI-TOF *m*/*z* 898.3307 (M + H⁺, C₄₈H₅₂CIN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 405 (–2.8), 345 (18.0), 256 (– 13.4), 221 (9.0); [α]²³_D+105 (*c* 0.44, MeOH).

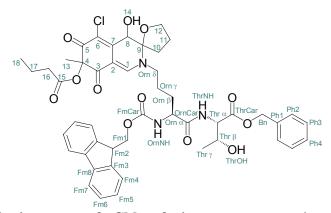

For -**C** (12): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 8.05 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.83 (s, 1H), 7.74 (t, J = 8.6 Hz, 2H), 7.64 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.30–7.40 (m, 7H), 6.41 (d, J = 7.0 Hz, 1H), 5.09–5.19 (m, 3H), 4.48 (d, J = 7.0 Hz, 1H), 4.37 (dd, J = 8.4, 3.0 Hz, 1H), 4.18–4.33 (m, 5H), 3.93 (dd, J = 14.7, 6.5 Hz, 1H), 3.79 (dd, J = 15.1, 7.2 Hz, 1H), 3.47 (t, J = 7.6 Hz, 2H), 2.35 (t, J = 7.1 Hz, 4H), 2.03 (app quint, J = 7.1 Hz, 2H), 1.63–1.77 (m, 3H), 1.50–1.63 (m, 1H), 1.54 (app sext, J = 7.3 Hz, 2H), 1.38 (s, 3H), 1.09 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 189.3, 188.8, 172.6, 171.5, 170.5, 156.0, 150.9, 148.2, 143.93, 143.85, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.2, 101.7, 96.9, 84.7, 68.6, 68.4, 66.3, 66.0, 65.8, 57.9, 53.8, 50.4, 46.7, 34.5, 30.2, 28.8, 27.4, 25.3, 23.5, 20.3, 18.1, 13.3; IR (film) v_{max} 3361, 2919, 2854, 1733, 1717, 1699, 1685, 1651, 1574, 1559, 1456, 1271, 1240, 1080, 1043 cm⁻¹; HR ESI-TOF *m*/*z* 898.3307 (M + H⁺, C₄₈H₅₂CIN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 397 (-6.7), 345 (11.6), 273 (-3.7), 228 (8.7); [α]²³_D -38 (*c* 0.18, MeOH).

For **-D** (13): ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.03 (d, J = 8.4 Hz, 1H), 7.90 (d, J =7.6 Hz, 2H), 7.80 (s, 1H), 7.74 (dd, J = 11.8, 7.5 Hz, 2H), 7.64 (d, J = 8.2 Hz, 1H), 7.43 $(t, J = 7.4 \text{ Hz}, 2\text{H}), 7.31-7.40 \text{ (m, 7H)}, 6.26 \text{ (d, } J = 5.4 \text{ Hz}, 1\text{H}), 5.16 \text{ (d, } J = 19.2, 12.6 \text{ (d,$ Hz, 1H), 5.15 (d, J = 12.6 Hz, 1H), 5.12 (d, J = 12.7 Hz, 1H), 5.11 (d, J = 5.1 Hz, 1H), 4.52 (d, J = 5.4 Hz, 1H), 4.37 (dd, J = 8.4, 3.1 Hz, 1H), 4.17-4.34 (m, 5H), 3.93 (dd, J = 3.1 Hz, 1H)13.9, 7.4 Hz, 1H), 3.77 (dd, J = 15.2, 7.2 Hz, 1H), 3.48–3.56 (m, 1H), 3.37–3.45 (m, 1H), 2.33–2.39 (m, 2H), 2.35 (t, J = 7.1 Hz, 2H), 1.99–2.09 (m, 2H), 1.62–1.78 (m, 3H), 1.51-1.62 (m, 1H), 1.54 (app sext, J = 7.3 Hz, 2H), 1.42 (s, 3H), 1.09 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 188.9, 188.5, 172.5, 171.6, 170.5, 156.0, 150.3, 147.7, 143.9, 143.8, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.4, 101.4, 96.8, 84.8, 68.52, 68.49, 66.3, 66.0, 65.8, 57.9, 53.9, 50.5, 46.7, 34.5, 30.2, 28.8, 27.5, 25.3, 23.0, 20.3, 18.1, 13.3; IR (film) v_{max} 3334, 2932, 1731, 1696, 1647, 1573, 1452, 1239, 1081, 1044, 739 cm⁻¹; HR ESI-TOF m/z 898.3303 (M + H⁺, C₄₈H₅₂ClN₃O₁₂ requires 897.3239); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 398 (-6.0), 346 (11.9), 291 (-4.4), 256 (-3.0), 220 (4.6); $[\alpha]^{23}_{D}$ –58 (*c* 0.18, MeOH).

Proton Number	δ (¹ H NMR) ^a						
	chlorofusin	-A (10 , syn)	-B (11, syn)	-C (12, anti)	-D (13, anti)		
Configuration		4 <i>S</i> , 8 <i>S</i> , 9 <i>S</i>	4S,8R,9R	4S,8S,9R	4S,8R,9S		
C1-H	7.77 (s)	7.86 (s)	7.82 (s)	7.83 (s)	7.80 (s)		
C8-H	4.53 (d)	4.48 (d)	4.55 (d)	4.48 (d)	4.52 (d)		
C10-H	2.38 (br m)	1.83, 1.95 (m)	1.80 (m)	2.35 (t)	2.37 (m)		
C11-H	2.0-2.2 (m)	1.97, 1.98 (m)	1.97 (m)	2.03 (app quint)	2.04 (m)		
C12-H ¹	4.02 (m)	4.18 (m)	4.20 (m)	3.93 (dd)	3.93 (dd)		
C12-H ²	3.78 (q)	3.99 (dd)	4.01 (dd)	3.79 (dd)	3.77 (dd)		
C13-H	1.43 (s)	1.42 (s)	1.39 (s)	1.38 (s)	1.42 (s)		
O14-H	6.26 (d)	6.14 (d)	6.13 (d)	6.41 (d)	6.26 (d)		
C16-H	2.34 (t)	2.34 (t)	2.35 (t)	2.35 (t)	2.35 (t)		
C17-H	1.55 (sext)	1.54 (app sext)	1.54 (app sext)	1.54 (app sext)	1.54 (app sext)		
C18-H	0.92 (t)	0.92 (t)	0.92 (t)	0.92 (t)	0.92 (t)		
$Orn\operatorname{-CH}_2^\delta$	3.42 (t)	3.44 (m)	3.39, 3.51 (m)	3.47 (t)	3.41, 3.52 (m)		

^a Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.

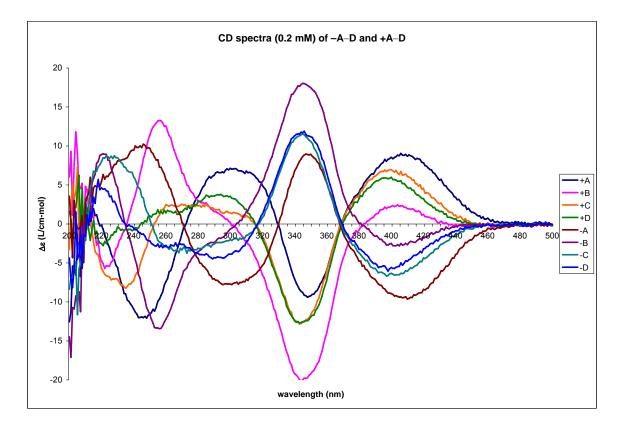


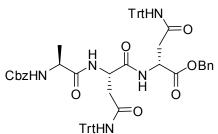

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

Carbon Number	δ (¹³ C NMR) ^a					
	chlorofusin	-A (10 , <i>syn</i>)	-B (11, syn)	-C (12, anti)	-D (13, anti)	
Configuration		4 <i>S,</i> 8 <i>S,</i> 9S	4S,8R,9R	4S,8S,9R	4 <i>S,</i> 8 <i>R</i> ,9S	
C1	150.0	149.9	149.4	150.9	150.3	
C2 [⊳] C3	115.2	113.3	113.7	115.2	115.4	
C3	188.1	189.0	188.4	189.3	188.5	
C4	84.7	84.7	84.7	84.7	84.8	
C5	188.7	189.1	188.9	188.8	188.9	
C6 ^b	101.3	100.6	100.4	101.7	101.4	
C7	147.5	148.6	148.5	148.2	147.7	
C8	68.4	68.6	68.7	68.4	68.5	
C9	96.7	97.8	97.8	96.9	96.8	
C10	30.3	34.5	35.0	30.2	30.2	
C11	25.1	24.7	24.6	25.3	25.3	
C12	68.4	70.4	70.5	68.6	68.5	
C13	22.9	23.7	23.0	23.5	23.0	
C15	171.4	171.4	171.7	171.5	171.6	
C16	34.4	34.5	34.6	34.5	34.5	
C17	17.9	18.0	18.1	18.1	18.1	
C18	13.2	13.3	13.3	13.3	13.3	
Orn δ	50.5	49.6	49.1	50.4	50.5	

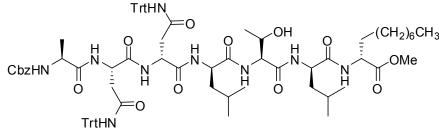
^a Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.

^b Original assignments may be switched (i.e. δ 101.3 for C2, 115.2 for C6) based on HMBC data for **10–13**. This tentative reassignment is under continued investigation.

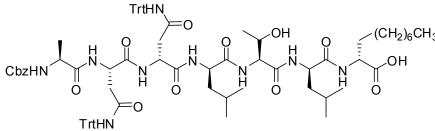




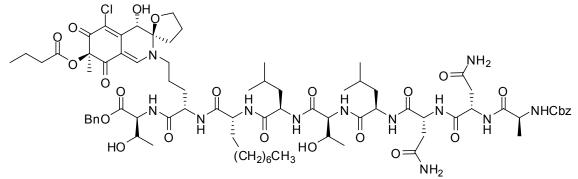
Stereochemical Assignment of Chlorofusin. For convenience of relating the spectroscopic properties and relative stereochemistries of the benzylamine and butylamine adducts discussed beforehand as well as for relating chromophore enantiometric pairs, notations of A-D and the enantiometric series (+ or –) referring to the sign of the longest wavelength Cotton effect are used below for 6-9 (+A-D) and 10-13 (-A-D).Using the diagnostic spectroscopic properties of the two sets of four diastereomers along with the analogous N,O-ketal equilibrations that define the respective syn/anti pairs in each series allowed the full relative and absolute stereochemical assignments for all eight diastereomers. Moreover, only diastereomer +D(9, 4R, 8S, 9R) matched all of the spectroscopic properties reported for the chlorofusin chromophore. With -A-D and +A-D the signals most diagnostic of a syn versus anti relationship between the C8 and C9 oxygen substituents are again those derived from C10-H and C12-H. The C10-H signals associated with -C (m, 2.35 ppm), -D (m, 2.37 ppm), +C (m, 2.36 ppm), +D (m, 2.35 ppm) and chlorofusin (br m, 2.38 ppm) are all very similar to one another, whereas those for -A (m, 1.83 ppm; m, 1.95 ppm) and +A (m, 1.77 ppm; m, 1.97 ppm) are similar and those for $-\mathbf{B}$ (m, 1.80 ppm) and $+\mathbf{B}$ (m, 1.81 ppm) are similar but distinct from chlorofusin. For C12-H, the signals are analogously diagnostic with -C (dd, 3.79 ppm; dd, 3.93 ppm), -D (dd, 3.77 ppm; dd, 3.93 ppm), +C (dd, 3.78 ppm; dd, 3.93 ppm), +D (dd, 3.77 ppm; dd, 3.92 ppm) and chlorofusin (q, 3.78 ppm; m, 4.02 ppm) being similar to one another, and -A (dd, 3.99 ppm; m, 4.18 ppm), -**B** (dd, 4.01 ppm; m, 4.20 ppm), +**A** (dd, 4.00 ppm; m, 4.20 ppm) and +**B** (dd, 4.00 ppm; m, 4.19 ppm) being similar to one another but distinct from chlorofusin. In the ${}^{13}C$ NMR data for these eight compounds, the chemical shifts of the C2 signals of -C (115.2 ppm), **-D** (115.4 ppm), **+C** (115.2 ppm), **+D** (115.4 ppm) and chlorofusin (115.2 ppm) are nearly 2 ppm downfield of the analogous signals for -A (113.3 ppm), -B (113.7 ppm), +A (113.4 ppm) and +B (113.6 ppm). [The assignments C6 and C2 appear to have been switched in the original Williams work based on the observance of much stronger HMBC correlations between the C1-H signals of -A-D and what were assigned as the C6 signals (four bond) while the C1-H correlations with what were assigned as the C2 signals were weak (two bond). This reassignment, which is inconsequential to the comparisons, would appear to be confirmed with HMQC data from a dechloro-derivative obtained during N,O-spiroketal isomerization. While this tentative reassignment is under continued investigation the data in this manuscript is reported in terms of the Williams assignment.] Other ¹³C NMR data distinguishing syn from anti: For C6: -C (101.7 ppm), -D (101.4 ppm), +C (101.7 ppm), +D (101.4 ppm), chlorofusin (101.3 ppm), versus -A (100.6 ppm), -B (100.4 ppm), +A (100.7 ppm) and +B (100.3 ppm); C9: -C (96.9 ppm), -D (96.8 ppm), +C (96.9 ppm), +D (96.8 ppm), chlorofusin (96.7 ppm), versus -A (97.8 ppm), -B (97.8 ppm), +A (97.8 ppm) and +B (97.8 ppm); C10: -C (30.2 ppm), -D (30.2 ppm), +C (30.3 ppm), +D (30.2 ppm), chlorofusin (30.3 ppm), versus -A (34.5 ppm), -B (35.0 ppm), +A (34.5 ppm) and +B (35.0 ppm); C12: -C (68.6 ppm), -D (68.5 ppm), +C (68.6 ppm), +D (68.5 ppm), chlorofusin (68.4 ppm), versus -A (70.4 ppm), -B (70.5 ppm), +A (70.4 ppm) and +B (70.6 ppm); Orn delta: -C (50.4 ppm), -D (50.5 ppm), +C (50.4 ppm), +D (50.5 ppm), chlorofusin (50.5 ppm), versus -A (49.6 ppm), -B (49.1 ppm), +A (48.9 ppm) and +B (49.7 ppm). ¹H NMR data distinguishing +/-C from +/-D as well as syn versus anti: C8-H: -C (d, 4.48 ppm), +C (d, 4.48 ppm), versus -D (d, 4.52 ppm), +D (d, 4.52 ppm), chlorofusin (d, 4.53 ppm), [also versus -A (d, 4.48 ppm), +A (d, 4.49 ppm), +B (d, 4.55 ppm) and -B (d, 4.54 ppm)]; C13-H: -C (s, 1.38 ppm), +C (s, 1.38 ppm), versus -D (s, 1.42 ppm), +D (s, 1.43 ppm), chlorofusin (s, 1.43 ppm), [also versus -A (s, 1.42 ppm), +A (s, 1.43 ppm), -B (s, 1.39 ppm) and +B (s, 1.40 ppm),]; O14-H: -C (d, 6.41 ppm), +C (d, 6.41 ppm), versus -D (d, 6.26 ppm), +D (d, 6.27 ppm), chlorofusin (d, 6.26 ppm), [also versus -A (d, 6.14 ppm), +A (d, 6.14 ppm), -B (d, 6.13 ppm) and +B (d, 6.12 ppm)]. ¹³C NMR data distinguishing +/-C from +/-D as well as *syn* versus *anti*: C1: –C (150.9 ppm), +C (150.7 ppm), versus –D (150.3 ppm), +D (150.4 ppm), chlorofusin (150.0 ppm), [also versus -A (149.9 ppm), +A (149.8 ppm), -B (149.4 ppm) and +B (149.5 ppm)]; C3: -C (189.3 ppm), +C (189.3 ppm), versus -D (188.5 ppm), +D (188.5 ppm), chlorofusin (188.1 ppm), [also versus –A (189.0 ppm), +A (189.0 ppm), -B (188.4 ppm) and +B (188.4 ppm)]; C6: -C (101.7 ppm), +C (101.7 ppm), versus –D (101.4 ppm), +D (101.4 ppm), chlorofusin (101.3 ppm), [also versus –A (100.6 ppm), +A (100.7 ppm), -B (100.4 ppm) and +B (100.3 ppm)]; C7: -C (148.2 ppm), +C (148.2 ppm), versus -D (147.7 ppm), +D (147.7 ppm), chlorofusin (147.5 ppm), [also versus -A (148.6 ppm), +A (148.6 ppm), -B (148.5 ppm) and +B (148.6 ppm)]; C13: -C (23.5 ppm), +C (23.5 ppm), versus -D (23.0 ppm), +D (23.0 ppm), chlorofusin (22.9 ppm), [also versus -A (23.7 ppm), +A (23.7 ppm), -B (23.0 ppm) and +B (23.0 ppm)]. ¹H NMR data distinguishing –D (13) from +D (9) allowing the absolute configuration assignment: Orn delta: -D (m, 3.41 ppm; m, 3.52 ppm, 1H each) versus +D (m, 3.45 ppm, 2H), chlorofusin (t, 3.42 ppm, 2H).


The ROESY NMR data for these eight diastereomers reveals a correlation only between C8-H and C4-Me (and not C4-Me/C8-OH) when those groups are *cis* with respect to one another (-A, -C, +A and +C) and a correlation between C4-Me and both C8-H and C8-OH when C4-Me is *trans* with respect to C8-H (-B, -D, +B and +D). Regardless of the relative stereochemistry of the chromophore, an NOE is seen between C4-Me and C8-H, and furthermore, the correlations are consistent with the ROESY NMR data for **S19** (x-ray).

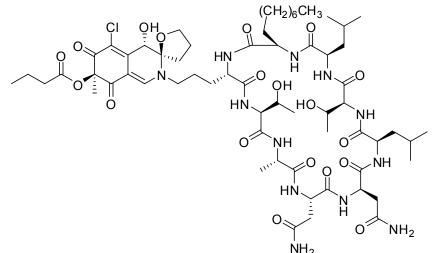
Comparison of the CD spectra of all eight diastereomers shows that the region between 250-470 nm is apparently dependent on the stereochemistry of the chromophore alone with nearly equal and opposite spectra observed for -A and +A, for -B and +B, for -C and +C and for -D and +D (See figure below). Of particular note is the sign of the longest wavelength Cotton effect (395-410 nm). As with azaphilone 2, a positive longest wavelength Cotton effect is diagnostic of C4-*R* stereochemistry and a negative Cotton effect is diagnostic of C4-*S* stereochemistry.



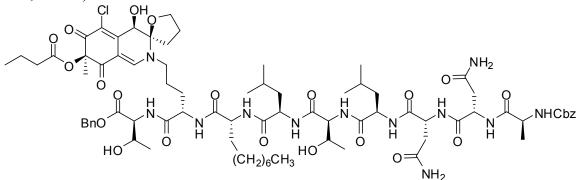
Cbz-L-Ala-L-Asn(Trt)-D-Asn(Trt)-OBn (S21). A solution of Fmoc-L-Asn(Trt)-D-Asn(Trt)-OBn⁵ (511 mg, 0.490 mmol) in anhydrous CH₂Cl₂ (4.9 mL) was treated with piperidine (0.15 mL, 1.5 mmol) and stirred at 23 °C for 100 min. Chromatography (SiO₂, 70% EtOAc-hexanes) afforded the crude dipeptide as a gray solid which was directly employed in the next reaction. A flask containing the intermediate dipeptide (401 mg, 0.490 mmol), commercially available Cbz-L-Ala-OH (142 mg, 0.637 mmol), HOAt (177 mg, 1.30 mmol) and EDCI (9.25 g, 1.30 mmol) at 0 °C was slowly treated with anhydrous DMF (3.3 mL), stirred at 0 °C for 1 h then stirred at 23 °C for 24 h under argon. The reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous 0.1 N HCl (2 \times 10 mL), saturated aqueous NaHCO₃ (2 \times 10 mL), H₂O (10 mL), and saturated aqueous NaCl (20 mL). The organic phase was dried (Na_2SO_4) and concentrated under reduced pressure. Chromatography (SiO₂, 70% EtOAc-hexanes) afforded **S21** as a white solid (60%, 300 mg): ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.76 (s, 1H), 8.57 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.32–7.38 (m, 11H), 7.14–7.29 (m, 30H), 5.07 (m, 4H), 4.69 (dd, J = 14.7, 8.0 Hz, 1H), 4.60 (dd, J = 13.7, 6.5 Hz, 1H), 4.15 (m, 1H), 2.74–2.84 (m, 3H), 2.58 (m, 1H), 1.22 (d, J = 7.1 Hz, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 172.3, 171.0, 170.9, 168.8, 168.7, 155.7, 144.8 (3C),144.7 (3C), 137.0, 135.9, 128.61 (6C), 128.59 (6C), 128.5 (3C), 128.4 (3C), 127.9. 127.8 (3C), 127.7 (2C), 127.53 (6C), 127.51 (6C), 126.41 (2C), 126.38 (2C), 69.5, 69.4, 66.1, 65.6, 50.1 (2C), 49.2, 39.0, 37.6, 18.8; IR (film) v_{max} 3311, 3058, 3032, 1666, 1492, 1448, 1215, 751, 699 cm⁻¹; HR ESI-TOF m/z 1026.4412 (M + H⁺, C₆₄H₅₉N₅O₈ requires 1025.4364); $[\alpha]^{23}_{D}$ –5 (*c* 1.00, CHCl₃).


Cbz-L-Ala-L-Asn(Trt)-D-Asn(Trt)-D-Leu-L-Thr-D-Leu-D-ADA-OMe (S22). A solution of S21 (356 mg, 0.347 mmol) in THF (4.4mL) was cooled to 0 °C, treated with a solution of LiOH·H₂O (146 mg, 3.47 mmol) in H₂O (4.4 mL) and stirred at 0 °C for 6 h. The reaction mixture was quenched with the addition of aqueous 2 N HCl (1.7 mL), acidified to pH 3 and extracted with EtOAc (3×10 mL). The combined extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 7% MeOH–CH₂Cl₂) afforded the carboxylic acid as a white foam which was directly employed in the next reaction. Concurrently, Boc-D-Leu-L-Thr-D-Leu-D-ADA-OMe⁵ (218 mg, 0.347 mmol) was treated with 4 N HCl–dioxane (1.0 mL).

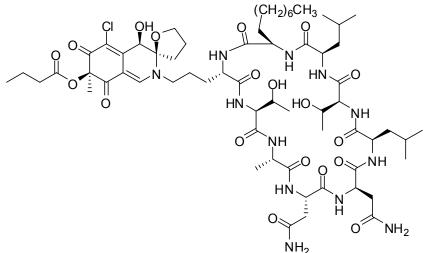
solution was stirred for 1 h, and the volatiles were removed with a stream of nitrogen. The residue was treated with Et₂O and concentrated under reduced pressure $(2 \times 2 \text{ mL})$ to afford the terminal amine as a sticky oil which was directly employed in the next reaction. A flask containing the carboxylic acid, the amine, HOAt (142 mg, 1.04 mmol), EDCI (200 mg, 1.04 mmol) and NaHCO₃ (88.0 mg, 1.04 mmol) was cooled to 0°C, treated with anhydrous DMF (2.3 mL) and stirred at 23 °C for 20 h. The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous 1 N HCl (2×5 mL), saturated aqueous NaHCO₃ (2×5 mL), H₂O (5 mL), and saturated aqueous NaCl (10 mL). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 9% MeOH-CH₂Cl₂) afforded S22 as a white solid (57%, 286 mg): ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.62 (s, 1H), 8.60 (s, 1H), 8.38 (d, J = 7.3 Hz, 1H), 8.25 (d, J = 7.4 Hz, 1H), 8.22 (d, J = 7.1 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.37 (m, 5H), 7.33 (m, 1H), 7.15–7.28 (m, 30H), 5.11 (d, J = 12.5 Hz, 1H), 4.98 (d, J = 12.5 Hz, 1H), 4.75 (d, J = 5.4 Hz, 1H), 4.58 (m, 1H), 4.51 (m, 1H), 4.36 (m, 1H), 4.27 (dd, *J* = 14.1, 8.4 Hz, 1H), 4.13 (m, 3H), 3.93 (qd, J = 12.0, 6.2 Hz, 1H), 3.58 (s, 3H), 2.60-2.75 (m, 4H), 1.61 (m, 6H), 1.48 (m, 3H),1.25 (m, 14H), 0.99 (d, J = 6.3 Hz, 3H), 0.86 (m, 9H), 0.81 (m, 6H); ¹³C NMR (DMSOd₆, 150 MHz) δ 172.9, 172.5, 172.3, 172.2, 171.4, 171.0, 170.0, 168.9, 168.8, 155.9, 144.82 (3C), 144.77 (3C), 136.9, 128.6 (12C), 128.4 (2C), 127.90, 127.88 (2C), 127.5(12C), 126.4 (6C), 69.50, 69.48, 66.6, 65.8, 59.8, 58.7, 52.2, 51.9, 51.7, 50.7, 50.4, 50.2, 40.9, 40.3, 38.5, 38.0, 36.3, 31.3, 30.7, 28.9, 28.7, 25.4, 24.2, 24.0, 23.2, 23.0, 22.2, 21.6, 21.5, 19.6, 18.3, 14.0; IR (film) v_{max} 3307, 2926, 1661, 1518, 1448, 1242, 753, 700 cm⁻¹; HR ESI-TOF m/z 1446.7732 (M + H⁺ C₈₄H₁₀₃N₉O₁₃ requires 1445.7676); $[\alpha]^{23}_{D}$ -15 (c 0.20, MeOH).


Cbz-L-Ala-L-Asn(Trt)-D-Asn(Trt)-D-Leu-L-Thr-D-Leu-D-ADA-OH (S23). A solution of **S22** (724 mg, 0.501 mmol) in THF (6.2 mL) was cooled to 0 °C, treated with a solution of LiOH·H₂O (210 mg, 5.01 mmol) in H₂O (6.2 mL) and stirred at 0 °C for 90 min before being quenched with addition of aqueous 2 N HCl (2.5 mL). The resulting mixture was acidified to pH 3 and extracted with EtOAc (3×20 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography (SiO₂, 10% MeOH–CH₂Cl₂) afforded **S23** as a white solid (85%, 464 mg): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 8.63 (s, 1H), 8.60 (s, 1H), 8.29 (d, *J* = 5.5 Hz, 1H), 7.94 (brs, 2H), 7.84 (s, 1H), 7.66 (brs, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 4.1 Hz, 5H), 7.33 (m, 1H), 7.15–7.28 (m, 30H), 5.12 (d, *J* = 12.5 Hz, 1H), 4.97 (d, *J* = 12.5 Hz, 1H), 4.61 (m, 1H), 4.50 (m, 1H), 4.30 (m, 1H), 4.24 (s, 1H), 4.11 (dd, *J* = 7.7, 4.4 Hz, 1H), 4.07 (m, 1H), 4.01 (s, 1H), 3.95 (m, 1H), 2.76 (m, 1H), 2.65 (m, 3H), 1.57 (m, 9H), 1.23 (m, 14H), 0.98 (d, *J* = 6.2 Hz, 3H), 0.86 (m, 9H), 0.80 (dd, *J* = 12.1, 6.3 Hz, 6H), the two OH protons were not observed; ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 173.8,

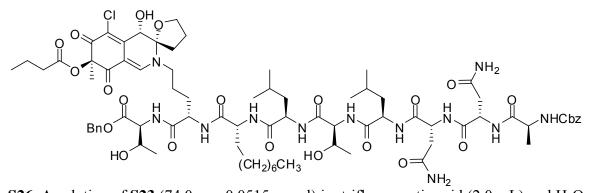
172.8, 172.2 (2C), 171.5, 171.1, 170.0, 169.0, 168.8, 160.0, 144.9 (3C), 144.8 (3C), 136.9, 128.6 (12C), 128.4 (2C), 127.9 (3C), 127.5(12C), 126.3 (6C), 69.5 (2C), 66.3, 65.7, 58.8, 52.9, 51.8, 51.2, 51.1, 50.6, 50.3, 40.7, 40.4, 38.6, 38.2, 31.4, 29.1, 29.0, 28.9, 28.8, 25.4, 24.3, 24.1, 23.2, 23.0, 22.2, 21.8, 21.4, 19.8, 18.3, 14.0; IR (film) v_{max} 3326, 2927, 2855, 1655, 1524, 1496, 752, 699, 598 cm⁻¹; HR ESI-TOF *m*/*z* 1432.7575 (M + H⁺, C₈₃H₁₀₁N₉O₁₃ requires 1431.7519); [α]²³_D-20 (*c* 0.2, MeOH).


16. A solution of S23 (19.6 mg, 0.0137 mmol) in trifluoroacetic acid (1.1 mL) and H_2O (55 μ L) was stirred at 23 °C for 70 min. The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 2.0 \text{ mL})$ to provide crude 15 as a gray solid (11.8 mg), which was directly employed in the next step. A solution of 9 (10.2 mg, 0.0114 mmol) in anhydrous CH₂Cl₂ (0.19 mL) and DMF (0.19 mL) was treated with piperidine (5.6 µL, 0.057 mmol) and stirred at 23 °C for 40 min. The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography (SiO₂, 10% MeOH–CH₂Cl₂) to afford the free amine 14 (7.3 mg) as a vellow-orange solid which was directly used in next step. A flask containing 15 (11.8 mg), 14 (7.3 mg), HOAt (6.2 mg, 0.046 mmol), EDCI (8.7 mg, 0.046 mmol), and NaHCO₃ (3.8 mg, 0.046 mmol) was cooled to 0 °C, treated with anhydrous DMF (0.11 mL) and stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (10 mL), washed with aqueous 1 N HCl (2×2.0 mL), saturated aqueous NaHCO₃ (2×2.0 mL), H₂O (1.0 mL) and saturated aqueous NaCl (2.0 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 8% MeOH–CH₂Cl₂) afforded **16** as a yellow solid (10.0 mg, 55%): ¹H NMR (DMSO- d_6 , 600 MHz) δ 8.26 (d, J = 7.4 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 7.7 Hz, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.79 (s, 2H), 7.64(d, J = 7.6 Hz, 1H), 7.51 (s, 1H), 7.48 (d, J = 6.9 Hz, 1H), 7.43 (s, 1H), 7.31-7.40 (m, 1H)10H), 7.03 (s, 1H), 6.98 (s, 1H), 6.24 (d, J = 5.4 Hz, 1H), 5.14 (app q, J = 12.7 Hz, 2H), 5.10 (d, J = 5.2 Hz, 1H), 5.02 (m, 2H), 4.90 (d, J = 6.1 Hz, 1H), 4.50 (m, 4H), 4.34 (dd, J= 8.2, 3.3 Hz, 1H), 4.31 (dd, J = 15.0, 7.9 Hz, 1H), 4.23 (m 3H), 4.09 (m, 2H), 4.01 (m, 1H), 3.95 (dd, J = 14.5, 6.7 Hz, 1H), 3.78 (q, J = 7.2 Hz, 1H), 3.44 (m, 2H), 2.63 (m, 1H), 2.55 (m, 3H), 2.35 (m, 2H), 2.34 (t, J = 7.1 Hz, 2H), 2.05 (m, 2H), 1.72 (m, 1H), 1.45-1.67 (m, 12H), 1.42 (s, 3H), 1.24 (m, 16H), 1.08 (d, J = 6.3 Hz, 3H), 1.03 (d, J =6.2 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H), 0.87 (m, 9H), 0.81 (m, 6H); ¹³C NMR (DMSO- d_6 . 150 MHz) δ 188.9, 188.4, 172.8, 172.3, 172.15, 172.06 (2C), 171.7, 171.6, 171.5, 171.1, 170.8, 170.43, 170.40, 155.9, 150.3, 147.6, 136.9, 136.0, 128.42 (2C), 128.40 (2C), 128.1, 127.90 (3C), 127.85 (2C), 115.4, 101.4, 96.8, 84.7, 69.8, 68.5, 68.4, 66.8, 66.2, 66.0, 65.6, 59.1, 58.1, 52.9, 52.0, 51.4, 51.2, 50.5, 50.1 (2C), 50.0, 40.5, 40.3, 37.1, 36.3,

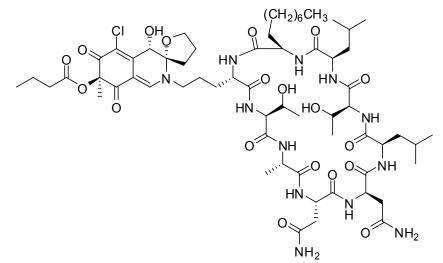
34.5, 32.1, 31.3, 30.2, 29.3, 29.0, 28.8 (2C), 27.1, 25.5, 25.3, 24.1, 24.0, 23.2, 23.1, 23.0, 22.2, 21.4, 20.2, 19.6, 18.0, 17.9, 14.0, 13.3; IR (film) v_{max} 3271, 2923, 2853, 1735, 1624, 1558, 1455, 1367, 1247, 1081 cm⁻¹; HR ESI-TOF *m*/*z* 1605.7833 (M + H⁺, C₇₈H₁₁₃ClN₁₂O₂₂ requires 1604.7781); [α]²³_D+13 (*c* 0.12, MeOH).

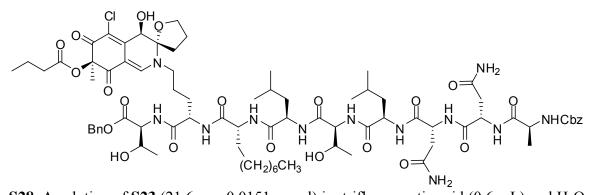

Chlorofusin (1). A solution of 16 (6.0 mg, 0.0037 mmol) in anhydrous THF (1.3 mL) and DMF (0.65 mL) was treated with 10% Pd-C (9.0 mg) and stirred under H₂ (1 atm) at 23 °C for 4 h. The catalyst was removed by filtration through Celite and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt (5.1 mg, 0.037 mmol), EDCI (7.2 mg, 0.037 mmol), NaHCO3 (3.2 mg, 0.037 mmol), cooled to 0 °C, treated with anhydrous DMF (1.2 mL) and stirred at 23 °C for 40 h. The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous 1 N HCl (2×5 mL), saturated aqueous NaHCO₃ (2×5 mL), H₂O (5 mL) and saturated aqueous NaCl (10 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 11% MeOH-CH₂Cl₂) afforded **1** as a yellow solid (3.0 mg, 60%): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 9.09 (br s, 1H), 8.75 (br s, 1H), 8.62 (s, 1H), 7.84 (br s, 1H), 7.77 (s, 1H), 7.70 (d, J = 9.6 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.07 (s, 1H), 7.01 (s, 1H), 6.93 (br s, 1H), 6.91 (s, 1H), 6.82 (s, 1H), 6.69 (br s, 1H), 6.26 (d, J = 5.2 Hz, 1H), 5.29 (d, J = 4.2 Hz, 1H), 5.05 (s, 1H), 4.75 (m, 1H), 4.59 (m, 1H), 4.591H), 4.53 (d, J = 5.1 Hz, 1H), 4.47 (m, 1H), 4.40 (m, 1H), 4.02 (m, 3H), 3.88–3.98 (br m, 4H), 3.78 (dd, J = 7.7, 7.5 Hz, 1H), 3.66 (br m, 1H), 3.42 (br t, J = 7.8 Hz, 2H), 2.93 (m, 1H), 2.75 (dd, J = 14, 11 Hz, 1H), 2.63 (m, 1H), 2.49 (m, HMQC, 1H), 2.38 (br m, 2H), 2.34 (t, J = 7.0 Hz, 2H), 2.00–2.15 (br m, 2H), 1.70–1.86 (br m, 6H), 1.50–1.63 (br m, 6H), 1.43 (s, 3H), 1.37–1.41 (br m, 2H), 1.27 (br m, 14H), 1.16 (d, J = 6.1 Hz, 4H), 1.10 $(d, J = 5.3 \text{ Hz}, 3\text{H}), 0.92 \text{ (m, 6H)}, 0.87 \text{ (t, } J = 7.2, 3\text{H}), 0.82 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H}), 0.78 \text{ (m, 6H)}, 0.78 \text{ (m, 6H)}, 0.87 \text{ (t, } J = 7.2, 3\text{H}), 0.82 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H}), 0.78 \text{ (m, 6H)}, 0.81 \text{ (m, 6H)}, 0.81 \text{ (m, 6H)}, 0.82 \text{ (m, 6H)}, 0.81 \text$ 6H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 188.9, 188.3, 173.2, 173.1, 172.6, 172.5, 172.0, 171.8, 171.5 (2C), 171.0, 170.4, 150.2, 147.7, 115.3, 101.4, 96.8, 84.8, 68.6, 68.5, 65.1, 65.0, 63.4 (HMQC), 62.3, 54.1, 52.8, 52.2, 51.2, 50.9, 50.6, 49.2, 49.1, 39.0 (HMQC), 38.9 (HMQC), 37.4, 36.2, 34.5, 31.4, 30.5, 30.1, 28.72, 28.70, 28.6, 28.4 (HMQC), 27.1, 26.0, 25.2, 24.2, 24.1, 23.3, 23.0 (2C), 22.1, 20.7, 20.4, 20.3, 20.2, 18.1, 16.6, 14.0, 13.3; IR (film) v_{max} 3320, 2926, 2855, 1655, 1536, 1205, 1184, 1138 cm⁻¹; HR ESI-TOF *m/z* 1363.6921 (M + H⁺, C₆₃H₉₉ClN₁₂O₁₉ requires 1362.6831); CD (MeOH, 0.13 mM) λ_{ext}

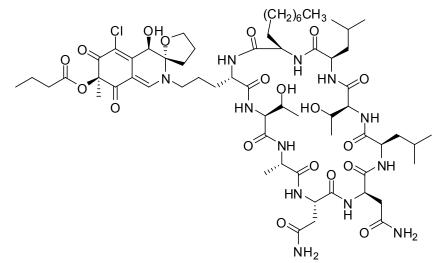
nm ($\Delta\epsilon$) 397 (4.1), 345 (-7.7), 295 (3.3), 254 (2.4), 223 (-5.1), 201 (17.1); $[\alpha]^{23}{}_{D}$ +14 (*c* 0.05, MeOH).



S24. A solution of S23 (42.1 mg, 0.0294 mmol) in trifluoroacetic acid (1.0 mL) and H₂O (50 μ L) was stirred at 23 °C for 70 min. The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 2.0 \text{ mL})$ to provide crude 15 as a gray solid (27.5 mg), which was directly employed in the next step. A solution of 6(24.0 mg, 0.0267 mmol) in anhydrous CH₂Cl₂ (0.44 mL) and DMF (0.44 mL) was treated with piperidine (13 μ L, 0.134 mmol) and stirred at 23 °C for 40 min. The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography (SiO₂, 10% MeOH-CH₂Cl₂) to afford the free amine (17.0 mg) as a yellow-orange solid which was directly used in next step. A flask containing 15 (27.5 mg), the free amine (17.0 mg), HOAt (14.6 mg, 0.107 mmol), EDCI (20.5 mg, 0.107 mmol), and NaHCO₃ (9.0 mg, 0.107 mmol) was cooled to 0 °C, treated with anhydrous DMF (0.26 mL) and stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous 1 N HCl (2×5.0 mL), saturated aqueous NaHCO₃ $(2 \times 5.0 \text{ mL})$, H₂O (5.0 mL) and saturated aqueous NaCl (10.0 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 8% MeOH-CH₂Cl₂) afforded S24 as a yellow solid (26.0 mg, 61%): ¹H NMR (DMSO d_{6} , 600 MHz) δ 8.27 (d, J = 7.3 Hz, 1H), 8.14 (d, J = 7.5 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.95 (m, 3H), 7.85 (s, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.51 (s, 1H), 7.48 (d, J = 6.9 Hz, 1H), 7.43 (s, 1H), 7.30–7.41 (m, 10H), 7.03 (s, 1H), 6.98 (s, 1H), 1H), 6.09 (d, J = 5.6 Hz, 1H), 5.19 (d, J = 5.4 Hz, 1H), 5.14 (app q, J = 12.7 Hz, 2H), 5.08 (d, J = 12.5 Hz, 1H), 4.99 (d, J = 12.5 Hz, 1H), 4.90 (d, J = 6.0 Hz, 1H), 4.51 (m, 4H), 4.35 (dd, J = 8.3, 3.1 Hz, 1H), 4.31 (m, 1H), 4.18–4.26 (m, 4H), 4.09 (m, 2H), 4.01 (m, 2H), 3.49 (m, 1H), 3.40 (m, 1H), 2.63 (dd, J = 15.3, 5.6 Hz, 1H), 2.54 (m, 3H), 2.33 $(t, J = 6.9 \text{ Hz}, 2\text{H}), 1.98 \text{ (m, 3H)}, 1.80 \text{ (m, 2H)}, 1.46-1.73 \text{ (m, 12H)}, 1.41 \text{ (s, 3H)}, 1.23 \text{ (m, 12H)}, 1.41 \text{ (s, 3H)}, 1.23 \text{ (m, 12H)}, 1.41 \text{ (s, 2H)}, 1.41 \text{ (s$ (br m, 16H), 1.09 (d, J = 6.3 Hz, 3H), 1.03 (d, J = 6.2 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 6.8 Hz, 9H), 0.81 (d, J = 6.2 Hz, 6H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 189.0, 188.9, 172.8, 172.3, 172.13 (2C), 172.06, 171.7, 171.6, 171.3, 171.1, 170.8, 170.4, 170.4, 155.9, 149.6, 148.5, 136.9, 136.0, 128.4 (4C), 128.0, 127.9 (3C), 127.8 (2C), 113.4, 100.7, 97.8, 84.7, 70.4, 68.6, 66.8, 66.3, 66.0 (2C), 65.6, 59.2, 58.1, 53.0, 52.0, 51.2, 51.1, 50.1 (2C), 50.0, 48.8, 40.4, 40.1, 37.1, 36.3, 34.5, 32.0, 31.4, 29.03, 28.97, 28.8 (2C), 26.4, 25.5, 24.7, 24.1, 24.0, 23.6, 23.2, 23.1, 22.2, 21.40, 21.36, 20.2, 19.6, 18.1, 17.9, 14.0, 13.3; IR (film) v_{max} 3273, 2922, 2849, 1734, 1632, 1555, 1467, 1238,


685 cm⁻¹; HR ESI-TOF *m*/*z* 1605.7834 (M + H⁺, C₇₈H₁₁₃ClN₁₂O₂₂ requires 1604.7781); $[\alpha]^{23}_{D}$ +29 (*c* 0.20, MeOH).


S25. A solution of S24 (26.0 mg, 0.0162 mmol) in anhydrous THF (5.4 mL) and DMF (2.7 mL) was treated with 10% Pd-C (39.0 mg) and stirred under H₂ (1 atm) at 23 °C for 4 h. The catalyst was removed by filtration through Celite, and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt (22.0 mg, 0.162 mmol), EDCI (31.0 mg, 0.162 mmol), NaHCO₃ (13.6 mg, 0.162 mmol), cooled to 0 °C, treated with anhydrous DMF (5.4 mL) and stirred at 23 °C for 40 h. The reaction mixture was diluted with EtOAc (60 mL), washed with aqueous 1 N HCl (2×10 mL), saturated aqueous NaHCO₃ (2×10 mL), H₂O (10 mL) and saturated aqueous NaCl (20 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 11% MeOH-CH₂Cl₂) afforded S25 as a yellow solid (13.6 mg, 62%): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 9.09 (br s, 1H), 8.85 (br s, 1H), 8.72 (s, 1H), 7.88 (s, 1H), 7.82 (br s, 1H), 7.77 (d, J = 7.1 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.25 (s, 1H), 7.12 (s, 1H), 7.01 (s, 1H), 6.94 (s, 1H), 6.89 (s, 2H), 6.76 (br s, 1H), 5.98 (d, J = 2.8Hz, 1H), 5.33 (d, J = 3.8 Hz, 1H), 5.01 (d, J = 4.9 Hz, 1H), 4.78 (m, 1H), 4.59 (m, 1H), 4.50 (d, J = 3.2 Hz, 1H), 4.48 (m, 1H), 4.38 (m, 1H), 4.23 (m, 1H), 4.10 (m, 1H),3.88–4.04 (br m, 6H), 3.63 (br m, 1H), 3.50 (m, 1H), 3.43 (m, 1H), 2.95 (m, 1H), 2.77 (dd, J = 15.3, 10.5 Hz, 1H), 2.58 (m, 1H), 2.49 (m, HMQC, 1H), 2.34 (t, J = 7.0 Hz, 2H),2.06 (m, 1H), 1.70–1.96 (br m, 9H), 1.50–1.66 (br m, 6H), 1.41 (s, 3H), 1.35–1.45 (br m, 2H), 1.26 (br m, 14H), 1.16 (d, J = 6.2 Hz, 3H), 1.11 (d, J = 5.9 Hz, 4H), 0.92 (m, 6H), 0.86 (m, 6H), 0.77 (d, J = 6.1 Hz, 6H); ¹³C NMR (DMSO- d_{6} , 150 MHz) δ 189.0, 188.9, 173.22, 173.18, 173.1, 173.0, 172.6, 171.74, 171.70, 171.5, 171.3, 171.2, 170.4, 149.7, 148.3, 113.4, 100.6, 97.9, 84.7, 70.8, 69.0, 65.1, 64.9, 63.6 (HMQC), 62.4, 53.9, 52.7, 52.3, 51.6, 50.9, 49.7, 49.2, 49.1, 39.0 (HMQC), 38.9 (HMQC), 37.5, 36.2, 34.7, 34.5, 31.4, 29.9, 28.72, 28.68, 28.5, 28.3, 26.8, 26.1, 24.5, 24.4, 24.1, 23.6, 23.4, 23.2, 22.1, 20.7, 20.5, 20.4 (2C), 18.1, 16.5, 14.0, 13.3; IR (film) v_{max} 3315, 2962, 2927, 2860, 1650, 1567, 1538, 1446, 1410, 1332, 1312, 1261, 1239, 1102, 1077, 1057 cm⁻¹; HR ESI-TOF m/z 1363.6896 (M + H⁺, C₆₃H₉₉ClN₁₂O₁₉ requires 1362.6838); CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 407 (9.0), 348 (-6.8), 302 (7.1), 240 (-11.1), 202 (20.8); $[\alpha]_{D}^{23}$ +135 (c 0.14, MeOH).


S26. A solution of **S23** (74.0 mg, 0.0515 mmol) in trifluoroacetic acid (2.0 mL) and H_2O (100 μ L) was stirred at 23 °C for 70 min. The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 3.0 \text{ mL})$ to provide crude 15 as a gray solid (52.1 mg), which was directly employed in the next step. A solution of 7 (42.0 mg, 0.0468 mmol) in anhydrous CH₂Cl₂ (0.78 mL) and DMF (0.78 mL) was treated with piperidine (23 μ L, 0.234 mmol) and stirred at 23 °C for 40 min. The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography (SiO₂, 10% MeOH-CH₂Cl₂) to afford the free amine (28.3 mg) as a yellow-orange solid which was directly used in next step. A flask containing 15 (52.1 mg), the free amine (28.3 mg), HOAt (26.0 mg, 0.192 mmol), EDCI (37.0 mg, 0.192 mmol), and NaHCO₃ (16.0 mg, 0.192 mmol) was cooled to 0 °C, treated with anhydrous DMF (0.47 mL) and stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (50 mL), washed with aqueous 1 N HCl (2×5.0 mL), saturated aqueous NaHCO₃ $(2 \times 5.0 \text{ mL})$, H₂O (5.0 mL) and saturated aqueous NaCl (10.0 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 8% MeOH-CH₂Cl₂) afforded **S26** as a yellow solid (51.0 mg, 68%): ¹H NMR (DMSO d_{6} , 600 MHz) δ 8.26 (d, J = 7.4 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 7.2 Hz, 1H), 7.91 (t, J = 7.2 Hz, 2H), 7.80 (s, 1H), 7.79 (s, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.51 (s, 1H), 7.48 (d, J = 6.9 Hz, 1H), 7.43 (s, 1H), 7.31–7.40 (m, 10H), 7.03 (s, 1H), 6.98 (s, 1H), 6.06 (d, J = 4.9 Hz, 1H), 5.13 (dd, J = 12.7, 3.9 Hz, 2H), 5.08 (m, 2H), 4.99 (d, J = 12.5 Hz, 1H), 4.90 (d, J = 6.1 Hz, 1H), 4.53 (d, J = 5.0 Hz, 1H), 4.48 (m, 3H), 4.34 (dd, J = 8.3, 3.3 Hz, 1H), 4.30 (dd, J = 15.1, 8.1 Hz, 1H), 4.21 (m, 4H), 4.09 (m, 2H), 4.01 (m, 2H), 3.47 (m, 2H), 2.63 (dd, J = 15.7, 5.8 Hz, 1H), 2.54 (m, 3H), 2.32 (t, J = 7.0 Hz, 2H), 1.99 (m, 2H), 1.80 (m, 2H), 1.43–1.79 (m, 13H), 1.38 (s, 3H), 1.23 (m, 16H), 1.08 (d, J = 6.3 Hz, 3H), 1.03 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.4Hz, 3H), 0.86 (t, J = 6.9 Hz, 9H), 0.81 (d, J = 6.3 Hz, 6H); ¹³C NMR (DMSO- d_{6} , 150 MHz) & 188.8, 188.3, 172.8, 172.3, 172.2, 172.06, 172.05, 171.7, 171.6, 171.5, 171.1, 170.8, 170.43, 170.41, 155.9, 149.4, 148.6, 136.9, 136.0, 128.42 (2C), 128.41 (2C), 128.0, 127.9 (3C), 127.8 (2C), 113.6, 100.4, 97.7, 84.6, 70.5, 69.9, 68.7, 66.8, 66.3, 66.0 (2C), 65.6, 59.2, 58.1, 52.9, 52.0, 51.6, 51.2, 50.1, 50.0, 49.5, 40.4, 40.1, 37.1, 36.3, 35.6, 34.9, 34.6, 32.1, 31.4, 28.9, 28.81, 28.79, 26.7, 25.4, 24.6, 24.1, 24.0, 23.2, 23.1, 23.0, 22.2, 21.4, 20.2, 19.6, 18.0, 17.9, 14.1, 13.3; IR (film) v_{max} 3287, 2910, 2849, 1735, 1628, 1465, 1352, 1235, 1174, 786 cm⁻¹; HR ESI-TOF m/z 1605.7870 (M + H⁺, $C_{78}H_{113}ClN_{12}O_{22}$ requires 1604.7781); $[\alpha]^{23}D - 7$ (c 0.10, MeOH).

S27. A solution of **S26** (45.0 mg, 0.0280 mmol) in anhydrous THF (9.0 mL) and DMF (4.5 mL) was treated with 10% Pd-C (67.5 mg) and stirred under H₂ (1 atm) at 23 °C for 4 h. The catalyst was removed by filtration through Celite, and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt (38.0 mg, 0.280 mmol), EDCI (54.0 mg, 0.280 mmol), NaHCO₃ (24.0 mg, 0.280 mmol), cooled to 0 °C, treated with anhydrous DMF (9.3 mL) and stirred at 23 °C for 40 h. The reaction mixture was diluted with EtOAc (120 mL), washed with aqueous 1 N HCl (2×20 mL), saturated aqueous NaHCO₃ (2×20 mL), H₂O (20 mL) and saturated aqueous NaCl (40 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 11% MeOH–CH₂Cl₂) afforded S27 as a yellow solid (24.8 mg, 65%): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 9.13 (br s, 1H), 8.72 (br s, 1H), 8.62 (s, 1H), 7.84 (br s, 1H), 7.81 (s, 1H), 7.72 (d, J = 6.2 Hz, 1H), 7.50 (d, J = 8.7 Hz, 1H), 7.25 (s, 1H), 7.08 (s, 1H), 7.01 (s, 1H), 6.93 (br s, 1H), 6.89 (s, 1H), 6.74 (br s, 1H), 6.67 (br s, 1H), 5.98 (d, J = 4.7 Hz, 1H), 5.30 (d, J = 4.5 Hz, 1H), 5.08 (d, J = 3.6 Hz, 1H), 4.74 (m, 1H), 4.56 (br m, 1H), 4.54 (d, J = 4.8 Hz, 1H), 4.47 (m, 1H), 4.41 (m, 1H), 4.22 (dd, J =13.6, 7.0 Hz, 1H), 3.90–4.06 (br m, 7H), 3.65 (br m, 1H), 3.35 (m, HMOC, 2H), 2.93 (m, 1H), 2.75 (dd, J = 15.6, 10.3 Hz, 1H), 2.63 (dd, J = 15.4, 10.7 Hz, 1H), 2.49 (m, HMQC, 1H), 2.33 (t, J = 7.1 Hz, 2H), 1.93–2.07 (br m, 2H), 1.73–1.89 (br m, 6H), 1.50–1.70 (br m, 8H), 1.41 (s, 3H), 1.38–1.45 (br m, 2H), 1.27 (br m, 14H), 1.16 (d, J = 6.2 Hz, 4H), 1.10 (d, J = 5.4 Hz, 3H), 0.91 (m, 6H), 0.87 (m, 3H), 0.83 (d, J = 6.5 Hz, 3H), 0.77 (d, J= 6.0 Hz, 6H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 188.9, 188.0, 173.3, 173.2, 172.8, 172.7, 172.5, 172.0, 171.7, 171.6, 171.5, 171.3, 170.9, 170.5, 149.4, 148.4, 113.7, 100.4, 97.7, 84.6, 70.6, 68.7, 65.2, 65.0, 63.5 (HMQC), 62.3, 54.1, 52.8, 52.1, 51.7, 50.9, 49.2 (2C), 49.0, 39.0 (HMQC), 38.9 (HMQC), 37.5, 36.2, 35.0, 34.6, 31.4, 30.0, 28.74, 28.69, 28.6, 28.3, 27.0, 26.0, 24.7, 24.2, 24.1, 23.4, 23.2, 23.0, 22.1, 20.7, 20.4 (2C), 20.2, 18.1, 16.5, 14.0, 13.3; IR (film) v_{max} 3314, 2951, 2926, 2855, 1648, 1537, 1451, 1413, 1337, 1239, 1105, 1078, 1054 cm⁻¹ HR ESI-TOF *m*/*z* 1363.6914 (M + H⁺, C₆₃H₉₉ClN₁₂O₁₉) requires 1362.6838); CD (MeOH, 0.20 mM) λ_{ext} nm (Δε) 403 (1.4), 345 (-11.4), 255 (9.2), 222 (-8.5), 201 (22.8); $[\alpha]^{23}_{D}$ -47 (*c* 0.13, MeOH).

S28. A solution of S23 (21.6 mg, 0.0151 mmol) in trifluoroacetic acid (0.6 mL) and H₂O (30 μ L) was stirred at 23 °C for 70 min. The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 1.0 \text{ mL})$ to provide crude 15 as a gray solid (15.0 mg), which was directly employed in the next step. A solution of $\mathbf{8}$ (12.3 mg, 0.0137 mmol) in anhydrous CH₂Cl₂ (0.23 mL) and DMF (0.23 mL) was treated with piperidine (7 μ L, 0.069 mmol) and stirred at 23 °C for 40 min. The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography (SiO₂, 10% MeOH–CH₂Cl₂) to afford the free amine (8.2 mg) as a yellow-orange solid which was directly used in next step. A flask containing 15 (15.0 mg), the free amine (8.2 mg), HOAt (7.5 mg, 0.055 mmol), EDCI (10.5 mg, 0.055 mmol), and NaHCO₃ (4.6 mg, 0.055 mmol) was cooled to 0 °C, treated with anhydrous DMF (0.13 mL) and stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (20 mL), washed with aqueous 1 N HCl (2×5.0 mL), saturated aqueous NaHCO₃ $(2 \times 5.0 \text{ mL})$, H₂O (5.0 mL) and saturated aqueous NaCl (5.0 mL). The organic layer was dried (Na_2SO_4), and concentrated under reduced pressure. Chromatography (SiO_2 , 8% MeOH-CH₂Cl₂) afforded S28 as a yellow solid (12.0 mg, 55%): ¹H NMR (DMSO d_{6} , 600 MHz) δ 8.30 (d, J = 7.3 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 7.1 Hz, 1H), 7.95 (t, J = 9.0 Hz, 2H), 7.86 (d, J = 7.5 Hz, 1H), 7.80 (s, 1H), 7.78 (m, 1H), 7.50 (m, 2H), 7.44 (s, 1H), 7.30–7.41 (m, 10H), 7.01 (s, 1H), 6.98 (s, 1H), 6.40 (d, J = 6.6 Hz, 1H), 5.14 (q, J = 12.7 Hz, 2H), 5.18 (m, 1H), 5.08 (d, J = 12.5Hz, 1H), 5.05 (m, 1H), 4.99 (d, J = 12.5 Hz, 1H), 4.44–4.55 (m, 4H), 4.34 (dd, J = 8.2, 3.3 Hz, 1H), 4.29 (dd, J = 14.3, 8.5 Hz, 1H), 4.21 (m, 3H), 4.09 (m, 2H), 4.02 (m, 1H), 3.96 (dd, J = 14.0, 7.0 Hz, 1H), 3.78 (q, J = 7.4 Hz, 1H), 3.49 (m, 1H), 3.42 (m, 1H),2.62 (m, 1H), 2.55 (m, 3H), 2.37 (m, 2H), 2.34 (t, J = 7.1 Hz, 2H), 2.01 (m, 2H), 1.72 (m, 1H), 1.44–1.67 (m, 12H), 1.37 (s, 3H), 1.23 (m, 16H), 1.08 (d, J = 6.3 Hz, 3H), 1.03 (d, J= 6.3 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H), 0.86 (m, 9H), 0.81 (d, J = 6.3 Hz, 6H); ¹³C NMR (DMSO-d₆, 150 MHz) & 189.2, 188.7, 172.8, 172.3, 172.1 (2C), 172.0, 171.7, 171.6, 171.4, 171.1, 170.8, 170.6, 170.4, 155.9, 150.6, 148.2, 136.9, 136.0, 128.42 (2C), 128.41 (2C), 128.0, 127.9 (3C), 127.8 (2C), 115.1, 101.7, 96.9, 84.7, 69.9, 68.6, 68.4, 66.8, 66.2, 66.0, 65.6, 59.2, 58.1, 52.9, 52.0, 51.6, 51.3, 50.5, 50.1 (2C), 50.0, 40.4, 40.1, 37.1, 36.4, 34.5, 32.0, 31.4, 30.3, 29.1, 29.0, 28.8 (2C), 27.2, 25.4, 25.3, 24.1, 24.0, 23.4, 23.2, 23.1, 22.2, 21.4, 20.2, 19.6, 18.1, 18.0, 14.0, 13.3; IR (film) v_{max} 3310, 2927, 2855, 1732, 1652, 1537, 1454, 1243, 1079, 698 cm⁻¹; HR ESI-TOF m/z 1605.7869 (M + H⁺, $C_{78}H_{113}CIN_{12}O_{22}$ requires 1604.7781); $[\alpha]^{23}D + 10$ (*c* 0.30, MeOH).

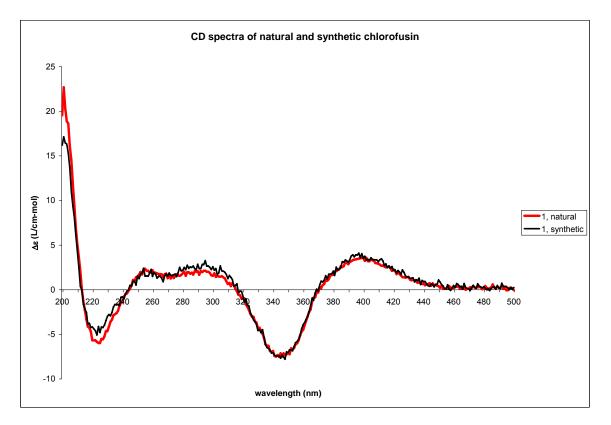
S29. A solution of **S28** (12.4 mg, 0.0077 mmol) in anhydrous THF (2.5 mL) and DMF (1.3 mL) was treated with 10% Pd-C (18.6 mg) and stirred under H₂ (1 atm) at 23 °C for 4 h. The catalyst was removed by filtration through Celite, and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt (10.5 mg, 0.077 mmol), EDCI (14.8 mg, 0.077 mmol), NaHCO₃ (6.5 mg, 0.077 mmol), cooled to 0 °C, treated with anhydrous DMF (2.6 mL) and stirred at 23 °C for 40 h. The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous 1 N HCl (2×5 mL), saturated aqueous NaHCO₃ (2 \times 5 mL), H₂O (5 mL) and saturated aqueous NaCl (5 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. Chromatography (SiO₂, 11% MeOH–CH₂Cl₂) afforded S29 as a yellow solid (6.4 mg, 61%): ¹H NMR (DMSO-*d*₆, 600 MHz) δ 9.08 (br s, 2H), 8.88 (br s, 1H), 7.86 (br s, 1H), 7.78 (s, 1H), 7.71 (d, J = 6.2 Hz, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.26 (s, 1H), 7.22 (br s, 1H), 7.09 (s, 1H), 7.01 (s, 1H), 6.92 (s, 1H), 6.84 (s, 1H), 6.67 (s, 1H), 6.38 (d, J = 6.5Hz, 1H), 5.38 (d, J = 4.3 Hz, 1H), 5.04 (d, J = 5.2 Hz, 1H), 4.75 (m, 1H), 4.56 (m, 1H), 4.48 (d, J = 6.3 Hz, 1H), 4.47 (m, 1H), 4.40 (m, 1H), 4.02 (m, 3H), 3.88-3.99 (br m, 4H),3.80 (q, J = 7.4 Hz, 1H), 3.69 (br m, 1H), 3.52 (m, 1H), 3.39 (m, 1H), 2.92 (m, 1H), 2.75(m, 1H), 2.58 (m, 1H), 2.49 (m, HMQC, 1H), 2.40 (br m, 2H), 2.34 (t, J = 7.1 Hz, 2H), 2.03 (m, 2H), 1.65–1.85 (br m, 6H), 1.50–1.62 (br m, 6H), 1.38 (s, 3H), 1.37–1.43 (br m, 2H), 1.26 (br m, 14H), 1.16 (d, J = 6.3 Hz, 4H), 1.09 (d, J = 5.9 Hz, 3H), 0.92 (m, 6H), 0.87 (m, 3H), 0.82 (d, J = 6.6 Hz, 3H), 0.78 (app t, J = 5.7 Hz, 6H); ¹³C NMR (DMSOd₆, 150 MHz) δ 189.1, 188.7, 174.1, 173.1, 173.0, 172.8, 172.6, 172.5, 172.0, 171.8, 171.5, 171.4, 171.1, 170.5, 150.6, 148.2, 115.1, 101.8, 96.9, 84.7, 68.6, 68.3, 65.2, 65.0, 63.2 (HMQC), 62.2, 54.0, 52.8, 52.1, 51.4, 50.84, 50.76, 49.3, 49.2, 39.0 (HMQC), 38.9 (HMQC), 37.4, 36.2, 34.5, 31.4, 30.3, 30.1, 28.73, 28.70, 28.6 (2C), 27.2, 26.0, 25.3, 24.2, 24.1, 23.5, 23.4, 23.3, 22.1, 20.7, 20.4, 20.3, 20.2, 18.1, 16.6, 14.0, 13.3; IR (film) v_{max} 3309, 2923, 2852, 1646, 1536, 1452, 1411, 1367, 1238, 1179, 1078, 1030 cm⁻¹; HR ESI-TOF m/z 1363.6921 (M + H⁺, C₆₃H₉₉ClN₁₂O₁₉ requires 1362.6838); CD (MeOH, 0.20 mM) λ_{ext} nm ($\Delta\epsilon$) 401 (3.6), 244 (-5.6), 281 (1.6), 227 (-7.1), 202 (16.9); $[\alpha]^{23}_{\text{D}}$ +24 (c 0.13, MeOH).

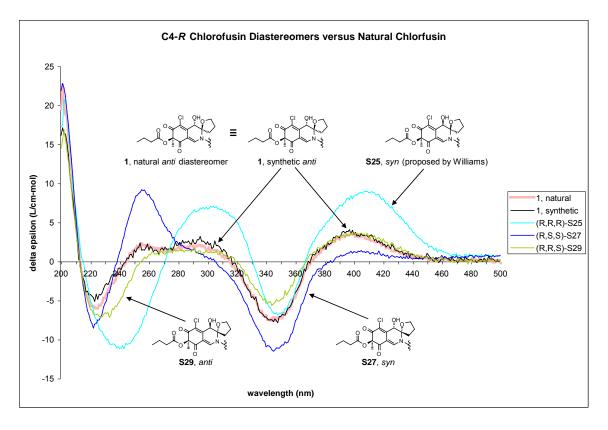
	¹ H NMR shifts	-	f synthetic and natural chlorofusin ^{6,a} ¹ H NMR shifts			
Position	1, natural	1 , synthetic	Position	1, natural	1, synthetic	
Thr-1	i, natarai	r, synalous	Leu-7	i, natarar	r, synalous	
NH	8.73 (br s)	8.75 (br s)	NH	9.08 (br s)	9.09 (br s)	
α-CH	3.66 (br s)	3.66 (br m)	α-CH	3.95 (m)	3.95 (m) ^b	
β-CH	4.02 (m)	4.02 (m) ^b	β-CH ₂	1.60 (m)	1.60 (m) ^b	
γ-CH ₃	1.16 (d)	1.16 (d) ^b	γ-CH	1.71–1.88 (m)	1.70–1.86 (m)	
OH	5.28 (br s)	5.29 (d)	δ -CH ₃ ¹	0.92 (d)	0.92 (m)	
Ala-2	0.20 (01.3)	0.20 (0)	δ -CH ₃ ²	0.82 (d)	0.82 (d)	
NH	8.61 (d)	8.62 (s)	ADA-8	0.02 (0)	0.02 (0)	
α-CH	3.95 (m)	3.96 (m) ^b	NH	7.70 (d)	7.70 (d)	
β-CH ₃	1.26 (br m)	1.27 (br m)	α-CH	4.02 (m)	4.02 (m) ^b	
Asn-3		(2)	β-CH ₂	1.71–1.88 (m)	1.70–1.86 (m)	
NH	6.93 (br s)	6.93 (br s)	γ-CH ¹	1.38 (m)	1.38 (m) ^b	
α-CH	4.75 (dt)	4.75 (m)	γ -CH ²	1.26 (br m)	1.27 (br m)	
β-CH ¹	2.93 (dd)	2.93 (m)	δ-CH ₂	1.26 (br m)	1.27 (br m)	
β-CH ²	2.62 (dd)	2.63 (m)	ε-CH ₂	1.26 (br m)	1.27 (br m)	
δ-NH ¹	6.90 (br s)	6.91 (s)	ζ-CH ₂	1.26 (br m)	1.27 (br m)	
δ -NH ²	6.82 (br s)	6.82 (s)	η-CH ₂	1.26 (br m)	1.27 (br m)	
Asn-4			θ -CH ₂	1.26 (br m)	1.27 (br m)	
NH	7.84 (br s)	7.84 (br s)	ι-CH ₃	0.87 (t)	0.87 (t)	
α-CH	4.41 (ddd)	4.40 (m)	Orn-9		()	
β-CH ¹	2.75 (dd)	2.75 (dd)	NH	6.69 (br s)	6.69 (br s)	
β-CH ²	2.48 (dd)	2.49 (m) ^b	α-CH	4.59 (br t)	4.59 (m)	
δ -NH ¹	7.24 (br s)	7.25 (s)	β-CH ₂	1.71–1.88 (m)	1.70–1.86 (m)	
δ -NH ²	7.00 (br s)	7.01 (s)	γ-CH ¹	1.71–1.88 (m)	1.70–1.86 (m)	
Leu-5			, γ-CH ²	1.55 (sextet)	1.54 (m) ^b	
NH	7.51 (d)	7.51 (d)	δ-CH₂	3.42 (t, 2H)	3.42 (br t, 2H)	
α-CH	4.48 (dt)	4.47 (m)	Chromophore			
β-CH ¹	1.60 (m)	1.60 (m) ^b	1-CH	7.77 (s)	7.77 (s)	
, β-CH ²	1.13 (br m)	1.13 (m) ^b	8-CH	4.53 (d)	4.53 (d)	
γ-CH	1.41 (m)	1.41 (m) ^b	10-CH ₂	2.38 (br m)	2.38 (br m)	
δ -CH ₃ ¹	0.78 (d)	0.78 (d)	11-CH ₂	2.0–2.2 (br m)	2.0–2.15 (br m	
δ -CH ₃ ²	0.77 (d)	0.78 (d)	12-CH ¹	4.02 (m)	4.02 (m) ^b	
Thr-6			12-CH ²	3.78 (q)	3.78 (dd)	
NH	7.07 (br s)	7.07 (s)	13-CH ₃	1.43 (s)	1.43 (s)	
α-CH	3.92 (m)	3.92 (m) ^b	14-OH	6.26 (d)	6.26 (d)	
β-CΗ	3.92 (m)	3.92 (m) ^b	16-CH ₂	2.34 (t)	2.34 (t)	
γ-CH₃	1.10 (d)	1.10 (d)	17-CH ₂	1.55 (sextet)	1.54 (m) ^b	
OH	5.05 (br s)	5.05 (s)	18-CH₃	0.92 (t)	0.92 (m)	

^a Values reported in ppm. Assignments made by analogy to **6–13**, chlorofusin and using HMQC NMR. ^b Chemical shift value determined by HMQC NMR.

	¹³ C NMR shif	īts		¹³ C NMR shifts	
Position	1, natural	1, synthetic	Position	1, natural	1, synthetic
Thr-1		-	ADA-8		-
α -carbonyl	173.0	173.1	α -carbonyl	171.9	172.0
α-CH	63.1	63.4 ^b	α-CH	53.9	54.1
β-CΗ	65.0	65.1	β -CH ₂	30.0	30.1
γ-CH ₃	20.3	20.4	γ-CH ₂	25.9	26.0
Ala-2			δ-CH ₂	28.6	28.7
α -carbonyl	171.6	171.5	ε-CH ₂	28.5	28.7
α-CH	50.8	50.9	ζ-CH ₂	28.4	28.6
β-CH₃	16.5	16.6	η-CH ₂	31.2	31.4
Asn-3			θ -CH ₂	22.0	22.1
α -carbonyl	170-174 ⁷	170-174	ι-CH ₃	13.9	14.0
α-CH	49.0	49.1	Orn-9		
β-CH₂	37.3	37.4	α -carbonyl	170-174	170-174
γ-carbonyl	170.9 ⁷	171.0	α-CH	51.2	51.2
Asn-4			β-CH ₂	28.3	28.4 ^b
α -carbonyl	170-174	170-174	γ-CH ₂	27.0	27.1
α-CH	52.0	52.2	δ-CH ₂	50.5	50.6
β-CH₂	36.2	36.2	Chromophore		
γ-carbonyl	170.3	170.4	1-CH	150.0	150.2
Leu-5			2-C	115.2	115.3
α -carbonyl	173.1	173.2	3-carbonyl	188.1	188.3
α-CH	49.2	49.2	4-C	84.7	84.8
β-CH ₂	38.7	39.0 ^b	5-carbonyl	188.7	188.9
γ-CH	24.0	24.1	6-C	101.3	101.4
δ-CH ₃ ¹	23.2	23.3	7-C	147.5	147.7
δ -CH ₃ ²	20.6	20.7	8-CH	68.4	68.6
Thr-6			9-C	96.7	96.8
α -carbonyl	170-174	170-174	10-CH ₂	30.3	30.5
α-CH	62.1	62.3	11-CH ₂	25.1	25.2
β-CΗ	64.9	65.0	12-CH ₂	68.4	68.5
γ-CH ₃	20.2	20.3	13-CH ₃	22.9	23.0 ^b
Leu-7			15-carbonyl	171.4	171.5
α -carbonyl	172.4	172.5	16-CH ₂	34.4	34.5
α-CH	52.7	52.8	17-CH ₂	17.9	18.1
β-CH ₂	38.7	38.9 ^b	18-CH ₃	13.2	13.3
γ-CH	24.1	24.2	-	-	
δ -CH ₃ ¹	23.1	23.0 ^b			
δ -CH ₃ ²	20.1	20.2			

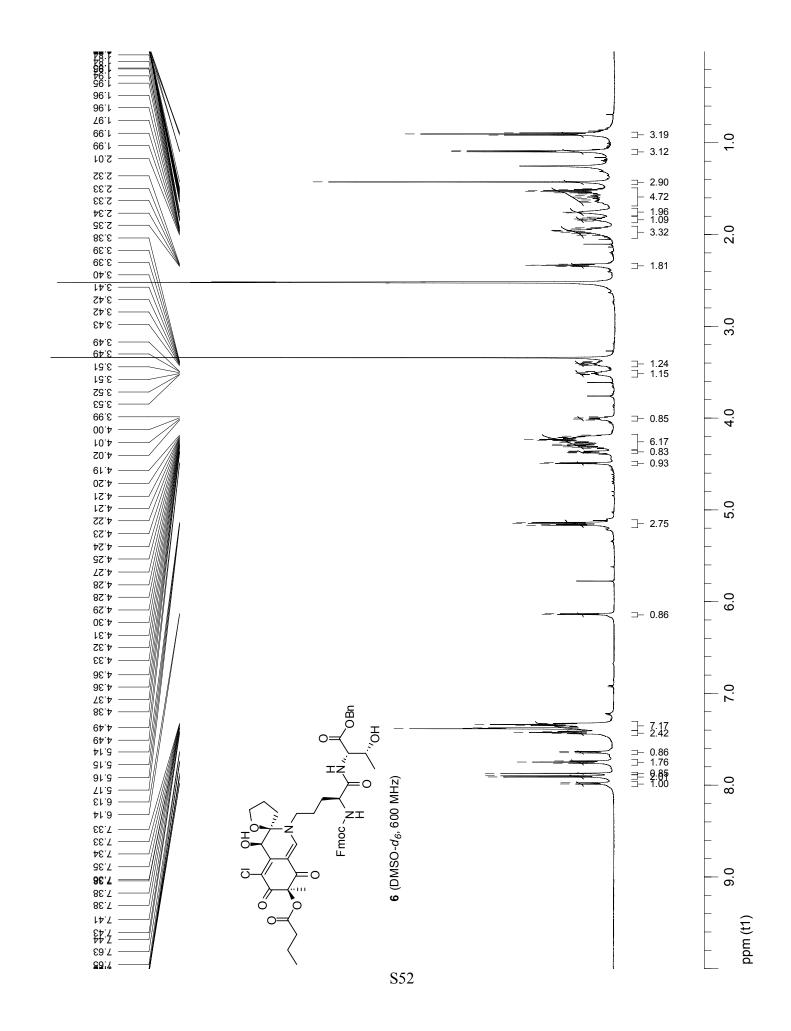
^a Values reported in ppm. Assignments made by analogy to **6–13**, chlorofusin and using HMQC NMR. ^b Chemical shift value determined by HMQC NMR.

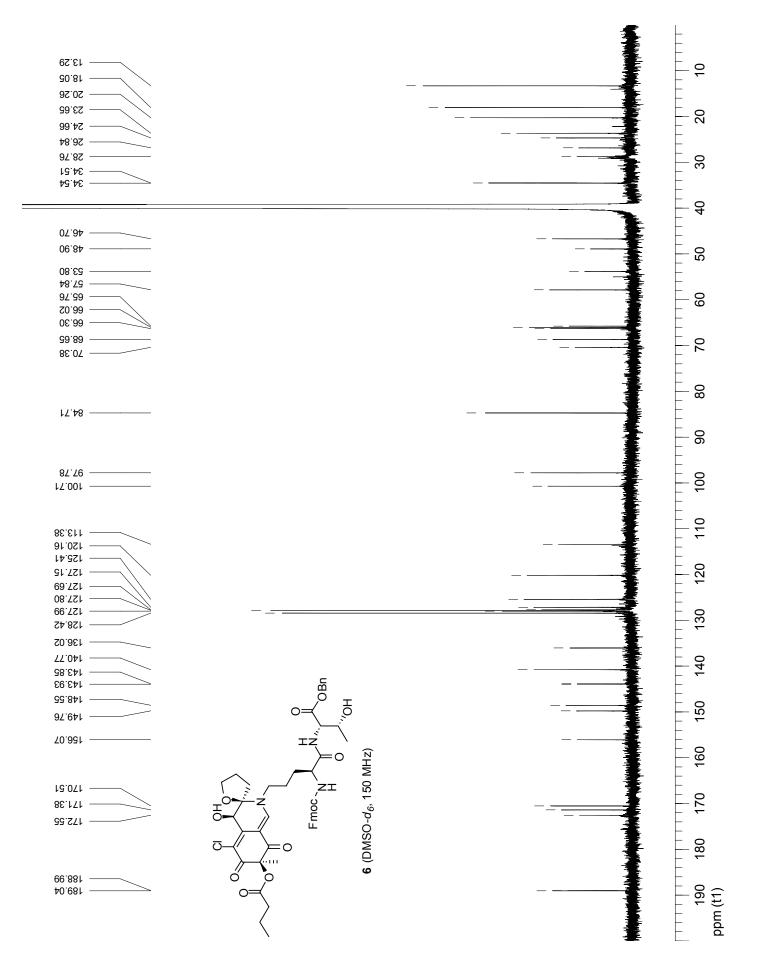

					stereomers to the natur	
	Position	Natural chlorofusi	n <mark>1, (4<i>R</i>,8S,9R)</mark>	\$25 , (4 <i>R</i> ,8 <i>R</i> ,9 <i>R</i>)	S27 , (4 <i>R</i> ,8 <i>S</i> ,9 <i>S</i>)	\$29 , (4 <i>R</i> ,8 <i>R</i> ,9 <i>S</i>
hr-1		0.70 (b a a)	0.75 (base)	0.05 (hair)	0.70 (b = -)	0.00 (h = -)
	NH	8.73 (br s)	8.75 (br s)	8.85 (br s)	8.72 (br s)	9.08 (br s)
	α-CH	3.66 (br s)	3.66 (br m)	3.63 (br m)	3.65 (br m)	3.69 (br m)
	β-CH	4.02 (m)	4.02 (m) ^b	4.01 (m) ^b	4.02 (m) ^b	4.02 (m) ^b
	γ -CH ₃	1.16 (d)	1.16 (d) ^b	1.16 (d)	1.16 (d) ^b	1.16 (d) ^b
	OH	5.28 (br s)	5.29 (d)	5.33 (d)	5.30 (d)	5.38 (d)
la-2			(-)	(-)		
		8.61 (d)	9 62 (c)	9 72 (c)	9 62 (c)	9 99 (c)
	NH		8.62 (s)	8.72 (s)	8.62 (s)	8.88 (s)
	α-CH	3.95 (m)	<mark>3.96 (m)^b</mark>	4.10 (m)	3.95 (m) ^b	3.95 (m) ^b
	β-CH₃	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
\sn-3						
	NH	6.93 (br s)	6.93 (br s)	6.94 (br s)	6.93 (br s)	7.22 (br s)
	α-CH	4.75 (dt)	4.75 (m)	4.78 (m)	4.74 (m)	4.75 (m)
	β-CH ¹	2.93 (dd)	2.93 (m)	2.95 (m)	2.93 (m)	2.92 (m)
	β-CH ²	2.62 (dd)	2.63 (m)	2.58 (m)	2.63 (dd)	2.58 (m)
	δ-NH ¹	6.90 (br s)	6.91 (s)	6.89 (s)	6.89 (s)	6.92 (br s)
	δ -NH ²	6.82 (br s)	6.82 (s)	6.89 (s)	6.74 (br s)	6.84 (s)
Asn-4	0	· · · ·		. ,		()
1011 4		7.94 (br.o)	7.94 (br a)	7.92 (br.a)	7.94 (br.a)	7.96 (br.o)
	NH	7.84 (br s)	7.84 (br s)	7.82 (br s)	7.84 (br s)	7.86 (br s)
	α-CH	4.41 (ddd)	4.40 (m)	4.38 (m)	4.41 (m)	4.40 (m)
	β-CH ¹	2.75 (dd)	2.75 (dd)	2.77 (dd)	2.75 (dd)	2.75 (m)
	β-CH ²	2.48 (dd)	2.49 (m) ^b	2.49 (m) ^b	2.49 (m) ^b	2.49 (m) ^b
	δ-NH ¹	7.24 (br s)	7.25 (s)	7.25 (s)	7.25 (s)	7.26 (s)
_	δ-NH ²	7.00 (br s)	7.01 (s)	7.01 (s)	7.01 (s)	7.01 (s)
.eu-5						
	NH	7.51 (d)	7.51 (d)	7.52 (d)	7.50 (d)	7.56 (d)
	α-CH	4.48 (dt)	4.47 (m)	4.48 (m)	4.47 (m)	4.47 (m)
	β-CH ¹	1.60 (m)	1.60 (m) ^b	1.60 (m) ^b	1.60 (m) ^b	1.59 (m) ^b
	· .	· · /				· · · ·
	β-CH ²	1.13 (br m)	1.13 (m) ^⁵	1.12 (m) ^b	1.13 (m) ^b	1.13 (m) ^b
	γ-CH	1.41 (m)	1.41 (m) ^⁰	1.41 (m) ^⁵	1.41 (m) [□]	1.41 (m) ^b
	δ-CH ₃ ¹	0.78 (d)	0.78 (d)	0.77 (d)	0.77 (d)	0.78 (m)
	δ -CH ₃ ²	0.77 (d)	0.78 (d)	0.77 (d)	0.77 (d)	0.78 (m)
hr-6	0 0.13					
	NH I	7.07 (br.e)	7.07.(a)	7 40 (a)	7.00 (a)	7.00 (a)
	NH	7.07 (br s)	7.07 (s)	7.12 (s)	7.08 (s)	7.09 (s)
	α-CH	3.92 (m)	3.92 (m) ^b	3.92 (m) ^b	3.93 (m) ^b	3.91 (m) ^b
	β-CH	3.92 (m)	3.92 (m) ^b	3.92 (m) ^b	3.93 (m) ^b	3.91 (m) ^b
	· γ-CH ₃	1.10 (d)	1.10 (d)	1.10 (d) ^b	1.10 (d)	1.09 (d)
	OH					
	011	5.05 (br s)	5.05 (s)	5.01 (d)	5.08 (d)	5.04 (d)
_eu-7						
	NH	9.08 (br s)	9.09 (br s)	9.09 (br s)	9.13 (br s)	9.08 (br s)
	α-CH	3.95 (m)	3.95 (m) ^b	3.95 (m) ^b	3.95 (m) ^b	3.96 (m) ^b
	β-CH ₂	1.60 (m)	1.60 (m) ^b	1.60 (m) ^b	1.60 (m) ^b	1.59 (m) ^b
	γ-CH	1.71–1.88 (m)	1.70–1.86 (m)	1.70–1.96 (m)	1.73–1.89 (br m)	1.65–1.85 (m)
	•					
	δ-CH ₃ ¹	0.92 (d)	0.92 (m)	0.92 (m)	0.91 (m)	0.92 (m)
	δ-CH ₃ ²	0.82 (d)	0.82 (d)	0.86 (m)	0.83 (d)	0.82 (d)
ADA-8						
	NH	7.70 (d)	7.70 (d)	7.77 (d)	7.72 (d)	7.71 (d)
				4.02 (m) ^b	$(0)^{b}$	4.02 (m) ^b
	α-CH	4.02 (m)	4.02 (m) ^b	$4.02 (m)^{b}$	$4.02 (m)^{b}$	4.02 (m) ^b
	β-CH ₂	1.71–1.88 (m)	1.70–1.86 (m)	1.70–1.96 (m)	1.73–1.89 (br m)	1.65–1.85 (m)
	γ-CH ¹	1.38 (m)	1.38 (m) ^b	1.38 (m) ^b	1.38 (m) ^b	1.38 (m) ^b
	γ-CH ²	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
	δ-CH ₂	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
	ε-CH ₂	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
	-	· · · ·		. ,		. ,
	ζ-CH ₂	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
	η -CH ₂	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
	θ -CH ₂	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
	ι-CH ₃	0.87 (t)	0.87 (t)	0.86 (m)	0.87 (m)	0.87 (m)
 0		0.0. (1)	0.0. (t)			("")
		0.00 //	0.00 "	0.70 //	0.07.4	0.07 //
JIII-9	NH	6.69 (br s)	6.69 (br s)	6.76 (br s)	6.67 (br s)	6.67 (br s)
Orn-9		4.59 (br t)	4.59 (m)	4.59 (m)	4.56 (m)	4.56 (m)
5111-9	α-CH		4 70 4 00 ()	1.70–1.96 (m)	1.66 (m) ^b , 1.73-1.89 (br m)	1.65–1.85 (m)
5111-9		1.71–1.88 (m)	1.70-1.86 (m)	. ,	1.59 (m) ^b	1.65–1.85 (m)
5111-9	α-CH β-CH ₂	1.71–1.88 (m)		1 70–1 96 (m)		
JIII-9	α-CH β-CH ₂ γ-CH ¹	1.71–1.88 (m) 1.71–1.88 (m)	1.70-1.86 (m)	1.70–1.96 (m)		1 FF (>b
5111-9	α-CH β-CH ₂ γ-CH ¹ γ-CH ²	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet)	<mark>1.70–1.86 (m)</mark> 1.54 (m) ^b	1.55 (m) ^b	1.59 (m) ^b	1.55 (m) ^b
	$\begin{array}{l} \alpha\text{-CH} \\ \beta\text{-CH}_2 \\ \gamma\text{-CH}^1 \\ \gamma\text{-CH}^2 \\ \delta\text{-CH}_2 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m)	1.70-1.86 (m)			. ,
	α-CH β-CH ₂ γ-CH ¹ γ-CH ²	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet)	<mark>1.70–1.86 (m)</mark> 1.54 (m) ^b	1.55 (m) ^b	1.59 (m) ^b	. ,
	$\begin{array}{l} \alpha\text{-CH} \\ \beta\text{-CH}_2 \\ \gamma\text{-CH}^1 \\ \gamma\text{-CH}^2 \\ \delta\text{-CH}_2 \\ \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H)	1.55 (m) ^b 3.43 (m), 3.50 (m)	1.59 (m) ^b 3.35 (m, 2H) ^b	3.39 (m), 3.52 (m
	$\begin{array}{l} \alpha\text{-CH} \\ \beta\text{-CH}_2 \\ \gamma\text{-CH}^1 \\ \gamma\text{-CH}^2 \\ \delta\text{-CH}_2 \\ \textbf{hophore} \\ 1\text{-CH} \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s)	3.39 (m), 3.52 (m 7.78 (s)
Chrom	$\begin{array}{l} \alpha\text{-CH} \\ \beta\text{-CH}_2 \\ \gamma\text{-CH}^1 \\ \gamma\text{-CH}^2 \\ \delta\text{-CH}_2 \\ \textbf{hophore} \\ 1\text{-CH} \\ 8\text{-CH} \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d)
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{hophore} \\ 1\text{-CH} \\ \textbf{8}\text{-CH} \\ \textbf{10\text{-CH}}_2 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m)
Chrom	$\begin{array}{l} \alpha\text{-CH} \\ \beta\text{-CH}_2 \\ \gamma\text{-CH}^1 \\ \gamma\text{-CH}^2 \\ \delta\text{-CH}_2 \\ \textbf{hophore} \\ 1\text{-CH} \\ 8\text{-CH} \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d)
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{1-CH} \\ \textbf{8-CH} \\ \textbf{10-CH}_2 \\ \textbf{11-CH}_2 \\ \textbf{11-CH}_2 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m)
Chron	α-CH β-CH ₂ γ-CH ¹ γ-CH ² δ-CH ₂ hophore 1-CH 8-CH 10-CH ₂ 11-CH ₂ 11-CH ₂ 12-CH ¹	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m) 4.02 (m)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m) 4.02 (m) ^b	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m) 4.23 (m)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m) 4.22 (dd)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m) 4.02 (m) ^b
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{ophore} \\ 1 \text{-CH} \\ 8 \text{-CH} \\ 10 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 12 \text{-CH}^1 \\ 12 \text{-CH}^2 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m) 4.02 (m) 3.78 (q)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m) 4.02 (m) ^b 3.78 (dd)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m) 4.23 (m) 4.02 (m) ^b	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m) 4.22 (dd) 4.02 (m) ^b	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m) 4.02 (m) ^b 3.80 (dd)
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{bophore} \\ 1 \text{-CH} \\ 8 \text{-CH} \\ 10 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 12 \text{-CH}^1 \\ 12 \text{-CH}^3 \\ 13 \text{-CH}_3 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m) 4.02 (m) 3.78 (q) 1.43 (s)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m) 4.02 (m) ^b 3.78 (dd) 1.43 (s)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m) 4.23 (m) 4.02 (m) ^b 1.41 (s)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m) 4.22 (dd) 4.02 (m) ^b 1.41 (s)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m) 4.02 (m) ^b 3.80 (dd) 1.38 (s)
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{ophore} \\ 1 \text{-CH} \\ 8 \text{-CH} \\ 10 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 12 \text{-CH}^1 \\ 12 \text{-CH}^2 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m) 4.02 (m) 3.78 (q)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m) 4.02 (m) ^b 3.78 (dd)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m) 4.23 (m) 4.02 (m) ^b	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m) 4.22 (dd) 4.02 (m) ^b	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m) 4.02 (m) ^b 3.80 (dd)
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{bophore} \\ 1 \text{-CH} \\ 8 \text{-CH} \\ 10 \text{-CH}_2 \\ 12 \text{-CH}^1 \\ 12 \text{-CH}^1 \\ 12 \text{-CH}^2 \\ 13 \text{-CH}_3 \\ 14 \text{-OH} \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m) 4.02 (m) 3.78 (q) 1.43 (s) 6.26 (d)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m) 4.02 (m) ^b 3.78 (dd) 1.43 (s) 6.26 (d)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m) 4.23 (m) 4.02 (m) ^b 1.41 (s) 5.98 (d)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m) 4.22 (dd) 4.02 (m) ^b 1.41 (s) 5.98 (d)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m) 4.02 (m) ^b 3.80 (dd) 1.38 (s) 6.38 (d)
Chrom	$\begin{array}{l} \alpha \text{-CH} \\ \beta \text{-CH}_2 \\ \gamma \text{-CH}^1 \\ \gamma \text{-CH}^2 \\ \delta \text{-CH}_2 \\ \textbf{bophore} \\ 1 \text{-CH} \\ 8 \text{-CH} \\ 10 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 11 \text{-CH}_2 \\ 12 \text{-CH}^1 \\ 12 \text{-CH}^3 \\ 13 \text{-CH}_3 \end{array}$	1.71–1.88 (m) 1.71–1.88 (m) 1.55 (sextet) 3.42 (t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.0–2.2 (m) 4.02 (m) 3.78 (q) 1.43 (s)	1.70–1.86 (m) 1.54 (m) ^b 3.42 (br t, 2H) 7.77 (s) 4.53 (d) 2.38 (br m) 2.00–2.15 (br m) 4.02 (m) ^b 3.78 (dd) 1.43 (s)	1.55 (m) ^b 3.43 (m), 3.50 (m) 7.88 (s) 4.50 (d) 1.88 (br m) ^b 1.93 (m) ^b , 2.06 (m) 4.23 (m) 4.02 (m) ^b 1.41 (s)	1.59 (m) ^b 3.35 (m, 2H) ^b 7.81 (s) 4.54 (d) 1.73–1.89 (br m) 1.93–2.07 (br m) 4.22 (dd) 4.02 (m) ^b 1.41 (s)	3.39 (m), 3.52 (m 7.78 (s) 4.48 (d) 2.40 (br m) 2.03 (m) 4.02 (m) ^b 3.80 (dd) 1.38 (s)

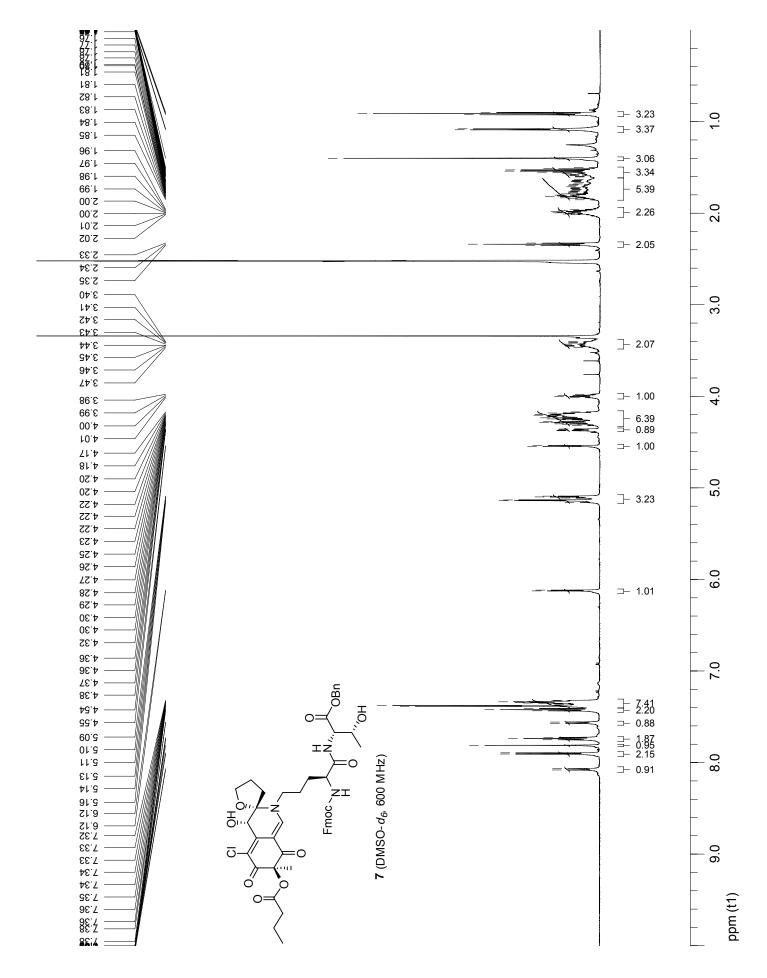

 a Values reported in ppm. Assignments made by analogy to 6–13, chlorofusin and using HMQC NMR. b Chemical shift value determined by HMQC NMR. S48

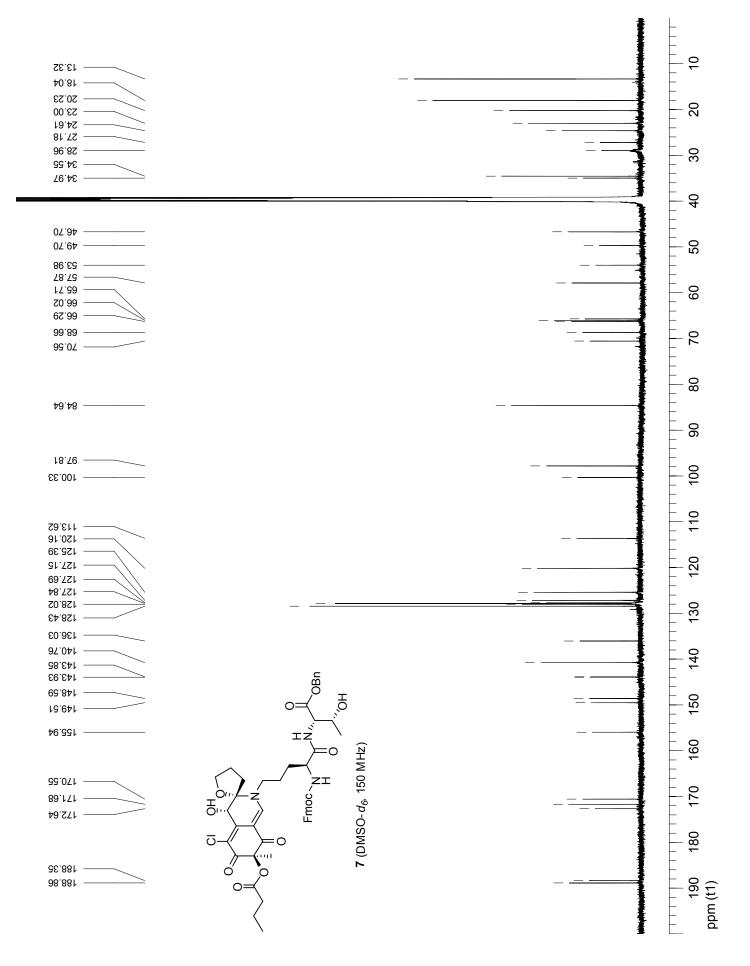
			chlorofusin diaste		
Position	Natural chlorofusin	<mark>1, (4R,8S,9R)</mark>	S25 , (4R,8R,9R)	S27 , (4 <i>R</i> ,8S,9S)	S29 , (4R,8R,9S)
nr-1					
α -carbonyl	173.0	173.1	173.1	173.2	173.0
α-CH	63.1	63.4 ^b	63.6 ^b	63.5 ^b	63.2 ^b
β-CH	65.0	65.1	65.1	65.2	65.2
, γ-CH₃	20.3	20.4	20.4 ^b	20.4 ^b	20.3
a-2					
α-carbonyl	171.6	171.5	171.5	171.5	171.5
α-CH	50.8	50.9	50.9	50.9	50.8
β-CH ₃	16.5	16.6	16.5	16.5	16.6
sn-3					
α -carbonyl	170-174 ⁷	170-174	170-174	170-174	170-174
α-CH	49.0	49.1	49.1	49.0	49.3
β-CH ₂	37.3	37.4	37.5	37.5	37.4
γ-carbonyl	170.9 ⁷	171.0	171.2	170.9	171.1
sn-4	110.0	11 1.0			
	470 474	170 174	170 174	470 474	170 171
α-carbonyl	170-174	170-174	170-174	170-174	170-174
α-CH	52.0	52.2	52.3	52.1	52.1
β-CH ₂	36.2	36.2	36.2	36.2	36.2
γ-carbonyl	170.3	170.4	170.4	170.5	170.5
eu-5					
α-carbonyl	173.1	173.2	173.2	173.3	173.1
				49.2 ^b	
α-CH	49.2	49.2	49.2		49.2
β-CH ₂	38.7	39.0 ^b	39.0 ^ª	39.0 ^b	39.0 ^b
γ-CH	24.0	24.1	24.1	24.1	24.1
δ -CH ₃ ¹	23.2	23.3	23.4	23.2	23.4
δ-CH ₃ ²	20.6	20.7	20.7	20.7	20.7
hr-6					
	170 174	170 174	170 174	170 174	170 174
α-carbonyl	170-174	170-174	170-174	170-174	170-174
α-CH	62.1	62.3	62.4	62.3	62.2
β-CH	64.9	65.0	64.9	65.0	65.0
γ-CH ₃	20.2	20.3	20.4 ^b	20.4 ^b	20.4
eu-7					
α-carbonyl	172.4	172.5	172.6	172.5	172.5
α-CH	52.7	52.8	52.7	52.8	52.8
β-CH ₂	38.7	38.9 [°]	38.9 ^a	38.9 ^D	38.9 ^b
γ-CH	24.1	24.2	24.4	24.2	24.2
δ-CH ₃ ¹	23.1	23.0 ^b	23.2	23.0	23.3
δ-CH ₃ ²	20.1	20.2	20.5	20.2	20.2
DA-8					
α-carbonyl	171.9	172.0	171.7	172.0	171.8
α-CH	53.9	54.1	53.9	54.1	54.0
β-CH ₂	30.0	30.1	29.9	30.0	30.1
γ -CH ₂	25.9	26.0	26.1	26.0	26.0
δ-CH ₂	28.6	28.7	28.7	28.7	28.7
ε-CH ₂	28.5	28.7	28.7	28.7	28.7
ζ-CH ₂	28.4	28.6	28.5	28.6	28.6 ^b
η-CH ₂	31.2	31.4	31.4	31.4	31.4
θ-CH ₂	22.0	22.1	22.1	22.1	22.1
ι-CH₃	13.9	14.0	14.0	14.0	14.0
rn-9					
α-carbonyl	170-174	170-174	170-174	170-174	170-174
α-CH	51.2	51.2	51.6	51.7	51.4
					28.6 ^b
β-CH₂	28.3	28.4 ^b	28.3	28.3	
γ -CH ₂	27.0	27.1	26.8	27.0	27.2
δ -CH ₂	50.5	50.6	49.7	49.2 [°]	50.8
hromophore					
1-CH	150.0	150.2	149.7	149.4	150.6
2-C	115.2	115.3	113.4	113.7	115.1
3-carbonyl	188.1	188.3	188.9	188.0	189.1
4-C	84.7	84.8	84.7	84.6	84.7
5-carbonyl	188.7	188.9	189.0	188.9	188.7
6-C	101.3	101.4	100.6	100.4	101.8
7-C	147.5	147.7	148.3	148.4	148.2
8-CH	68.4	68.6	69.0	68.7	68.3
9-C	96.7	96.8	97.9	97.7	96.9
10-CH ₂	30.3	30.5	34.7	35.0	30.3
11-CH ₂	25.1	25.2	24.5	24.7	25.3
12-CH ₂	68.4	68.5	70.8	70.6	68.6
13-CH ₃	22.9	23.0 ^b	23.6	23.4	23.5
15-carbonyl	171.4	171.5	171.3	171.3	171.4
16-CH ₂	34.4	34.5	34.5	34.6	34.5
17-CH ₂	17.9	18.1	18.1	18.1	18.1
	13.2			13.3	13.3

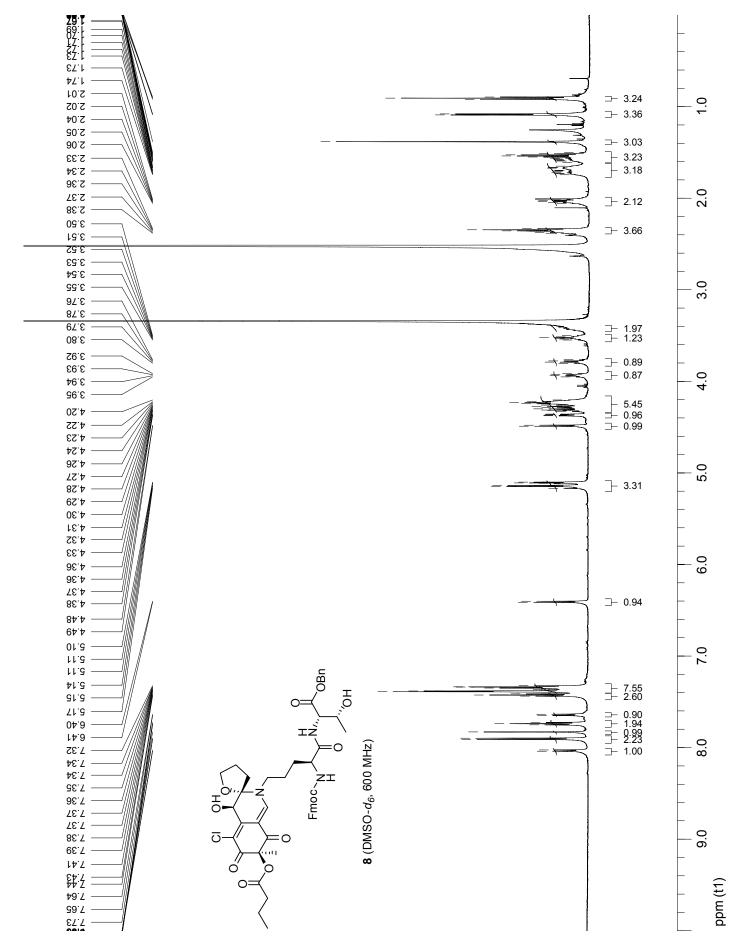
^a Values reported in ppm. Assignments made by analogy to 6–13, chlorofusin and using HMQC NMR. ^b Chemical shift value determined by HMQC NMR.

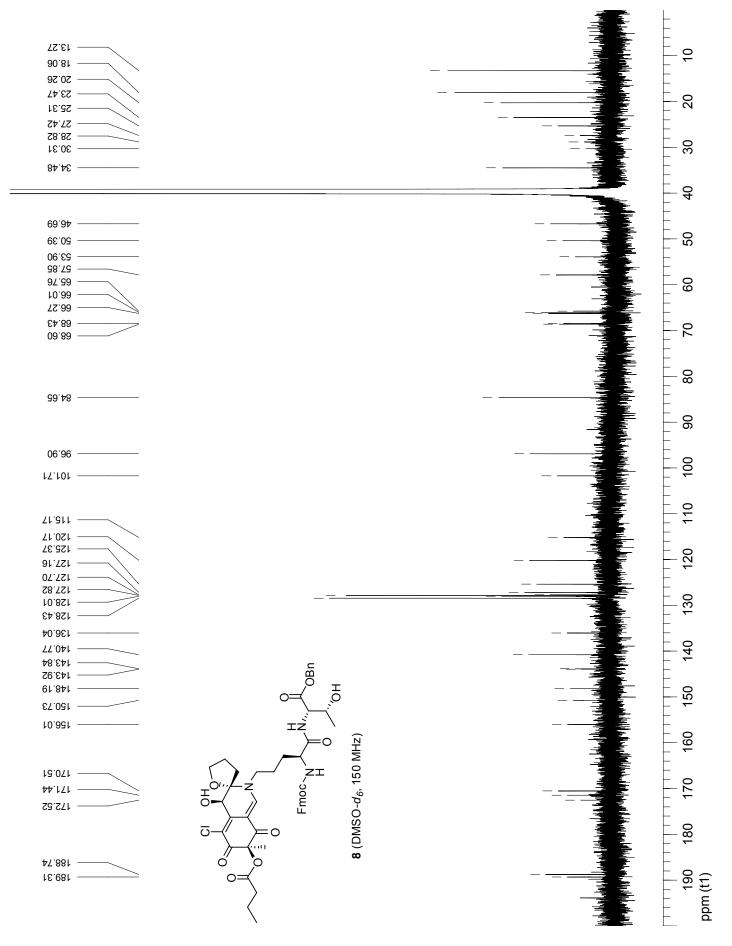

Authentic Natural Chlorofusin. An authentic, but aged, sample of natural chlorofusin (1 mg) received in 2003 from Dr. Stephen Wrigley of Cubist Pharmaceuticals [which had acquired Terragen Discovery Inc. which had in turn earlier aquired Xenova Discovery Ltd. that was responsible for the isolation of the natural product] was examined at the time of its receipt. A 0.4 mg portion of the sample failed to provide a discernable 1 H NMR spectrum (DMSO-d₆, S. S. Pfeiffer and P. Desai, unpublished, Figure attached) and proved inactive in a p53–MDM2 inhibition assay at the concentrations tested (I. Hwang, unpublished). We refrigerated this and the remaining untouched sample in hopes of returning to it at a later date for further purification once we had the chromatographic behavior and properties of such molecules well in hand. Last week (May 3, 2007) and following the Yao disclosure (web 5-2-07) as well as following the completion of our own studies detailed herein, we elected to begin a reexamination of this sample. The CD spectrum of the prior NMR sample (0.4 mg) was examined and it exhibited a positive long wavelength Cotton effect and empirically appeared nearly identical in shape to the CD spectrum of 9 and synthetic 1, but of an intensity that indicated that most of the material did not appear to be chlorofusin. The remaining untouched sample was purified by filtration and extensively dried (from a solution of anhydrous HPLC grade methanol by a stream of nitrogen (\times 3), followed by reduced pressure for 48 h). This treatment provided a sample of natural chlorofusin that displayed a CD spectrum (sign and magnitude) identical to our synthetic material confirming the absolute configuration assignment. Its ¹H NMR spectrum, though broadened and still containing residual impurities, clearly matches that reported by Williams and is of a quality that insures its CD and ¹H NMR spectra represent those of the natural product reported by Williams.

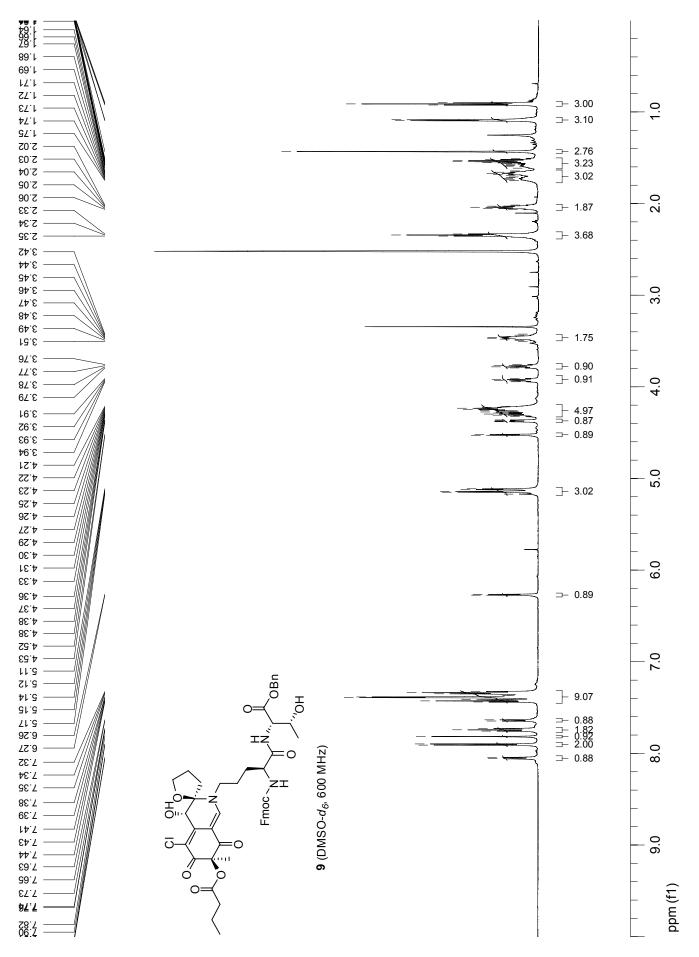


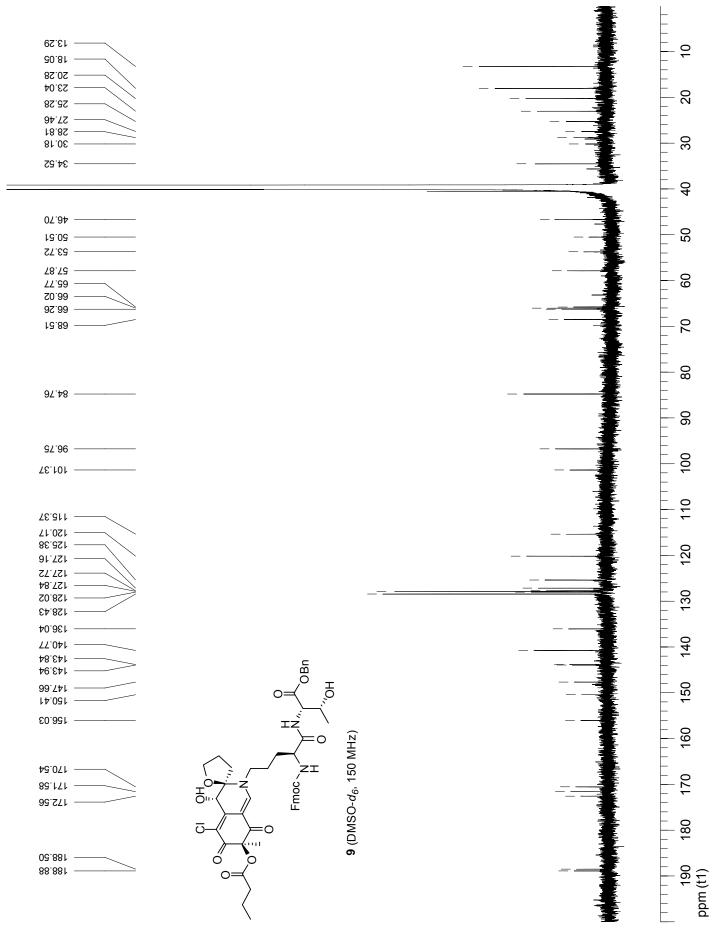


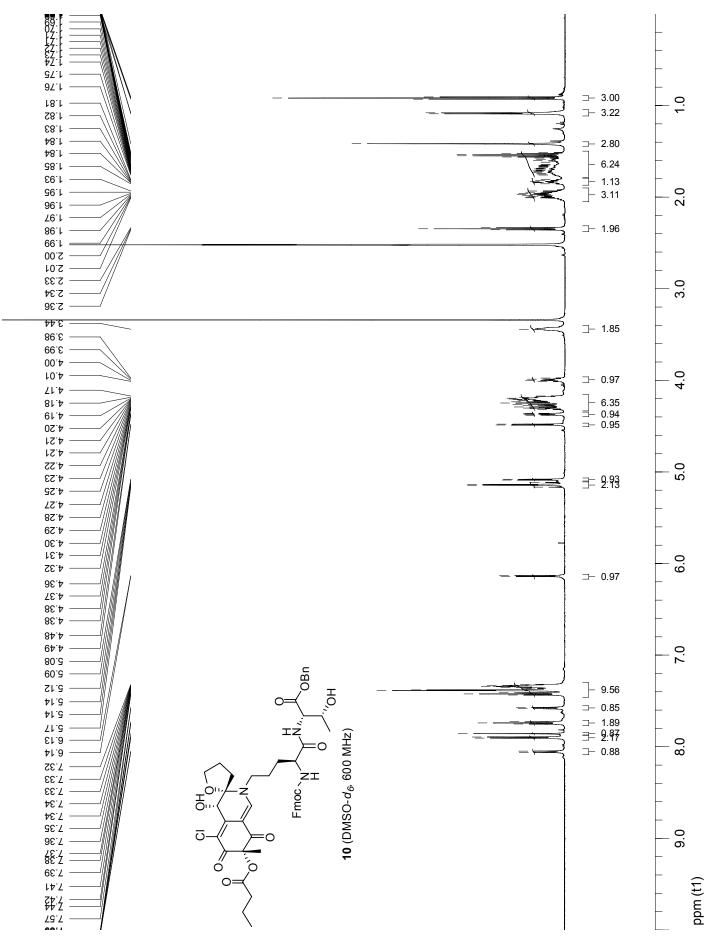

References:

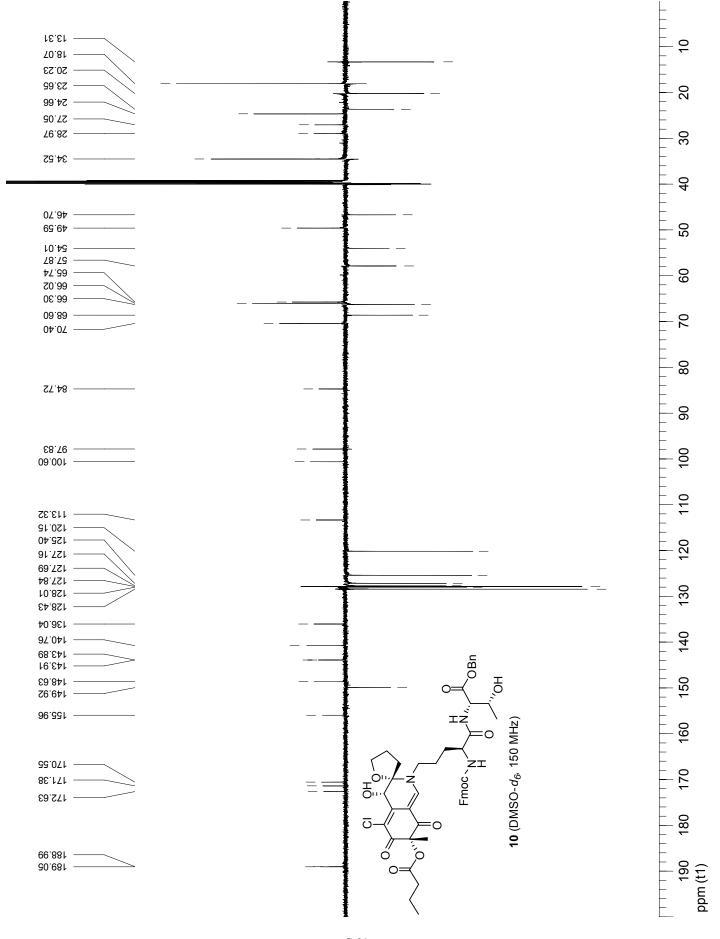

- 1. Wei, W.-G.; Yao, Z.-J. J. Org. Chem. 2005, 70, 4585–4590.
- 2. Atomic coordinates for **S13A** (CCDC646443) have been deposited with the Cambridge Crystallographic Data Center.
- 3. Atomic coordinates for **S13B** (CCDC646442) have been deposited with the Cambridge Crystallographic Data Center.
- 4. Atomic coordinates for **S19D** (CCDC646441) have been deposited with the Cambridge Crystallographic Data Center.
- 5. Desai, P.; Pfeiffer, S. S.; Boger, D. L. Org. Lett. 2003, 5, 5047-5050.
- Duncan, S. J.; Grueschow, S.; Williams, D. H.; McNicholas, C.; Purewal, R.; Hajek, M.; Gerlitz, M.; Martin, S.; Wrigley, S. K.; Moore, M., J. Am. Chem. Soc. 2001, 123, 554–560. Correction: J. Am. Chem. Soc. 2002, 124, 14503.
- Duncan, S. J.; Williams, D. H.; Ainsworth, M.; Martin, S.; Ford, R.; Wrigley, S. K. *Tetrahedron Lett.* 2002, 43, 1075–1078.

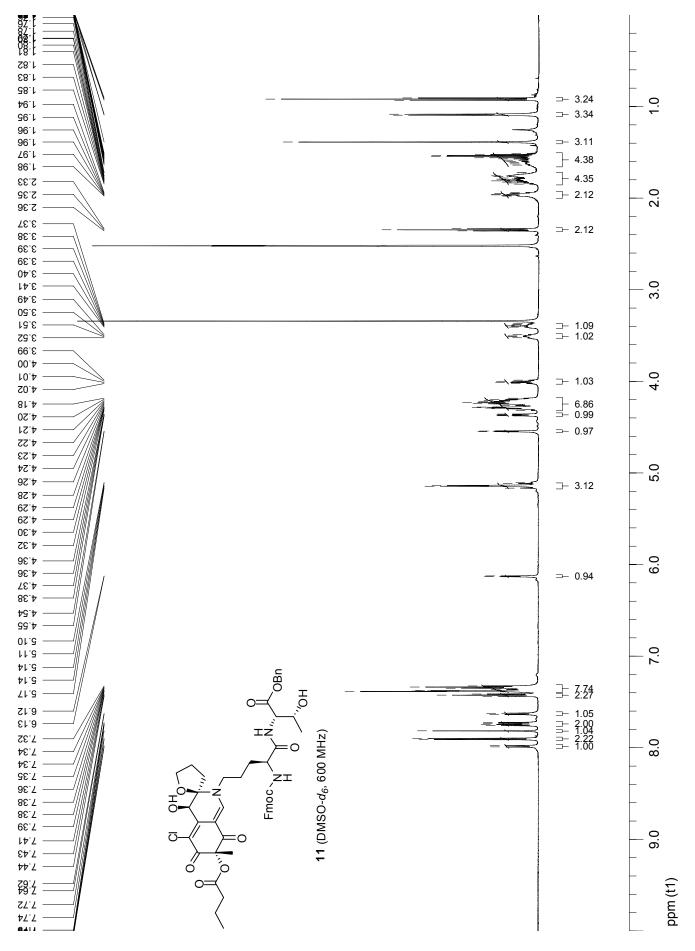


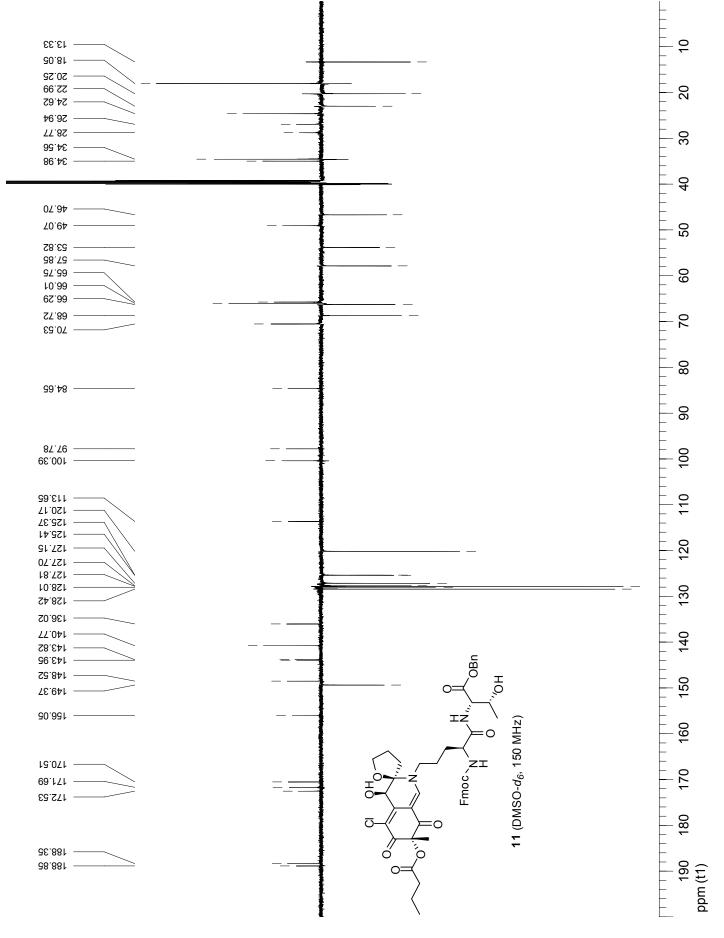


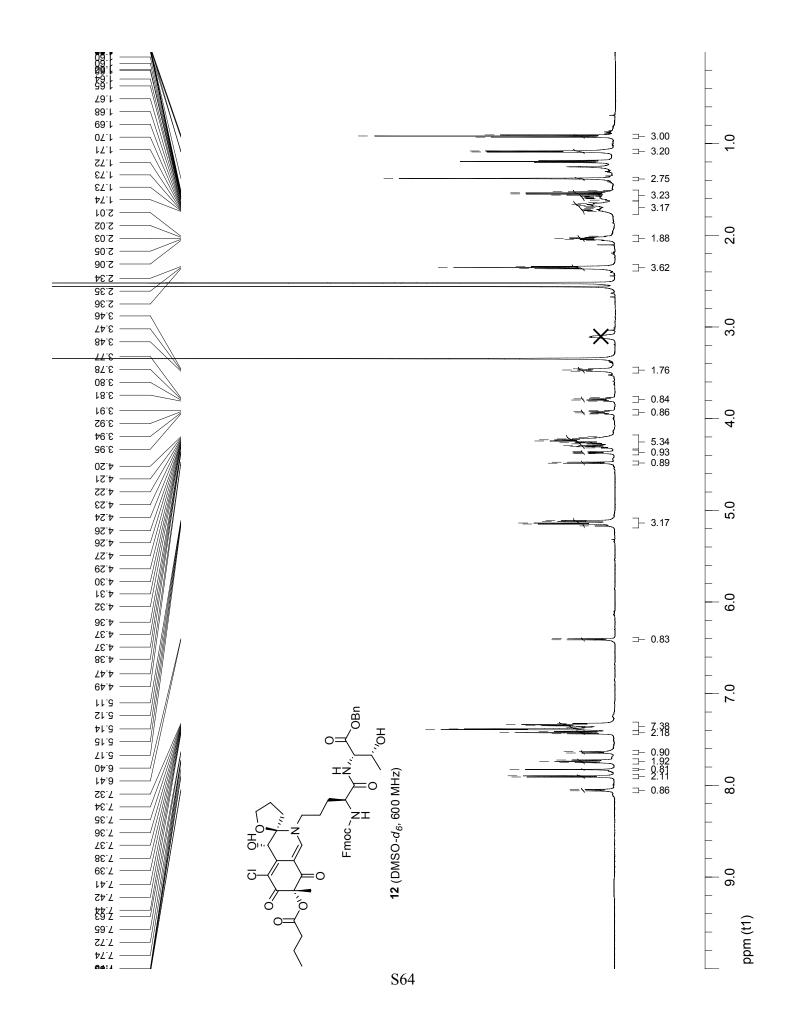


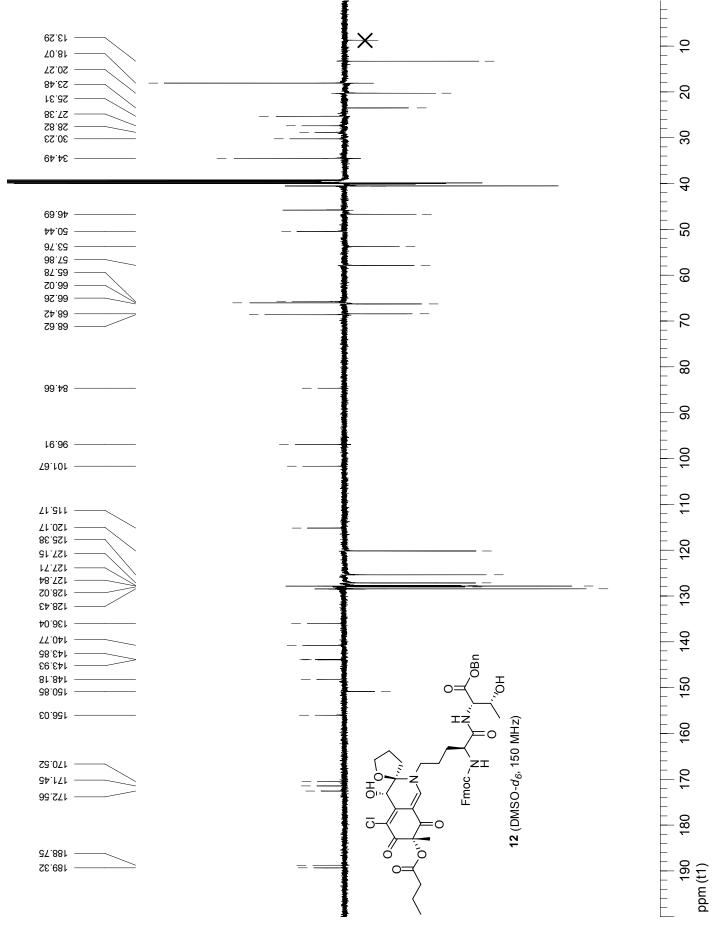


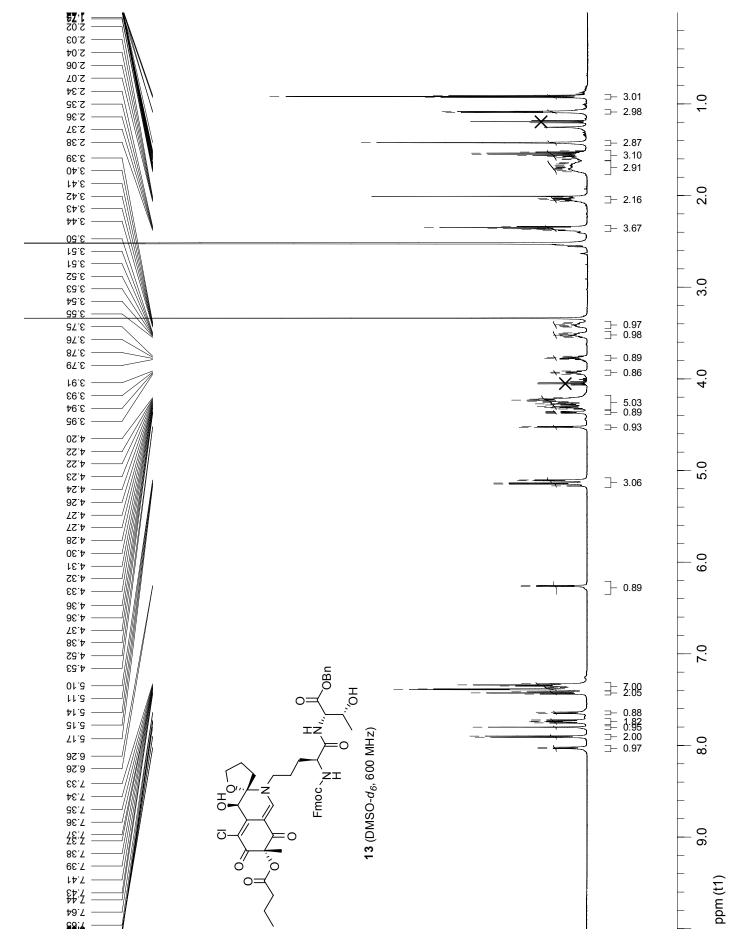


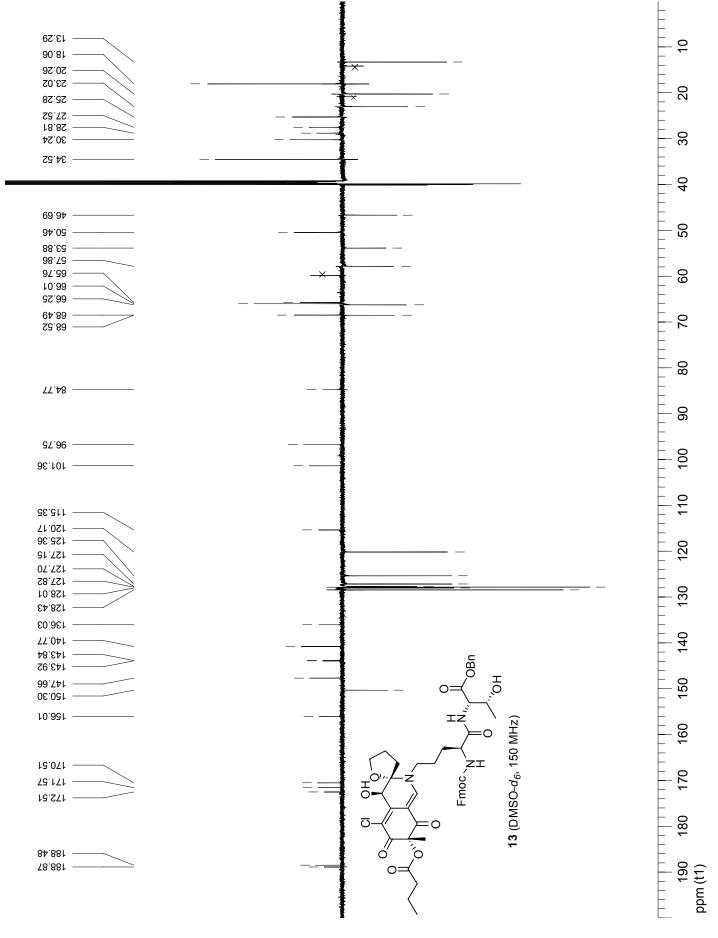


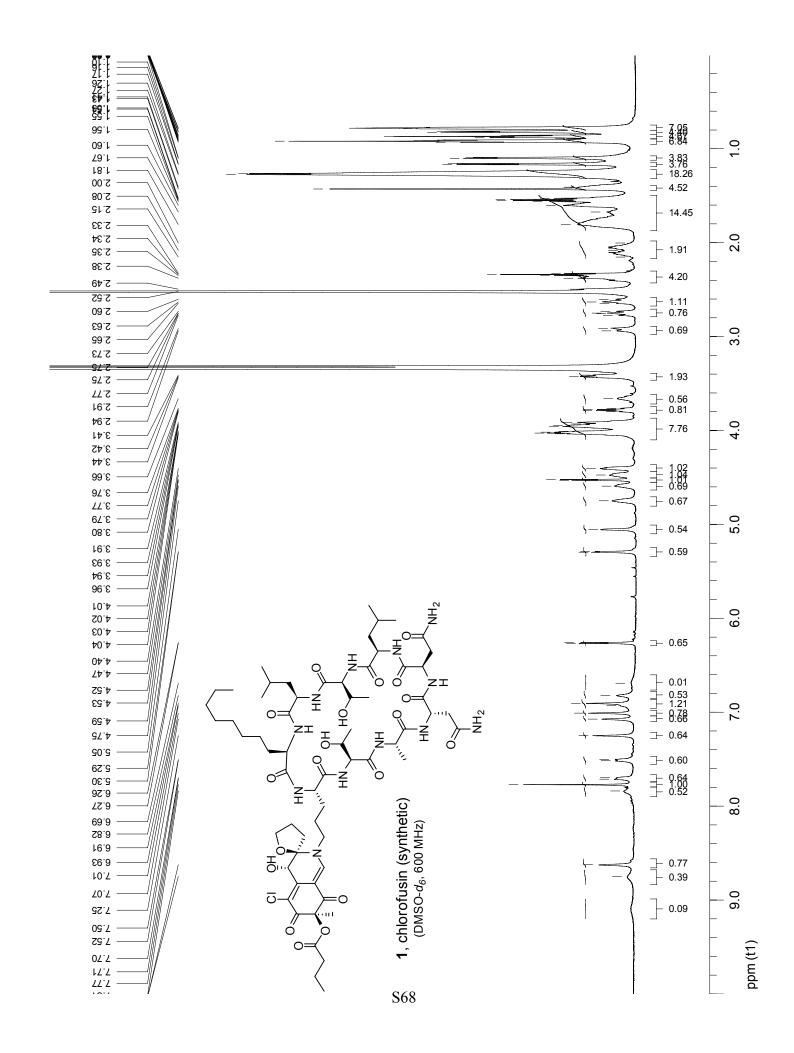


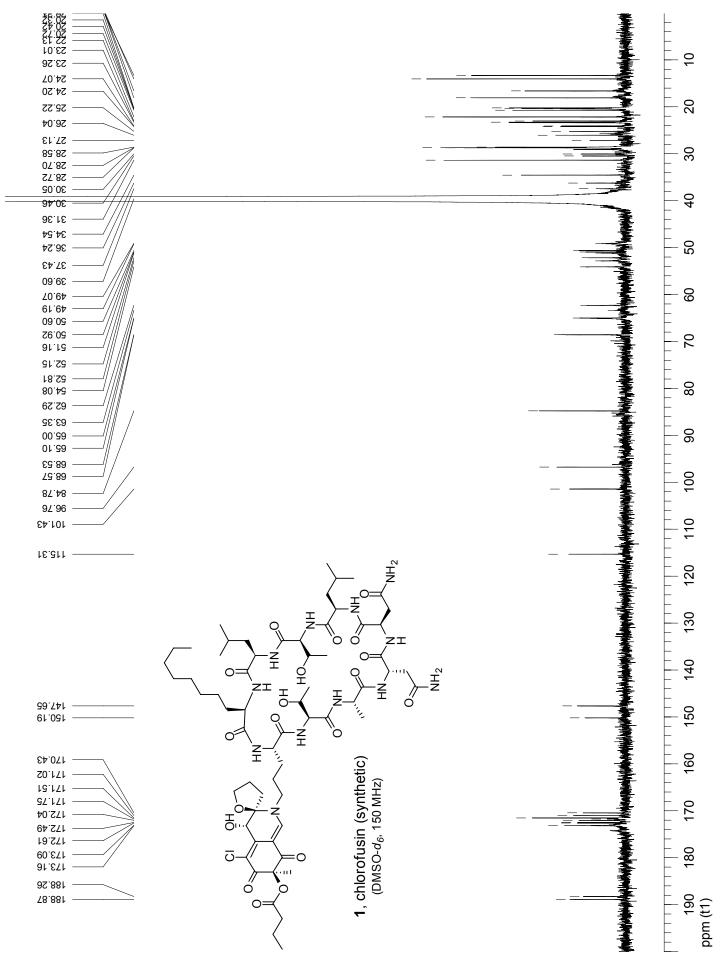


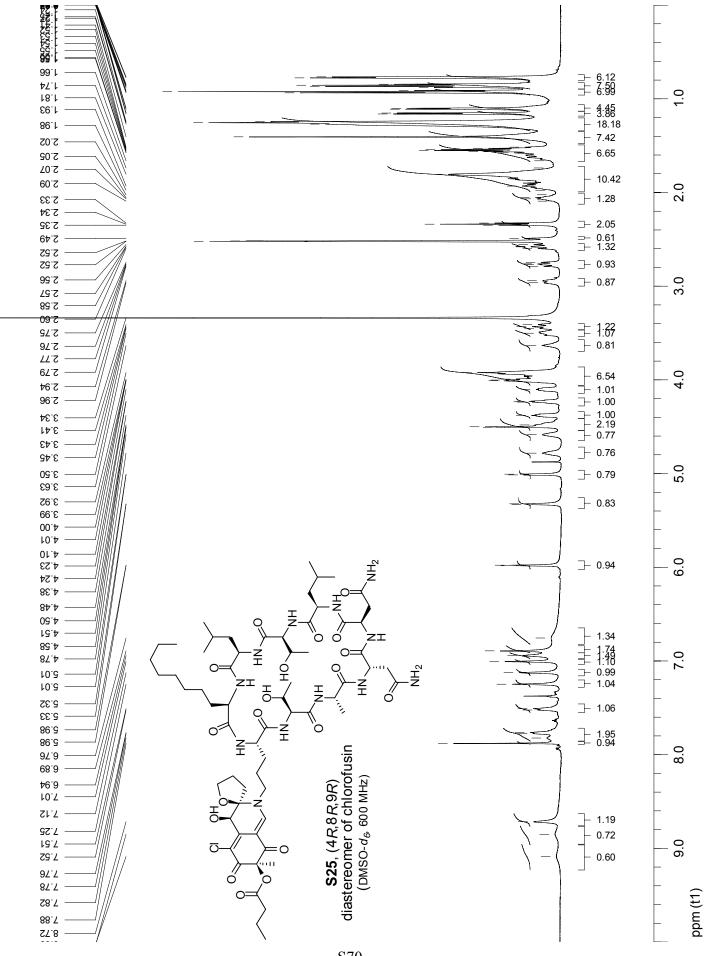


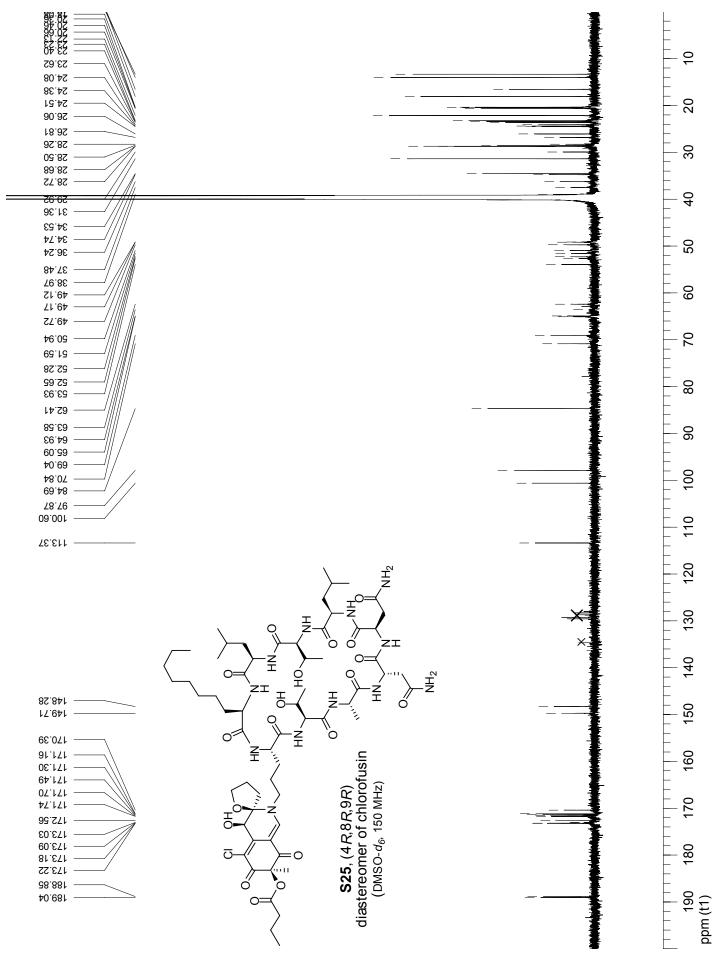


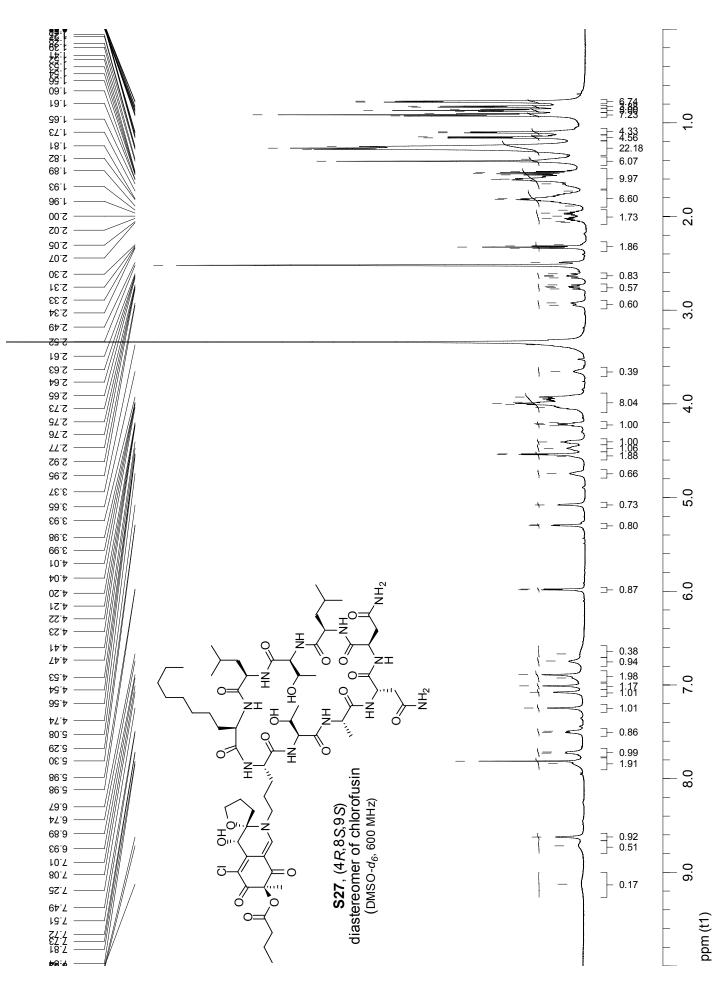


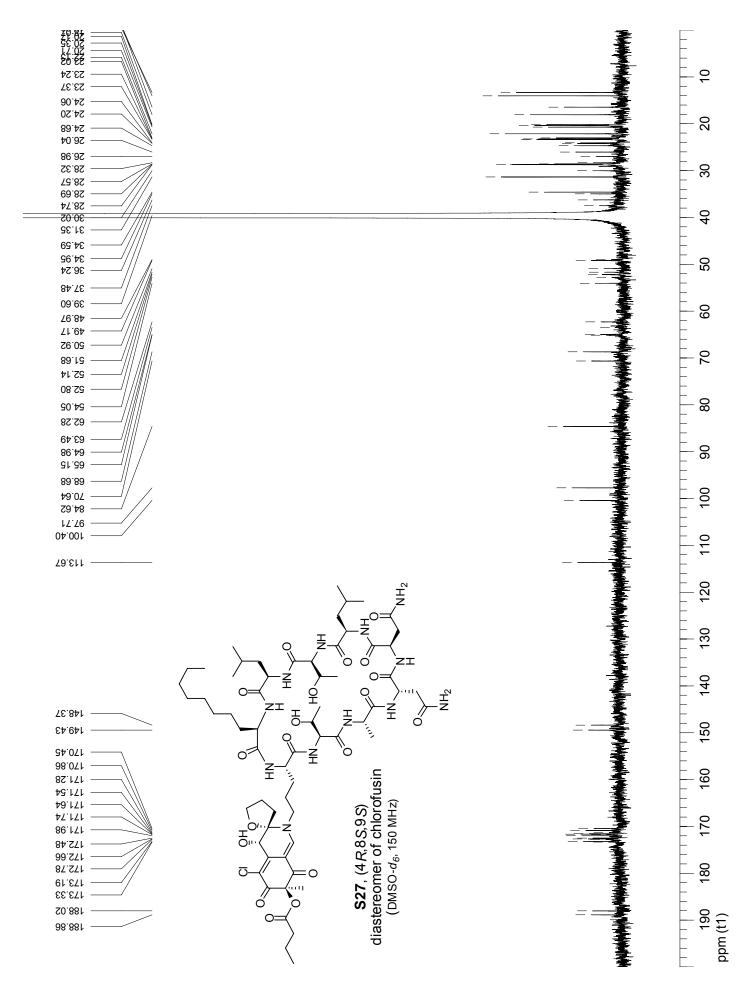


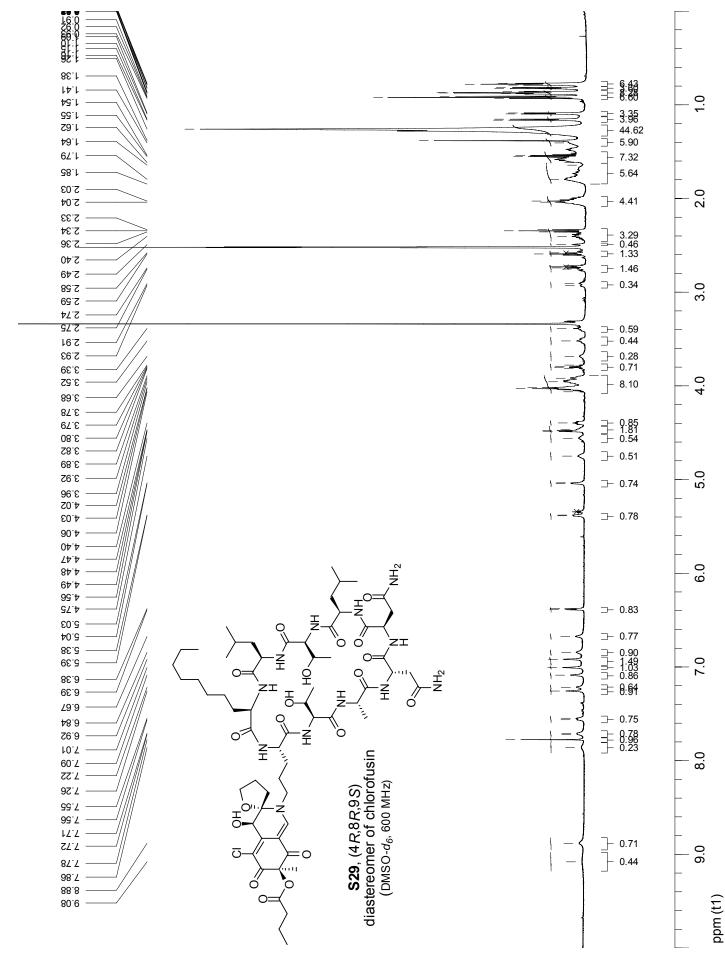


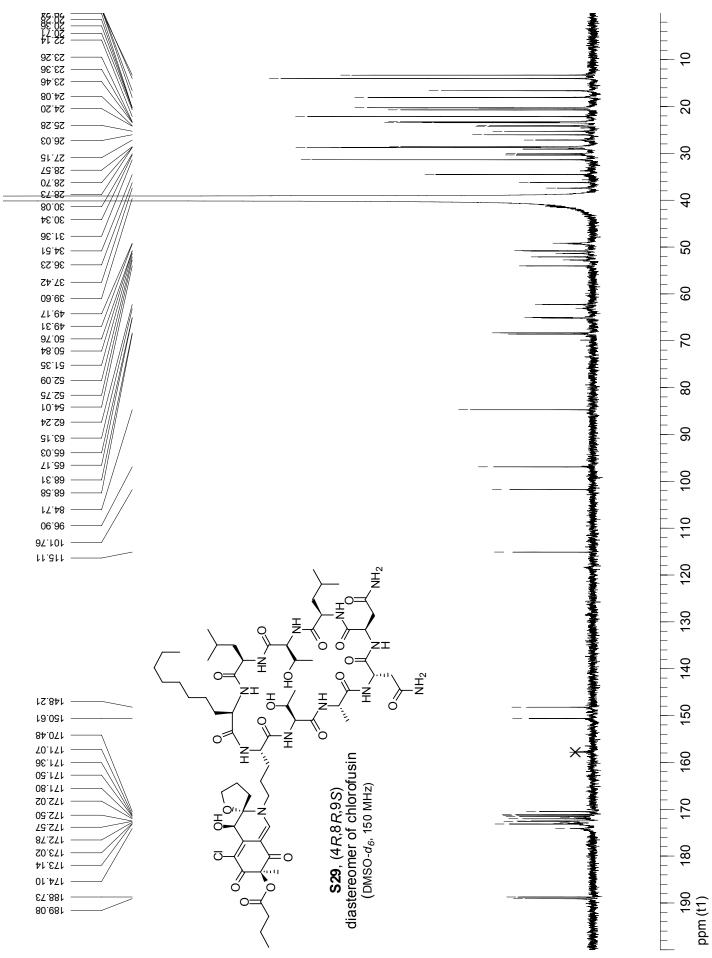


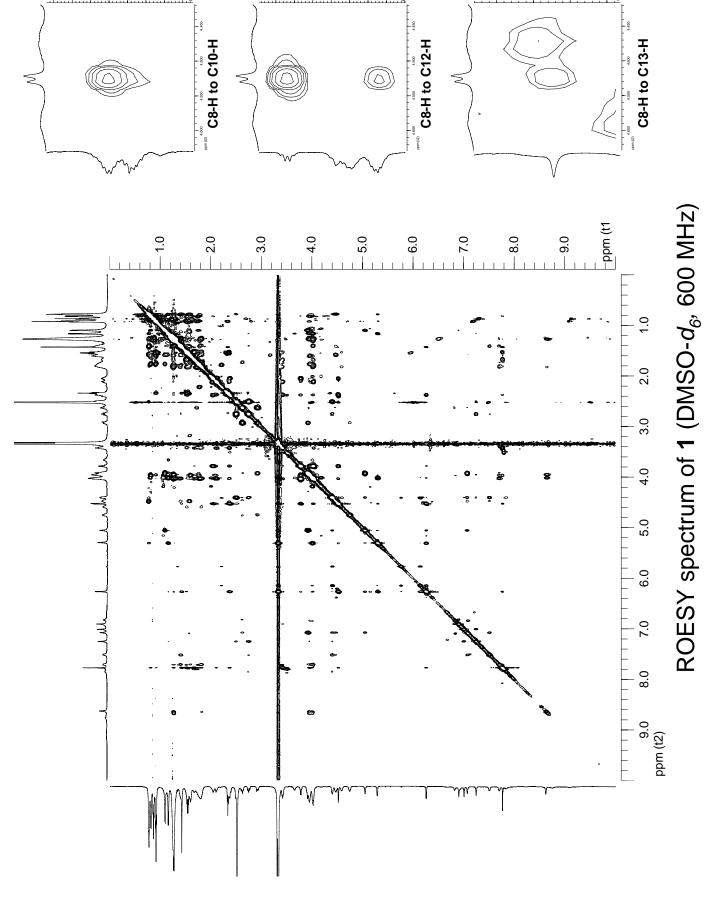


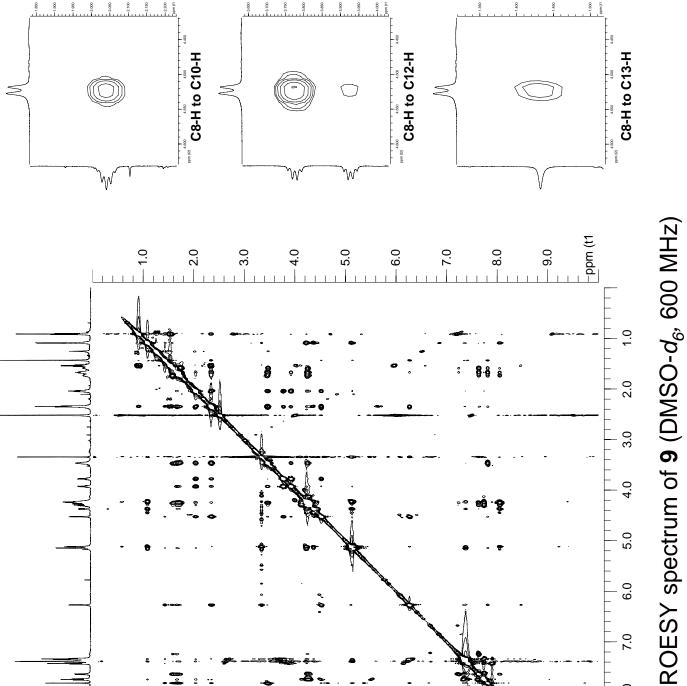


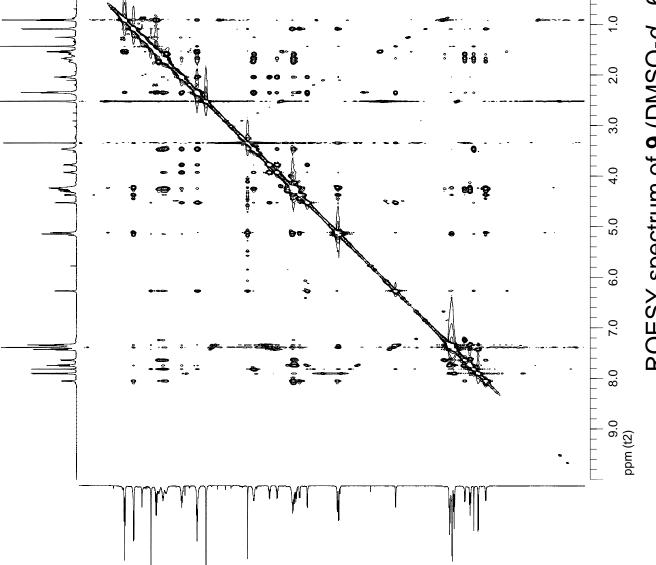


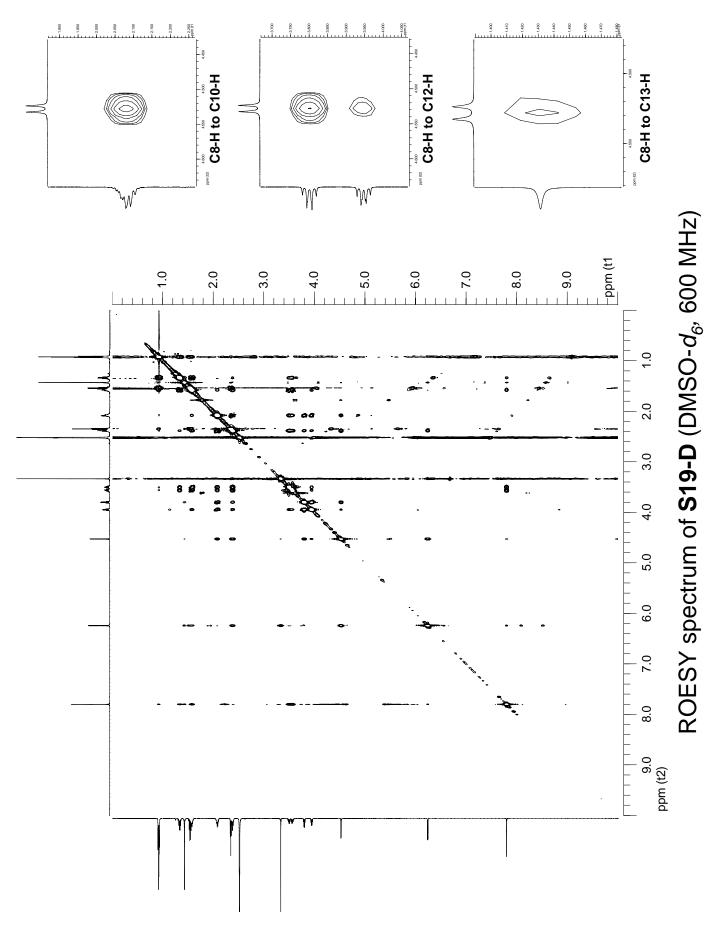


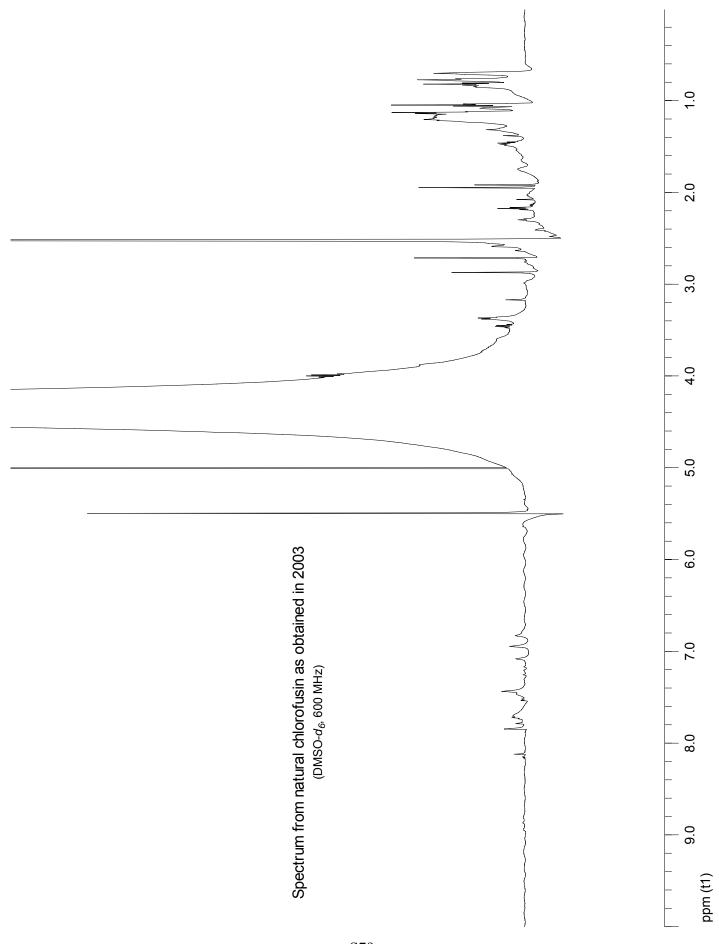


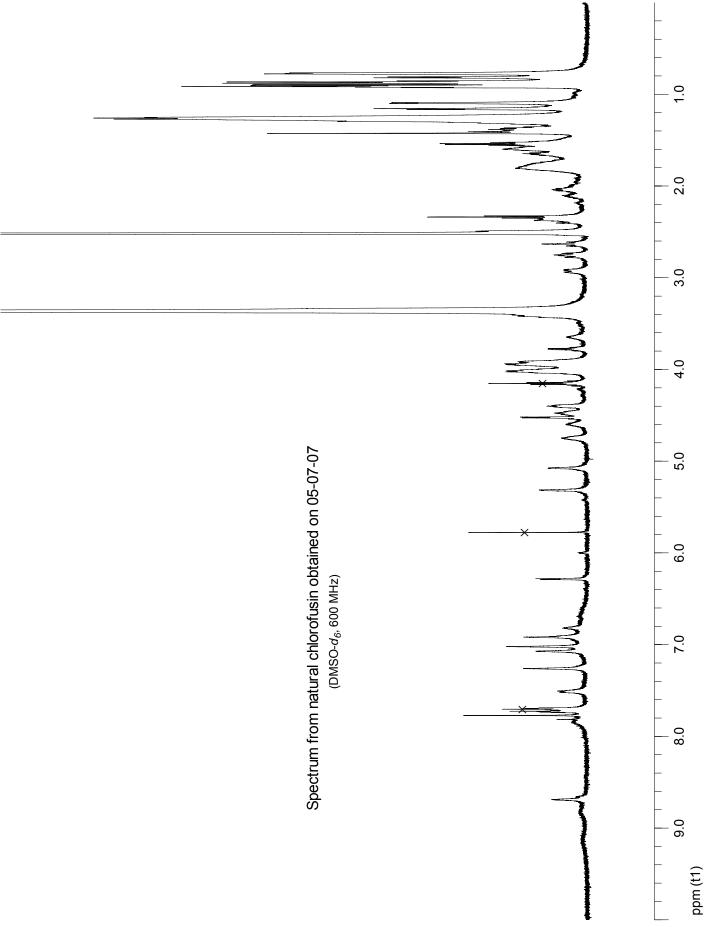











1.950 2.050 2.150 2.150 2.150

