Supporting Information

Total Synthesis, Stereochemical Reassignment and Absolute Configuration of Chlorofusin

Sang Yeul Lee, Ryan C. Clark and Dale L. Boger*
Department of Chemistry and the Skaggs Institute for Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, California 92037

```
NMR solvent residual peaks used in all data collection
DMSO- \(d_{6}\)
\({ }^{1} \mathrm{H}\) NMR: \(\quad 2.52 \mathrm{ppm}\) (Used by Williams)
\({ }^{13}\) C NMR: 39.6 ppm (Used by Williams)
\(\mathrm{CDCl}_{3}\)
\({ }^{1} \mathrm{H}\) NMR: \(\quad 7.26 \mathrm{ppm}\)
\({ }^{13}\) C NMR: 77.23 ppm
\(\mathrm{CD}_{3} \mathrm{OD}\)
\({ }^{13}\) C NMR: 49.05
```

ROESY mixing time: 300 ms

(Z)-2-(1H-Benzo[d]-[1,2,3]-triazol-1-yl)-1-(3,5-dimethoxy-4-methylphenyl)vinyl

trifluoromethanesulfonate (S1). A mixture of commercially available 3,5-dimethoxy-4methylbenzoic acid ($5.0 \mathrm{~g}, 25 \mathrm{mmol}$) in thionyl chloride ($19 \mathrm{~mL}, 260 \mathrm{mmol}$) was warmed at $60^{\circ} \mathrm{C}$ for 2 h . The volatiles were removed under reduced pressure to provide the crude acid chloride, which was dissolved in THF (30 mL), treated with 1(trimethylsilylmethyl)benzotriazole ($5.2 \mathrm{~g}, 25 \mathrm{mmol}$) and warmed at $85^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the precipitate was collected. The residue was washed with cold THF (20 mL) and dried under reduced pressure to afford the crude N acylmethylbenzotriazole as a gray solid which used in the next step without purification. A suspension of the crude intermediate (7.1 g) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL})$ under nitrogen was cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was treated with 2,6-lutidine (5.4 mL , 150 mmol), freshly distilled trifluoromethanesulfonic anhydride ($4.3 \mathrm{~mL}, 25 \mathrm{mmol}$), and stirred at $23{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was quenched with the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 15 \% \mathrm{EtOAc}\right.$-hexanes) afforded $\mathbf{S 1}$ as a gray solid $(86 \%$ over three steps, 9.9 g): mp $129-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (ddd, $J=8.1,6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (s, 2H), 3.91 (s, 6H), $2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 158.9(2 \mathrm{C}), 145.6,143.6$, $132.8,129.2,128.9,125.1,120.7,118.8,118.2(\mathrm{q}, J=321 \mathrm{~Hz}), 113.3,110.3,101.8$ (2C), 56.1 (2C), 8.7; IR (film) $v_{\max } 1584,1456,1417,1215,1140,1047,745 \mathrm{~cm}^{-1}$; HR ESITOF $m / z 444.0831\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right.$ requires 443.0763).

Methyl 2-(3,5-dimethoxy-4-methylphenyl)acetate (S2). A solution of S1 (9.0 g, 20 mmol) in anhydrous $\mathrm{MeCN}(130 \mathrm{~mL}$) was treated with $\mathrm{NaOMe}(2.7 \mathrm{~g}, 49 \mathrm{mmol})$ and stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled and concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(130 \mathrm{~mL})$, treated with aqueous 12 $\mathrm{N} \mathrm{HCl}(5.0 \mathrm{~mL})$ and warmed at $70{ }^{\circ} \mathrm{C}$ for 18 h . The volatiles were removed under reduced pressure and the residue was dissolved in EtOAc (150 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$-hexanes) to yield $\mathbf{S 2}$ as a colorless oil (75% over two steps, 3.4 g): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.46(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 172.3,158.4(2 \mathrm{C}), 132.3$, 113.5, 104.8 (2C), 55.9 (2C), 52.2, 41.8, 8.2; IR (film) $v_{\max } 2952,2839,1738,159,1455$, $1243,1138 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 225.1126\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}\right.$ requires 224.1049).

2-(3,5-Dimethoxy-4-methylphenyl)- N-methoxy- N-methylacetamide (S3). A suspension of S2 $(2.80 \mathrm{~g}, 12.5 \mathrm{mmol})$ and $\mathrm{NH}(\mathrm{OMe}) \mathrm{Me} \cdot \mathrm{HCl}(2.07 \mathrm{~g}, 21.2 \mathrm{mmol})$ in anhydrous THF (25 mL) at $-20^{\circ} \mathrm{C}$ under argon was treated with a solution of $i-\mathrm{PrMgCl}$ (2.0 M in THF, $21.2 \mathrm{~mL}, 42.4 \mathrm{mmol}$) over 30 min . The reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 30 min before being quenched with the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$-hexanes) to yield $\mathbf{S 3}$ as a white solid ($95 \%, 3.01 \mathrm{~g}$): mp $50-53{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.48(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $6 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 172.6, 158.3 (2C), 133.2, 113.0, 104.8 (2C), 61.5, 55.9 (2C), 39.9, 32.4, 8.1,; IR (film) $v_{\max } 2928,2857,1659,1586,1457,1418,1379,1239,1138,1007 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 254.1378\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}\right.$ requires 253.1315).

3-Iodo-1-triisopropylsilyloxypropane (S4). Commercially available 3-iodopropan-1-ol $(2.85 \mathrm{~mL}, 29.7 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under argon was cooled to $0{ }^{\circ} \mathrm{C}$, treated with 2,6-lutidine $(7.60 \mathrm{~mL}, 65.3 \mathrm{mmol})$, triisopropylsilyltrifluoromethanesulfonate ($10.0 \mathrm{~g}, 32.6 \mathrm{mmol}$) and stirred at $23^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with $\operatorname{EtOAc}(100 \mathrm{~mL})$, washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, heptane) to yield S 4 as a colorless oil $(95 \%, 9.65 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.07(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 62.7,36.5,18.0(6 \mathrm{C}), 11.9$ (3C), 3.8; IR (film) $v_{\max } 2941,2861,1463,1104,882,682 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 343.0950(\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{IOSi}$ requires 342.0877).

1-(3,5-Dimethoxy-4-methylphenyl)-5-(triisopropylsilyloxy)pentan-2-one (S5).
A solution of tert-butyl lithium (1.7 M in pentane, $17.3 \mathrm{~mL}, 29.4 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(83 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ under argon, treated with $\mathrm{S} 4(4.58 \mathrm{~g}, 13.4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(27 \mathrm{~mL})$ and stirred at $-78^{\circ} \mathrm{C}$ for 20 min before a solution of $\mathbf{S 3}(2.82 \mathrm{~g}, 11.2$ $\mathrm{mmol})$ in anhydrous THF (22 mL) was added. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 3 h before being quenched with the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h , extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc-hexanes) to afford $\mathbf{S 5}$ as a pale yellow oil $(90 \%, 4.10 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$

MHz) $\delta 6.37$ (s, 2H), $3.80(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{dd}, J=7.3,4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.78($ app quint, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.97-1.08(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 209.0,158.6$ (2C), 132.8, 113.3, 104.9 (2C), 62.4, 55.9 (2C), 51.1, 38.2, 27.1, 18.2 (6C), 12.1 (3C), 8.2; IR (film) $v_{\max } 2932,2868,1713,1590,1463,1413$, $1137,1100 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 409.2766\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4}\right.$ Si requires 408.2696).

1-(3,5-Dihydroxy-4-methylphenyl)-5-iodopentan-2-one (S6). A solution of S5 (412 $\mathrm{mg}, 1.01 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(14.5 \mathrm{~mL})$ was treated with iodotrimethylsilane $(2.15 \mathrm{~mL}, 15.1 \mathrm{mmol})$ and warmed at $120^{\circ} \mathrm{C}$ for 50 min at the normal absorption level in a microwave reactor. The cooled reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$, stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under reduced pressure and purified by flash chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{S 6}$ as an oil $(95 \%$, $321 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.26(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 3.17$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.03$ (app quint, $J=6.8 \mathrm{~Hz}$, 2 H), one OH was not observed; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 208.7$, 155.4 (2C), 132.4, $109.8,108.8$ (2C), 50.1, 42.3, 27.3, 8.1, 6.4; IR (film) $v_{\max } 3383,2922,1702,1598,1431$, $1371,1081 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 335.1042\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{IO}_{3}\right.$ requires 334.0967).

2,4-Dihydroxy-6-(5-iodo-2-oxopentyl)-3-methylbenzaldehyde (S7). A suspension of $\mathrm{AlCl}_{3}(1.06 \mathrm{~g}, 7.92 \mathrm{mmol})$ in anhydrous toluene (53 mL) was cooled to $-45^{\circ} \mathrm{C}$ under argon, treated with a solution of $\mathbf{S 6}(882 \mathrm{mg}, 2.64 \mathrm{mmol})$ in triethyl orthoformate $(8.80$ $\mathrm{mL}, 52.8 \mathrm{mmol}$) and stirred at $-30^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was treated at $-15^{\circ} \mathrm{C}$ with aqueous $2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, warmed to $23^{\circ} \mathrm{C}$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide S 7 as a gray solid $(75 \%, 717 \mathrm{mg})$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H})$, $3.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (app quint, $J=6.7 \mathrm{~Hz}$, 2 H), one OH was not observed; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 208.3,194.9,165.2$, 164.6, 139.1, 113.8, 111.7, 111.5, 46.7, 43.5, 28.7, 7.3, 5.9; IR (film) $v_{\max } 3335,2923$, 1712, 1620, 1428, 1303, $125,21121 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $384.9913\left(\mathrm{M}+\mathrm{Na}^{+}\right.$, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{4}$ requires 362.0015).

7-Acetoxy-3-(3-iodopropyl)-7-methyl-6H-isochromene-6,8-dione (S8). A solution of $\mathbf{S 7}(547 \mathrm{mg}, 1.51 \mathrm{mmol})$ in acetic acid $(150 \mathrm{~mL})$ was treated with $p-\mathrm{TsOH}(2.60 \mathrm{~g}, 15.1$
mmol). The reaction mixture was stirred at $95{ }^{\circ} \mathrm{C}$ under argon. After 90 min , the reaction mixture was cooled to $15{ }^{\circ} \mathrm{C}$, degassed with nitrogen for 30 min , treated portionwise with 95% lead tetraacetate ($803 \mathrm{mg}, 1.81 \mathrm{mmol}$) over 15 min , stirred at 15 ${ }^{\circ} \mathrm{C}$ for 30 min , and allowed to stand at $15-17{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was poured into ice water $(200 \mathrm{~mL})$, extracted with $\operatorname{EtOAc}(3 \times 100 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc}-\right.$ hexanes $)$ afforded $\mathbf{S 8}$ as an oil $(48 \%, 291 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.86(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.26(\mathrm{~m}$, $2 \mathrm{H}), 2.56(\operatorname{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (app quint, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 193.3,192.9,170.3,160.3,154.0,142.4,115.5$, 109.8, 107.6, 84.6, 34.0, 29.9, 22.4, 20.3, 4.4; IR (film) $v_{\max } 3458,2926,1720,1641$, $1444,1249 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 403.0043\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{IO}_{5}\right.$ requires 401.9965).

7-Acetoxy-3-(3-acetoxypropyl)-7-methyl-6H-isochromene-6,8-dione (S9). A solution of $\mathbf{S 8}(140 \mathrm{mg}, 0.35 \mathrm{mmol})$ in acetic acid $(3.50 \mathrm{~mL})$ was treated with silver acetate (174 $\mathrm{mg}, 1.05 \mathrm{mmol}$) and stirred at $50^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}\right.$, 50% EtOAc-hexanes) afforded S9 as an oil ($87 \%, 86.0 \mathrm{mg}$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.86(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.50(\mathrm{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.52$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 193.4,192.9,171.1,170.3,161.1,154.0,142.5$, 115.4, 109.3, 107.5, 84.6, 63.1, 30.1, 25.9, 22.5, 21.1, 20.3; IR (film) $v_{\max } 3359,2929$, 1713, 1618, 1427, 1302, 1252, $1121 \mathrm{~cm}^{-1}$; HR ESI-TOF $m / z 335.1127\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$ requires 334.1053).

7-Acetoxy-3-(3-acetoxypropyl)-5-chloro-7-methyl-6H-isochromene-6,8-dione (S10). A solution of $\mathbf{S 9}(91 \mathrm{mg} 0.27 \mathrm{mmol})$ in acetic acid (2.7 mL) was treated with N chlorosuccinimide ($39 \mathrm{mg}, 0.29 \mathrm{mmol}$). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 24 h before being quenched with the addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~mL})$. The reaction mixture was diluted with $\operatorname{EtOAc}(30 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}-$ hexanes) afforded $\mathbf{S 1 0}$ as a yellow solid ($87 \%, 86 \mathrm{mg}$): mp 177-178 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 191.8,186.5,171.1,170.4,163.1,153.1,138.3,115.1,111.1,106.5$, 84.8, 63.1, 30.5, 26.0, 22.5, 21.1, 20.3; IR (film) $v_{\max } 3212,3086,2959,1743,1647$,

1558, 1472, 1241, 852, $773 \mathrm{~cm}^{-1}$; HR ESI-TOF $m / z 369.0729\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{7}\right.$ requires 368.0657). Spectral data was in accordance with the literature values. ${ }^{1}$

7-Acetoxy-3-(3-acetoxypropyl)-2-benzyl-5-chloro-7-methyl-2H,7H-isoquinoline-6,8dione (S11). A solution of $\mathbf{S 1 0}(63 \mathrm{mg}, 0.17 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was treated with benzylamine ($21 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$), stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 70 \% \mathrm{EtOAc}\right.$-hexanes) afforded $\mathbf{S 1 1}$ as a red solid ($77 \mathrm{mg}, 99 \%$): mp $154-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H})$, $7.40(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.57(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{dt}, J=6.4,12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 193.9,185.1,171.0,170.4,149.8,144.1,142.1,134.1,129.9$ (2C), 129.3, 126.3 (2C), 115.2, 113.9, 102.8, 85.0, 63.0, 57.1, 28.8, 27.6, 23.3, 21.1, 20.5; IR (film) $v_{\max } 1729,1617,1513,1368,1234,1085,855 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 458.1360$ $\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClNO}_{6}\right.$ requires 458.1365$)$. Spectral data was in accordance with the literature values. ${ }^{1}$

7-Acetoxy-2-benzyl-5-chloro-3-(3-hydroxypropyl)-7-methyl-2H,7H-isoquinoline-6,8dione (S12). A solution of $\mathbf{S 1 1}(40 \mathrm{mg}, 0.087 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(90 \mu \mathrm{~L})$ and $\mathrm{MeOH}(0.9$ mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(24 \mathrm{mg}, 0.18 \mathrm{mmol})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before being quenched with aqueous 0.1 N HCl $(2.5 \mathrm{~mL})$. The resulting mixture was acidified to pH 3 and extracted with EtOAc $(3 \times 3$ $\mathrm{mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 90 \% \mathrm{EtOAc}-\right.$ hexanes $)$ afforded $\mathbf{S 1 2}$ as a red solid $(75 \%, 27 \mathrm{mg})$ along with recovered S11 ($25 \%, 10 \mathrm{mg}$): mp $159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}$, $1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, $1.82-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$, OH proton was not observed; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 193.9,184.8,170.4,151.2,144.7,142.1,134.3,129.8$ (2C), 129.2, 126.5 (2C), $115.4,114.2,102.7,85.0,61.1,57.0,31.5,28.7,23.4,20.5$; IR (film) $v_{\max } 3400,2925$, 2853, 1704, 1593, 1503, 1234, 1146, $1081 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z 416.1254 (M+ H , $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5}$ requires 415.1187).

S13. A solution of S12 (12.3 mg, 0.0296 mmol$)$ in $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ and DMSO (3.0 mL) was treated with iodine ($22.5 \mathrm{mg}, 0.0887 \mathrm{mmol}$), silver trifluoroacetate $(10.5 \mathrm{mg}, 0.0473$ mmol) and stirred at $23{ }^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was quenched with the addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$, diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (preparative TLC, $\mathrm{SiO}_{2}, 3 \times 70 \%$ EtOAc-hexanes) afforded diastereomers A $(24 \%, 3.1 \mathrm{mg})$, $\mathbf{B}(30 \%, 3.8 \mathrm{mg}), \mathbf{C}(10 \%, 1.3 \mathrm{mg})$ and $\mathbf{D}(6 \%, 0.8 \mathrm{mg})$ as well as recovered S12 (23%, 2.8 mg).
Isomerization of \mathbf{B} to \mathbf{D} : A solution of $\mathbf{B}(4.8 \mathrm{mg}, 0.011 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.1 \mathrm{ml})$ at $23{ }^{\circ} \mathrm{C}$ was treated with anhydrous p-toluenesulfonic acid $(5.7 \mathrm{mg}, 0.033$ $\mathrm{mmol})$. The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h and quenched with the addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (preparative TLC, $\mathrm{SiO}_{2}, 3 \times 70 \%$ EtOAc-hexanes) afforded $\mathbf{D}(0.3 \mathrm{mg}, 11 \%)$ and recovered $\mathbf{B}(2.0 \mathrm{mg}, 74 \%)$.
Isomerization of \mathbf{C} to A: A solution of $\mathbf{C}(1.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ in anhydrous MeCN $(0.4 \mathrm{ml})$ at $23{ }^{\circ} \mathrm{C}$ was treated with anhydrous p-toluenesulfonic acid $(3.4 \mathrm{mg}, 0.020$ $\mathrm{mmol})$. The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h and quenched with the addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (preparative TLC, $\mathrm{SiO}_{2}, 3 \times 70 \%$ EtOAc-hexanes) afforded $\mathbf{A}(0.9 \mathrm{mg}, 51 \%)$ and recovered $\mathbf{C}(0.3 \mathrm{mg}, 18 \%)$.

(relative stereochemistry depicted, confirmation of structure by x-ray ${ }^{2}$)
For S13-A: Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ provided \mathbf{A} as yellow needles from which a single-crystal x-ray structure was determined: mp $148-151^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600$ $\mathrm{MHz}) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.97$ (dd, $J=14.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (s, 3H), 1.85-1.99 (br m, $3 \mathrm{H}), 1.75-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right) \delta$ 189.1, 188.9, 168.9, 150.2, 148.4, 137.4, 128.5 (2C), 128.1 (2C), 127.6, 113.9, 101.0, 97.9, 84.9, 70.3, 68.7, 52.1, 34.5, 24.5, 23.6, 20.0; IR (film) $v_{\max } 3372,2921,2852,1732,1638,1567$, 1456, 1251, $1077 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 432.1203\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{6}\right.$ requires 431.1136).

(relative stereochemistry depicted, confirmation of structure by x-ray ${ }^{3}$)
For S13-B: Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ provided \mathbf{B} as yellow needles from which a single-crystal x-ray structure was determined: mp 136-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 600$ $\mathrm{MHz}) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=15.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 1 \mathrm{H})$, 1.71-1.86 (br m, 3H), $1.40(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right) \delta 188.8$, 188.4, 169.2, 149.8, 148.3, 137.4, 128.6 (2C), 128.2 (2C), 127.7, 114.1, 100.6, 97.9, 84.7, 70.4, $68.8,52.2,35.0,24.5,22.9,20.0$; IR (film) $v_{\max } 3355,2923,2853,1732,1636,1562$, 1454, 1241, 1077, 1056, $703 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 432.1206\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{6}\right.$ requires 431.1136).

(relative stereochemistry depicted)
For S13-C: mp 135-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H})$, $7.37-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=$ $15.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right) \delta 189.4,188.6,168.9,151.5,148.0,137.7,128.7$ (2C), $127.5,126.7$ (2C), 115.6, 102.0, 97.2, 84.9, 68.9, 68.6, 53.7, 30.6, 25.2, 23.5, 20.0; IR (film) $v_{\max } 3369,2920,1736,1687,1638,1563,1240,1077,736 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $432.1205\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{6}\right.$ requires 431.1136).

(relative stereochemistry depicted)
For S13-D: mp 131-135 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) ~ \delta 7.88(\mathrm{~s}, 1 \mathrm{H})$, $7.37-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=$ $14.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 188.8,188.6,169.1,151.1,147.5,137.6,128.7$ (2C), $127.6,126.7$ (2C), 115.8, 101.5, 97.1, 85.0, 68.8, 68.7, 53.9, 30.5, 25.2, 23.1, 20.0; IR (film) $v_{\max } 3318,2922,2853,1737,1642,1571,1453,1249,1077,1043,698 \mathrm{~cm}^{-1} ; \mathrm{HR}$ ESI-TOF $\mathrm{m} / \mathrm{z} 432.1213\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{6}\right.$ requires 431.1136).

Proton Number	$\delta\left({ }^{1} \mathrm{H} \text { NMR }\right)^{\mathrm{a}}$				
	chlorofusin	A (syn $)$	$\mathbf{B}($ syn $)$	$\mathbf{C}($ anti $)$	D (anti)
Configuration		$R^{\star}, R^{\star}, R^{\star}$	$R^{\star}, \mathrm{S}^{\star}, \mathrm{S}^{\star}$	$R^{\star}, R^{\star}, \mathrm{S}^{\star}$	$R^{\star}, \mathrm{S}^{\star}, R^{\star}$
$\mathrm{C} 1-\mathrm{H}$	$7.77(\mathrm{~s})$	$7.88(\mathrm{~s})$	$7.86(\mathrm{~s})$	$7.88(\mathrm{~s})$	$7.87(\mathrm{~s})$
$\mathrm{C} 8-\mathrm{H}$	$4.53(\mathrm{~d})$	$4.53(\mathrm{~d})$	$4.58(\mathrm{~d})$	$4.55(\mathrm{~d})$	$4.58(\mathrm{~d})$
$\mathrm{C} 10-\mathrm{H}$	$2.38(\mathrm{br} \mathrm{m})$	$1.89(\mathrm{~m})$	$1.81(\mathrm{~m})$	$2.25(\mathrm{~m})$	$2.26(\mathrm{~m})$
$\mathrm{C} 11-\mathrm{H}$	$2.0-2.2(\mathrm{~m})$	$1.79,1.96(\mathrm{~m})$	$1.76,1.82(\mathrm{~m})$	$2.01(\mathrm{~m})$	$2.00(\mathrm{~m})$
$\mathrm{C} 12-\mathrm{H}^{1}$	$4.02(\mathrm{~m})$	$4.18(\mathrm{~m})$	$4.18(\mathrm{~m})$	$3.87(\mathrm{~m})$	$3.83(\mathrm{~m})$
$\mathrm{C} 12-\mathrm{H}^{2}$	$3.78(\mathrm{q})$	$3.97(\mathrm{dd})$	$3.97(\mathrm{dd})$	$3.80(\mathrm{dd})$	$3.77(\mathrm{~m})$
$\mathrm{C} 13-\mathrm{H}$	$1.43(\mathrm{~s})$	$1.43(\mathrm{~s})$	$1.40(\mathrm{~s})$	$1.42(\mathrm{~s})$	$1.46(\mathrm{~s})$
$\mathrm{O} 14-\mathrm{H}$	$6.26(\mathrm{~d})$	$6.31(\mathrm{~d})$	$6.23(\mathrm{~d})$	$6.59(\mathrm{~d})$	$6.39(\mathrm{~d})$

${ }^{a}$ Assignment was assisted by COSY and HMQC NMR.

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

Carbon Number	$\delta\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)^{\mathrm{a}}$					
	chlorofusin	$\mathbf{A}($ syn $)$	$\mathbf{B}($ syn $)$	$\mathbf{C}($ anti $)$	$\mathbf{D}($ anti $)$	
Configuration		$R^{\star}, R^{\star}, R^{\star}$	$R^{\star}, \mathrm{S}^{\star}, \mathrm{S}^{\star}$	$R^{\star}, R^{\star}, \mathrm{S}^{\star}$	$R^{\star}, \mathrm{S}^{\star}, R^{\star}$	
C1	150.0	150.2	149.8	151.5	151.1	
C2 $^{\text {b }}$	115.2	113.9	114.1	115.6	115.8	
C3	188.1	$188.9^{\text {c }}$	$188.4^{\text {c }}$	$189.4^{\text {c }}$	$188.6^{\text {c }}$	
C4	84.7	84.9	84.7	84.9	85.0	
C5	188.7	$189.1^{\text {c }}$	$188.8^{\text {c }}$	$188.6^{\text {c }}$	$188.8^{\text {c }}$	
C6		101.0	100.6	102.0	101.5	
C7	101.3	147.5	148.4	148.3	148.0	147.5
C8	68.4	68.7	68.8	68.6	68.7	
C9	96.7	97.9	97.9	97.2	97.1	
C10	30.3	34.5	35.0	30.6	30.5	
C11	25.1	24.5	24.5	25.2	25.2	
C12	68.4	70.3	70.4	68.9	68.8	
C13	22.9	23.6	22.9	23.5	23.1	

${ }^{\text {a }}$ Assignment was assisted by COSY and HMQC NMR.
${ }^{\mathrm{b}}$ Original assignments may be switched (i.e. $\delta 101.3$ for $\mathrm{C} 2,115.2$ for C 6) based on HMBC data for $\mathbf{1 0} \mathbf{- 1 3}$. This tentative reassignment is under continued investigation.
${ }^{c}$ Assignments made by analogy to $10-13$.

The x-ray crystal structures of the $\mathbf{S 1 3}$ diastereomers \mathbf{A}^{2} and \mathbf{B}^{3}, the major products of the oxidative spirocyclization reaction, were determined and it was found that the C 8 and C9 oxygen substituents of both compounds were oriented syn with respect to one another. N, O-Ketal equilibration studies defined the respective $\mathbf{S 1 3}$ syn/anti pairs and unambiguously established the structures and corresponding stereochemistry of \mathbf{C} and \mathbf{D}. Particularly indicative of the relative orientation of the C 8 and C 9 substituents were the ${ }^{1} \mathrm{H}$ NMR signals of the tetrahydrofuran ring. The chemical shifts of the $\mathrm{C} 10-\mathrm{H}$ signals for $\mathbf{C}(\mathrm{m}, 2.25 \mathrm{ppm})$ and $\mathbf{D}(\mathrm{m}, 2.26 \mathrm{ppm})$ are similar to each other and to the $\mathrm{C} 10-\mathrm{H}$ signal reported for chlorofusin ($\mathrm{br} \mathrm{m}, 2.38 \mathrm{ppm}$) compared to the analogous signals from the spectra of $\mathbf{A}(\mathrm{m}, 1.89)$ and $\mathbf{B}(\mathrm{m}, 1.81)$. Similarly the C11-H signals for C (m, 2.01 $\mathrm{ppm})$ and $\mathbf{D}(\mathrm{m}, 2.00 \mathrm{ppm})$ possess chemical shifts that are closer to chlorofusin (m , $2.0-2.2 \mathrm{ppm})$ than $\mathbf{A}(\mathrm{m}, 1.79 \mathrm{ppm} ; \mathrm{m}, 1.96 \mathrm{ppm})$ and $\mathbf{B}(\mathrm{m}, 1.76 \mathrm{ppm} ; \mathrm{m}, 1.82 \mathrm{ppm})$, and the C12-H signals for $\mathbf{C}(\mathrm{m}, 3.80 \mathrm{ppm} ; \mathrm{m}, 3.87 \mathrm{ppm})$ and $\mathbf{D}(\mathrm{m}, 3.77 \mathrm{ppm} ; \mathrm{m}, 3.83$ ppm) were also similar to one another and chlorofusin ($\mathrm{q}, 3.78 \mathrm{ppm} ; \mathrm{m}, 4.02 \mathrm{ppm}$), and different from those of $\mathbf{A}(\mathrm{m}, 3.97 \mathrm{ppm} ; \mathrm{m}, 4.18 \mathrm{ppm})$ and $\mathbf{B}(\mathrm{m}, 3.97 \mathrm{ppm} ; \mathrm{m}, 4.18$ $\mathrm{ppm})$. The ${ }^{13} \mathrm{C}$ NMR data show similar trends with the most striking difference coming at C 10 with $\mathbf{C}(30.6 \mathrm{ppm})$ and $\mathbf{D}(30.5 \mathrm{ppm})$ being very similar to each other and to chlorofusin (30.3 ppm) but 4 ppm farther upfield than the C10 signals for $\mathbf{A}(34.5 \mathrm{ppm})$ and $\mathbf{B}(35.0 \mathrm{ppm})$. Although these initial results indicated that the C8 and C9 oxygen substituents of chlorofusin are oriented anti with respect to one another, the potential perturbation of the chromophore NMR signals by the appended benzyl ring led to the analogous examination of A-D incorporating an N-butyl substituent as well as a C4 butyrate versus acetate.

7-Butyryloxy-3-(3-iodopropyl)-7-methyl-6H-isochromene-6,8-dione (S14). A solution of S7 (561 mg 1.55 mmol$)$ in butyric acid $(155 \mathrm{~mL})$ was treated with $p-\mathrm{TsOH}(2.67 \mathrm{~g}$, 15.5 mmol). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ under argon. After 90 min , the reaction mixture was cooled to $15{ }^{\circ} \mathrm{C}$, degassed with nitrogen for 30 min , treated portionwise with 95% lead tetraacetate ($824 \mathrm{mg}, 1.86 \mathrm{mmol}$) over 15 min , stirred at 15 ${ }^{\circ} \mathrm{C}$ for 30 min , and allowed to stand at $15-17{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was poured into ice water (200 mL), extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}-\right.$ hexanes $)$ afforded $\mathbf{S 1 4}$ as an oil $(31 \%, 207 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{td}, J=1.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=12.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 193.5,193.2,173.2$, $160.2,154.0,142.4,115.4,109.8,107.6,84.3,35.3,34.0,29.9,22.3,18.4,13.7,4.5$; IR (film) $v_{\text {max }} 2917,1728,1645,1626,1449,1249,1177,1081,1028 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 431.0351\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{IO}_{5}\right.$ requires 430.0278).

3-(3-Acetoxypropyl)-7-butyryloxy-7-methyl-6H-isochromene-6,8-dione (S15). A solution of $\mathbf{S 1 4}(77 \mathrm{mg}, 0.18 \mathrm{mmol})$ in butyric acid $(1.80 \mathrm{~mL})$ was treated with silver acetate ($90 \mathrm{mg}, 0.54 \mathrm{mmol}$) and stirred at $57{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}$-hexanes) afforded $\mathbf{S 1 5}$ as an oil $(63 \%, 41 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.87(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (s, 3H), 1.92-2.01 (m, 2H), 1.66 (app sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.96$ (t, $J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 193.5,193.1,173.2,171.1,161.0,154.0,142.5$, $115.4,109.3,107.5,84.3,63.1,35.3,30.1,25.9,22.3,21.1,18.4,13.7$; IR (film) $v_{\max }$ 2922, 2858, 1728, 1624, 1450, 1367, 1244, $1092 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $363.1442(\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7}$ requires 362.1366).

3-(3-Acetoxypropyl)-7-butyryloxy-5-chloro-7-methyl-6H-isochromene-6,8-dione
(S16). A solution of S15 (44 mg 0.11 mmol) in acetic acid $(1.1 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was treated with N-chlorosuccinimide ($16 \mathrm{mg}, 0.12 \mathrm{mmol}$). The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h before being quenched with the addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.2 \mathrm{~mL})$. The reaction mixture was diluted with EtOAc (15 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$ and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc-hexanes) afforded $\mathbf{S 1 6}$ as a yellow solid ($85 \%, 37 \mathrm{mg}$): mp $89-91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59$ (app $\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.65$ (app sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 191.9,186.5,173.2,171.1,163.0,153.1,138.2,115.1,111.0,106.5,84.5,63.1$, $35.2,30.5,25.9,22.4,21.1,18.4,13.7$; IR (film) $v_{\max } 2918,1736,1644,1536,1429$, 1368, 1242, 1129, $1043 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 397.1045\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClO}_{7}\right.$ requires 396.0977).

3-(3-Acetoxypropyl)-2-butyl-7-butyryloxy-5-chloro-7-methyl-2H,7H-isoquinoline-6,8-dione (S17). A solution of $\mathbf{S 1 6}(31 \mathrm{mg}, 0.078 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was treated with n-butylamine $(9.3 \mu \mathrm{~L}, 0.094 \mathrm{mmol})$ and $\mathrm{SiO}_{2}(16 \mathrm{mg})$. The reaction
mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc}-$ hexanes $)$ afforded $\mathbf{S 1 7}$ as a red foam ($99 \%, 35 \mathrm{mg}$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 7.72(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{dd}$, $J=9.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\operatorname{app} \mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $1.98-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (app sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.41$ (app sext, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 194.0,184.9,173.1,171.0,149.3,144.2,141.2,115.3,113.8,102.6$, 84.7, 63.0, 53.2, 35.3, 33.3, 28.7, 27.9, 23.2, 21.0, 19.9, 18.4, 13.8, 13.7; IR (film) $v_{\max }$ 2930, 1737, 1612, 1505, 1228, $1179 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 452.1841\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClNO}_{6}$ requires 451.1762).

2-Butyl-7-butyryloxy-5-chloro-3-(3-hydroxypropyl)-7-methyl-2H,7H-isoquinoline-6,8-dione (S18). A solution of $\mathbf{S 1 7}(51.7 \mathrm{mg}, 0.115 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL})$ and MeOH $(1.2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(31.8 \mathrm{mg}, 0.230 \mathrm{mmol})$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched with aqueous $0.2 \mathrm{~N} \mathrm{HCl}(1.6$ $\mathrm{mL})$, acidified to pH 3 and extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc}-\right.$ hexanes $)$ afforded $\mathbf{S 1 8}$ as a red solid ($91 \%, 43.1 \mathrm{mg}$): $\mathrm{mp} 83-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.73(\operatorname{app} \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.75$ (app quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.66 (app sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.54 (s, 3H), 1.41 (app sext, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta 194.1,184.6,173.2,150.9,144.9,141.3,115.5,114.1,102.2,84.7,61.1,53.4$, $35.4,33.3,31.6,28.5,23.3,20.0,18.4,13.79,13.77$; IR (film) $v_{\max } 3400,2932,2875$, 1732, 1704, 1592, 1503, 1230, 1180, $1081 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $410.1728\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{5}$ requires 409.1657).

S19. A solution of S18 (11.6 mg, 0.0284 mmol$)$ in $\mathrm{H}_{2} \mathrm{O}(0.28 \mathrm{~mL})$ and DMSO (2.8 mL) was treated with iodine ($21.6 \mathrm{mg}, 0.0852 \mathrm{mmol}$), and silver nitrate ($9.6 \mathrm{mg}, 0.057 \mathrm{mmol}$), and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 days before being quenched with the addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The resulting mixture was diluted with EtOAc (50 $\mathrm{mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (preparative TLC, $\mathrm{SiO}_{2}, 3 \times 50 \% \mathrm{EtOAc}$-hexanes) afforded diastereomers $\mathbf{A}(24 \%, 2.9 \mathrm{mg}), \mathbf{B}(22 \%, 2.7 \mathrm{mg}), \mathbf{C}(7 \%, 0.9 \mathrm{mg}), \mathbf{D}(6 \%, 0.7$ $\mathrm{mg})$ and recovered S18 ($13 \%, 1.5 \mathrm{mg}$).

Isomerization of B to D: A solution of $\mathbf{B}(2.7 \mathrm{mg}, 0.006 \mathrm{mmol})$ in acetic acid $(0.6 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(5 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h and quenched with the addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (preparative TLC, $\mathrm{SiO}_{2}, 3 \times 60 \% \mathrm{EtOAc}-$ hexanes $)$ afforded $\mathbf{D}(0.3 \mathrm{mg}, 11 \%)$ and recovered $\mathbf{B}(2.0 \mathrm{mg}$, 74%).

For S19-A: mp 158-160 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-2.06(\mathrm{~m}, 3 \mathrm{H})$, $1.82-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.55($ app sext, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $1.28-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 150 \mathrm{MHz}\right) \delta 189.04,188.97,171.4,149.9,148.7,113.1,100.5,98.0,84.7,70.5,68.6$, $49.7,34.6,34.5,32.5,24.7,23.7,19.2,18.1,13.7,13.3$; IR (film) $v_{\max } 3438,2925,2855$, 1737, 1644, 1574, 1454, 1236, 1181, $1075 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $426.1671\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{6}$ requires 425.1606).

(relative stereochemistry depicted)
For S19-B: mp $155-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 6.11$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=$ $14.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.94-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.53$ (app sext, $J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) $\delta 188.9$, 188.3, 171.7, 149.6, 148.7, 113.5, 100.2, 97.9, $84.6,70.6,68.7,49.8,35.0,34.6,32.6,24.6,23.0,19.2,18.0,13.7,13.3$; IR (film) $v_{\max }$ $3416,2928,2874,1734,1644,1573,1454,1236,1076 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z 426.1671 $\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{6}\right.$ requires 425.1606$)$.

For S19-C: mp 136-140 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=7.0,15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.08 (app quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.51-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (app sext, $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 150 \mathrm{MHz}\right) \delta 189.3,188.8,171.5$, $150.9,148.3,115.0,101.5,96.9,84.7,68.6,68.4,50.5,34.5,32.9,30.2,25.3,23.5,19.2$, 18.1, 13.7, 13.3; IR (film) $v_{\text {max }} 3370,2923,2853,1695,1650,1576,1459,1237,1080$, $1042 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 426.1675\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{6}\right.$ requires 425.1606).

(relative stereochemistry depicted, confirmation of structure by x-ray ${ }^{4}$)
For S19-D: Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ provided \mathbf{D} as yellow prisms from which a single-crystal x-ray structure was determined: mp 133-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600$ $\mathrm{MHz}) \delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=15.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.53(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.40 (m, 2H), $2.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.43$ (s, 3H), $1.34(\operatorname{app} \operatorname{sext}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) $\delta 188.9,188.5,171.6,150.5,147.7,115.2,101.2,96.8$, $84.8,68.5,68.4,50.6,34.5,33.0,30.2,25.3,23.1,19.2,18.1,13.7,13.3$; IR (film) $v_{\max }$ 3440, 2924, 2849, 1735, 1693, 1645, 1574, 1454, 1236, $1077 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $426.1677\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{6}\right.$ requires 425.1606).

CIF file of S19-D opened with Chem3D.

Proton Number	$\delta\left({ }^{1} \mathrm{H}\right.$ NMR) ${ }^{\text {a }}$				
	chlorofusin	A (syn)	B (syn)	C (anti)	D (anti)
Configuration		$R^{\star}, R^{\star}, R^{*}$	R^{*}, S^{*}, S^{*}	R^{\star}, R^{*}, S^{*}	R^{*}, S^{*}, R^{*}
C1-H	7.77 (s)	7.86 (s)	7.80 (s)	7.83 (s)	7.80 (s)
C8-H	4.53 (d)	4.48 (d)	4.54 (d)	4.49 (d)	4.53 (d)
$\mathrm{C} 10-\mathrm{H}$	2.38 (br m)	1.85, 1.94 (m)	1.82, 2.00 (m)	2.37 (m)	2.39 (m)
C11-H	2.1 (m)	2.00 (m)	1.82, 2.00 (m)	2.08 (app quint)	2.08 (m)
C12-H ${ }^{1}$	4.02 (m)	4.22 (m)	4.22 (dd)	3.95 (m)	3.95 (dd)
C12-H ${ }^{2}$	3.78 (q)	4.03 (dd)	4.04 (dd)	3.82 (dd)	3.80 (dd)
C13-H	1.43 (s)	1.41 (s)	1.40 (s)	1.38 (s)	1.43 (s)
O14-H	6.26 (d)	6.18 (d)	6.11 (d)	6.41 (d)	6.25 (d)
C16-H	2.34 (t)	2.35 (t)	2.34 (t)	2.36 (t)	2.35 (t)
$\mathrm{C} 17-\mathrm{H}$	1.55 (sextet)	1.55 (app sext)	1.53 (app sext)	1.55 (m)	1.54 (m)
$\mathrm{C} 18-\mathrm{H}$	0.92 (t)	0.92 (t)	0.91 (t)	0.92 (t)	0.92 (t)
Orn-CH2 ${ }^{\text { }}$	3.42 (t)	3.45, 3.52 (m)	3.44, 3.52 (m)	3.50, 3.57 (m)	3.50, 3.57 (m)

${ }^{\text {a }}$ Assignment was assisted by COSY and HMQC NMR.

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

Carbon Number	$\delta\left({ }^{13} \mathrm{C}\right.$ NMR) ${ }^{\text {a }}$				
	chlorofusin	A (syn)	B (syn)	C (anti)	D (anti)
Configuration		$R^{\star}, R^{\star}, R^{*}$	R^{\star}, S^{*}, S^{*}	R^{*}, R^{*}, S^{*}	$R^{\star}, S^{\star}, R^{*}$
C1	150.0	149.9	149.5	150.9	150.5
C2 ${ }^{\text {b }}$	115.2	113.1	113.5	115.0	115.2
C3	188.1	189.0	$188.3^{\text {c }}$	$189.3^{\text {c }}$	$188.5^{\text {c }}$
C4	84.7	84.7	84.6	84.7	84.8
C5	188.7	189.0	$188.9^{\text {c }}$	$188.8{ }^{\text {c }}$	$188.9^{\text {c }}$
C6 ${ }^{\text {b }}$	101.3	100.5	100.2	101.5	101.1
C7	147.5	148.7	148.7	148.3	147.7
C8	68.4	68.6	68.7	68.4	68.5
C9	96.7	97.9	97.9	96.9	96.8
C10	30.3	34.6	35.0	30.2	30.2
C11	25.1	24.7	24.6	25.3	25.3
C12	68.4	70.5	70.6	68.6	68.5
C13	22.9	23.7	23.0	23.5	23.1
C15	171.4	171.4	171.7	171.5	171.6
C16	34.4	34.5	34.6	34.5	34.5
C17	17.9	18.1	18.0	18.1	18.1
C18	13.2	13.3	13.3	13.3	13.3
Orn δ	50.5	49.7	49.8	50.5	50.6

${ }^{\text {a }}$ Assignment was assisted by COSY and HMQC NMR.
${ }^{\mathrm{b}}$ Original assignments may be switched (i.e. $\delta 101.3$ for C2, 115.2 for C6) based on HMBC data for 10-13. This tentative reassignment is under continued investigation.
${ }^{c}$ Assignments made by analogy to $10-13$.

As with the benzylamine incorporated case, the NMR data collected from \mathbf{C} and \mathbf{D} in the $\mathbf{S 1 9}$ series better matched that of chlorofusin than \mathbf{A} or \mathbf{B}. An x-ray crystal structure of $\mathbf{D},{ }^{4}$ the best match with chlorofusin by NMR, confirmed that the relative orientation of the C8 and C9 oxygen substituents is anti and that the C4-methyl group is cis to the C8OH and trans to the C 9 oxygen of the tetrahydrofuran. As the similarity of the model to the chromophore of chlorofusin increased, the trends in the NMR data distinguishing the $\mathrm{C} 8 / \mathrm{C} 9$ syn diastereomers from the anti diastereomers became even stronger. For C10-H, $\mathbf{A}(\mathrm{m}, 1.85 \mathrm{ppm} ; \mathrm{m}, 1.94 \mathrm{ppm})$ and $\mathbf{B}(\mathrm{m}, 1.82 \mathrm{ppm} ; \mathrm{m}, 2.00 \mathrm{ppm})$ each display two signals, neither of which is within 0.3 ppm of chlorofusin ($\mathrm{br} \mathrm{m}, 2.38 \mathrm{ppm}$) whereas the signals for $\mathbf{C}(\mathrm{m}, 2.37 \mathrm{ppm})$ and $\mathbf{D}(\mathrm{m}, 2.39 \mathrm{ppm})$ only differ from chlorofusin by 0.01 ppm . In the same manner the $\mathbf{C} 12-\mathrm{H}$ signals, for \mathbf{A} (dd, $4.03 \mathrm{ppm} ; \mathrm{m}, 4.22 \mathrm{ppm}$) and \mathbf{B} (dd, 4.04 ppm ; dd, 4.22 ppm), are much farther downfield than the analogous signals seen for \mathbf{C} (dd, $3.82 \mathrm{ppm} ; \mathrm{m}, 3.95 \mathrm{ppm}$), \mathbf{D} (dd, 3.80 ppm ; dd, 3.95 ppm) and chlorofusin (q , $3.78 \mathrm{ppm} ; \mathrm{m}, 4.02 \mathrm{ppm}$). An additional and important trend emerges linking \mathbf{B} with \mathbf{D}, which share the same relative stereochemistry at C 8 . The signals for $\mathrm{C} 8-\mathrm{H}$ observed in the spectra from $\mathbf{A}(\mathrm{d}, 4.48 \mathrm{ppm})$ and $\mathbf{C}(\mathrm{d}, 4.49 \mathrm{ppm})$ are similar to one another while the signals for $\mathbf{B}(\mathrm{d}, 4.54 \mathrm{ppm})$ and $\mathbf{D}(\mathrm{d}, 4.53 \mathrm{ppm})$ are not only similar to one another but also to that of chlorofusin ($\mathrm{d}, 4.53 \mathrm{ppm}$). This distinguishes the two anti diastereomers, with \mathbf{D} (not \mathbf{C}) being representative of the stereochemistry found in chlorofusin. Finally, the $\mathrm{C} 8-\mathrm{OH}$ signal in this series appears to diagnostically differentiate $\mathbf{A}(\mathrm{d}, 6.18 \mathrm{ppm}), \mathbf{B}$ $(\mathrm{d}, 6.11 \mathrm{ppm}), \mathbf{C}(\mathrm{d}, 6.41 \mathrm{ppm})$ and $\mathbf{D}(\mathrm{d}, 6.25 \mathrm{ppm})$ as well as link the relative stereochemistry of \mathbf{D} with that of chlorofusin ($\mathrm{d}, 6.26 \mathrm{ppm}$). The ${ }^{13} \mathrm{C}$ NMR data show similar trends to both the proton NMR data and to the benzylamine incorporated diastereomers. Differences between the syn and anti compounds become either slightly more exaggerated or remain the same in this series for $\mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12$ and C 9 in the absence of a proximal aryl ring. With x-ray structures of both represenative $\mathrm{C} 8 / \mathrm{C} 9$ syn and anti diastereomers in hand, the dramatic difference seen between their ${ }^{13} \mathrm{C}$ NMR chemical shifts at C10 can be attributed to its axial (syn) or equatorial (anti) orientation with regard to the tetrahydropyridine ring of the chromophore. For C10, with \mathbf{C} (30.2 $\mathrm{ppm})$ and $\mathbf{D}(30.2 \mathrm{ppm})$ the shifts became closer to chlorofusin (30.3 ppm) but remained over 4 ppm farther upfield than the $\mathbf{C} 10$ signals for $\mathbf{A}(34.6 \mathrm{ppm})$ and $\mathbf{B}(35.0 \mathrm{ppm})$. The use of butylamine as an Orn side chain analog also allowed comparison of the chemical shift of the methylene adjacent to the chromophore ring system, with $\mathbf{C}(50.5 \mathrm{ppm})$ and \mathbf{D} (50.6 ppm) matching chlorofusin (50.5 ppm) as opposed to \mathbf{A} (49.7 ppm) and \mathbf{B} (49.8 ppm).

Although intuitively surprising but which may be expected from the x-ray crystal structure of \mathbf{D} which clearly shows an unobstructed path between $\mathrm{C} 8-\mathrm{H}$ and $\mathrm{C} 4-\mathrm{Me}$ ($4.761 \AA, \mathrm{C} 8-\mathrm{H}-\mathrm{C} 13$) the ROESY NMR data for \mathbf{D} shows a weak cross-peak between $\mathrm{C} 4-\mathrm{Me}$ and $\mathrm{C} 8-\mathrm{H}$ as seen by Williams as a long range NOE in chlorofusin. Also observed in the x-ray structure is the di-axial orientation of the C 8 and C 9 oxygen substituents. In this conformation, the equatorial $\mathrm{C} 8-\mathrm{H}$ can exhibit NOEs to both $\mathrm{C} 10-\mathrm{H}$ and $\mathrm{C} 12-\mathrm{H}$. Although these NOEs were not quantitated, it is notable that $\mathrm{C} 8-\mathrm{H}$ is closer to C10-H ($2.484 \AA$) than C12-H ($2.592 \AA$) in this x-ray. With the data from both the $\mathbf{S 1 3}$ and $\mathbf{S 1 9}$ model systems in hand, the stereochemistry of the chlorofusin chromophore was confidently assigned as either $(4 S, 8 R, 9 S)$ or $(4 R, 8 S, 9 R)$.

Fmoc-L-Orn(Mtt)-L-Thr-OBn (S20). A flask containing commercially available Fmoc-L-Orn(Mtt)-OH ($1.50 \mathrm{~g}, 2.46 \mathrm{mmol}$), H-L-Thr-OBn oxalate ($591 \mathrm{mg}, 2.58 \mathrm{mmol}$), HOAt $(1.00 \mathrm{~g}, 7.37 \mathrm{mmol})$, and EDCI $(1.41 \mathrm{~g}, 7.37 \mathrm{mmol})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with anhydrous DMF (8.2 mL) and stirred at $23^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with EtOAc (100 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$-hexanes) afforded $\mathbf{S 2 0}$ as a white foam $(82 \%, 1.62 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (dd, $J=10.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~m}$, $9 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.31(\mathrm{~m}$, $4 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.54(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 150 \mathrm{MHz}\right) \delta 172.8$, $170.6,160.0,146.5$ (2C), 144.0, 143.8, 143.3, 140.8 (2C), 136.0, 135.1, 128.41 (6C), 128.36 (3C), 128.3 (2C), 127.9 (2C), 127.7 (6C), 127.1 (2C), 126.0 (2C), 125.4 (2C), 120.2 (2C), 70.2, 66.3, 65.9, 65.7, 57.9, 54.7, 46.8, 43.2, 30.2, 26.8, 20.6, 20.2; IR (film) $v_{\max } 3306,3019,2944,1662,1509,1449,1245,1216,1105,752,700 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 802.3851\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{51} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{6}\right.$ requires 800.3778); $[\alpha]^{23}{ }_{\mathrm{D}}-4\left(c 1.1, \mathrm{CHCl}_{3}\right)$.

Fmoc-L-Orn-L-Thr-OBn (3). A solution of S20 ($662 \mathrm{mg}, 0.825 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was treated with trifluoroacetic acid $(0.30 \mathrm{~mL})$ and stirred at $23^{\circ} \mathrm{C}$ for 1 h. The reaction mixture was concentrated under reduced pressure and the residue purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}(80): \mathrm{MeOH}(20): \mathrm{H}_{2} \mathrm{O}(1): \mathrm{NH}_{4} \mathrm{OH}(1)\right)$ to provide 3 as a white foam $(97 \%, 450 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 7 \mathrm{H}), 5.16(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (dd, $J=8.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.33$ (m, 5H), 3.56 (brs, 1H), $2.77(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, $150 \mathrm{MHz}) \delta 172.5,170.5,156.1,143.92,143.86,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.39, 125.37, 120.2 (2C), 66.3, 66.0, 65.8, 57.9, 53.7, 46.7, 38.5, 28.8, 23.8, 20.9; IR (film) $v_{\max } 3271,3016,1668,1526,1451,1202$, 1137, $756 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $546.2606\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}\right.$ requires 545.2526); $[\alpha]^{23}{ }_{\mathrm{D}}-8\left(c 1.7, \mathrm{CHCl}_{3}\right)$.

7-Butyryloxy-5-chloro-3-(3-hydroxypropyl)-7-methyl-6H-isochromene-6,8-dione (2). A solution of S16 ($62 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{~mL})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(65 \mathrm{mg}$, 0.47 mmol) and stirred at $23{ }^{\circ} \mathrm{C}$ for 70 min . The reaction mixture was treated with aqueous $1 \mathrm{~N} \mathrm{HCl}(0.7 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$, extracted with $\mathrm{EtOAc}(3 \times 5$ mL) and the combined organic layers were dried $\left(\mathrm{NaSO}_{4}\right)$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (SiO_{2}, EtOAc-hexanes, 50-70\% EtOAc-hexanes gradient) to yield 2 as a yellow solid ($81 \%, 45$ mg). The enantiomers of 2 were resolved by semi-preparative chiral HPLC (Daicel CHIRALCEL ${ }^{\circledR}$ OD column, $2 \times 25 \mathrm{~cm}, 20 \%$ EtOH-hexanes, $7 \mathrm{~mL} / \mathrm{min}, 320 \mathrm{~nm}, t_{\mathrm{R}}: 22.2$ $\min (S)-2,25.0 \mathrm{~min}(R)-2, \alpha=1.13)$. For $(S)-2: \mathrm{CD}(\mathrm{MeOH}, 0.20 \mathrm{mM}) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 361$ (-6.6), 300 (1.2), 274 (1.8), 241 (1.7); $[\alpha]^{23}{ }_{\mathrm{D}}-236$ (c 0.94, MeOH); for (R)-2: CD (MeOH, 0.20 mM$) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 363(6.7), 299(-2.2), 275(-2.4), 242(-2.5) ;[\alpha]^{23}{ }_{\mathrm{D}}+236$ (c 1.1, MeOH). mp $107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.74$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dt}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.95(\mathrm{~m}$, 2 H), 1.66 (app sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.59(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 192.0,186.5,173.1,163.9,153.2,138.5,115.0,110.7$, $106.3,84.5,61.4,35.2,30.2,29.5,22.4,18.4,13.6$; IR (film) $v_{\max } 3495,2935,2884$, 1719, 1642, 1536, 1449, 1431, 1257, 1181, 1128, 1086, 1061, $836 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 355.0941\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{6}\right.$ requires 354.0870).

4. A solution of $(R)-2(273 \mathrm{mg}, 0.770 \mathrm{mmol})$ in DMF $(4 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was treated with $3(462 \mathrm{mg}, 0.847 \mathrm{mmol}), \mathrm{NaHCO}_{3}(194 \mathrm{mg}, 2.31 \mathrm{mmol})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, treated with aqueous 1 N $\mathrm{HCl}(4 \mathrm{~mL})$ and stirred vigorously at $23{ }^{\circ} \mathrm{C}$ for 4 h . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ for 15 h . The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 80 \% \mathrm{EtOAc}$-hexanes - $3 \% \mathrm{MeOH}-\mathrm{EtOAc}$ gradient) to yield $\mathbf{4}$ as an orange foam $(84 \%, 567 \mathrm{mg})$: mp $97-101^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.19$ (s, 1H), 8.07 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.46(\mathrm{~m}, 9 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.03-5.20(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{~s}$, $1 \mathrm{H}), 4.14-4.41(\mathrm{~m}, 6 \mathrm{H}), 3.94-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.84(\mathrm{~m}, 5 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{sext}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta$ 193.1, 182.6, 172.3, 171.7, 170.4, 155.9, 152.7, 144.7, 143.9, $143.8,142.5,140.7$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.69, 127.68, 127.12, $127.10,125.3$ (2C), 120.2, 120.1, 114.3, 112.1, 98.9, 84.7, 66.2, 66.0, 65.6, 59.5, 57.8, $53.7,52.2,46.7,34.6,31.5,28.7,27.6,27.0,23.0,20.2,18.0$, 13.2; IR (film) $v_{\max } 3333$, 3060, 2935, 2872, 1730, 1713, 1661, 1589, 1504, 1449, 1267, 1220, 1146, 1081, 739 cm^{-1}; HR ESI-TOF $\mathrm{m} / \mathrm{z} 882.3353\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{11}\right.$ requires 881.3290); CD $(\mathrm{MeOH}, 0.20 \mathrm{mM}) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 375(11.2), 301(-9.6), 247(6.2) ;[\alpha]^{23}{ }_{\mathrm{D}}+148$ (c 0.56, MeOH).

6-9. A solution of $4(15.1 \mathrm{mg}, 0.0171 \mathrm{mmol})$ in DMSO (1.7 mL) and $\mathrm{H}_{2} \mathrm{O}(170 \mu \mathrm{~L})$ was treated with $\mathrm{I}_{2}(13.0 \mathrm{mg}, 0.0513 \mathrm{mmol}), \mathrm{AgNO}_{3}(5.8 \mathrm{mg}, 0.034 \mathrm{mmol})$ and stirred at 23 ${ }^{\circ} \mathrm{C}$ for 3 d . The reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$ and diluted with EtOAc $(3 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 2 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed by a stream of nitrogen. The residue was purified by preparative TLC (SiO_{2}, $\left.250 \mu \mathrm{~m}, 4 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $+\mathbf{A}(6)(23 \%, 3.5 \mathrm{mg}),+\mathbf{B}(7)(25 \%, 3.8 \mathrm{mg})$, $+\mathbf{C}(\mathbf{8})(6 \%, 1.0 \mathrm{mg}),+\mathbf{D}(\mathbf{9})(7 \%, 1.1 \mathrm{mg})$ and recovered $4(8 \%, 1.2 \mathrm{mg})$.
Isomerization of $+\mathbf{A}(6)$ to $+\mathbf{C}(8)$: A solution of $+\mathbf{A}(33.0 \mathrm{mg}, 0.0367 \mathrm{mmol})$ in AcOH $(2 \mathrm{~mL})$ was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.2 \mathrm{~mL})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 6 h . The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO_{2}, $\left.250 \mu \mathrm{~m}, 2 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $+\mathrm{C}(9 \%, 3.0 \mathrm{mg})$ and recovered $+\mathbf{A}(74 \%, 24.3$ mg).
Isomerization of $+\mathbf{B}(7)$ to $+\mathbf{D}(9)$: A solution of $+\mathbf{B}(82.7 \mathrm{mg}, 0.0921 \mathrm{mmol})$ in AcOH $(2 \mathrm{~mL})$ was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.2 \mathrm{~mL})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 5 h . The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC (SiO_{2}, $\left.250 \mu \mathrm{~m}, 2 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $+\mathbf{D}(8 \%, 6.8 \mathrm{mg})$ and recovered $+\mathbf{B}(79 \%, 65.7$ mg).
Isomerization of $+\mathbf{C}(8)$ to $+\mathbf{A}(6):$ A solution of $+\mathbf{C}(1.9 \mathrm{mg}, 0.0021 \mathrm{mmol})$ in $1,2-$ dichloroethane $(0.5 \mathrm{~mL})$ was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.5 \mathrm{~mL})$ and stirred at $23^{\circ} \mathrm{C}$ for 5 h . The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}, 250 \mu \mathrm{~m}, 2 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $+\mathbf{A}(89 \%, 1.7 \mathrm{mg})$.

For $+\mathbf{A}(6):{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left._{6}, 600 \mathrm{MHz}\right) \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 7 \mathrm{H}), 6.14(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.19(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.34(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{dd}, J=14.5,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-2.04$ $(\mathrm{m}, 3 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{app}$ sext, $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}) 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 189.04,188.99,172.6,171.4,170.5,156.1,149.8,148.6,143.93$, $143.85,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 113.4, 100.7, 97.8, 84.7, 70.4, 68.7, 66.3, 66.0, 65.8, 57.8, 53.8, 48.9, $46.7,34.54,34.51,28.8,26.8,24.7,23.7,20.3,18.1,13.3$; IR (film) $v_{\max } 3340,2920$, 1736, 1719, 1701, 1686, 1654, 1573, 1458, 1239, 1101, 1079, $1055 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 898.3305\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}\right.$ requires 897.3239); CD (MeOH, 0.20 mM$) \lambda_{\text {ext }}$ $\mathrm{nm}(\Delta \varepsilon) 406(9.0), 348(-9.4), 300(7.1), 246(-12.0) ;[\alpha]^{23}{ }_{\mathrm{D}}+188(c 0.76, \mathrm{MeOH})$.

For +B (7): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right) \delta 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 7 \mathrm{H}), 6.12(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.33(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{dd}, J=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.87(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{app}$ sext, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 188.9,188.4,172.6,171.7,170.6,155.9,149.5,148.6$, 143.93, 143.85, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 113.6, 100.3, 97.8, 84.6, 70.6, 68.7, 66.3, 66.0, 65.7, 57.9, 54.0, 49.7, 46.7, 35.0, 34.6, 29.0, 27.2, 24.6, 23.0, 20.2, 18.0, 13.3; IR (film) $v_{\max } 3335,2922$, 1731, 1695, 1649, 1572, 1453, 1268, 1237, $1079 \mathrm{~cm}^{-1}$; HR ESI-TOF $m / z 898.3294(\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}$ requires 897.3239); CD (MeOH, 0.20 mM$) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 404$ (2.4), $344(-20.1), 256(13.3), 222(-5.7) ;[\alpha]^{23}{ }_{\mathrm{D}}-131(c 0.18, \mathrm{MeOH})$.

For $+\mathbf{C}(8):{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left._{6}, 600 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 7 \mathrm{H}), 6.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.3$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.34(\mathrm{~m}, 5 \mathrm{H}), 3.93(\mathrm{dd}, J=14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=15.3,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.99-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (app sext, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 189.3,188.7,172.5,171.4,170.5,156.0,150.7,148.2,143.9,143.8$, 140.8 (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.2, 101.7, 96.9, 84.7, 68.6, 68.4, 66.3, 66.0, 65.8, 57.9, 53.9, 50.4, 46.7, $34.5,30.3,28.8,27.4,25.3,23.5,20.3,18.1,13.3$; IR (film) $v_{\max } 3342,2922,1731,1693$, 1653, 1576, 1451, 1240, 1081, $1043 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 898.3309\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}$ requires 897.3239); CD (MeOH, 0.20 mM$) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 400(7.0), 344$ (12.8), 272 (2.5), $235(-8.3) ;[\alpha]^{23}{ }_{\mathrm{D}}+40(c 0.18, \mathrm{MeOH})$.

For +D (9): ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 7 \mathrm{H}), 6.27(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.34(\mathrm{~m}, 5 \mathrm{H}), 3.92(\mathrm{dd}, J=14.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=15.1,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.78(\mathrm{~m}$, $3 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{app} \operatorname{sext}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 188.9,188.5,172.6$, $171.6,170.5,156.0,150.4,147.7,143.9,143.8,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.4, 101.4, 96.8, 84.8, 68.5 (2C), 66.3, 66.0, 65.8, 57.9, 53.7, 50.5, 46.7, 34.5, 30.2, 28.8, 27.5, 25.3, 23.0, 20.3, 18.1, 13.3; IR (film) $v_{\max } 3335,2922,1733,1696,1649,1574,1453,1272,1239,1080,1043$ cm^{-1}; HR ESI-TOF $\mathrm{m} / \mathrm{z} 898.3288\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}\right.$ requires 897.3239); CD
(MeOH, 0.20 mM$) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 400$ (6.0), 343 (-12.7), 292 (3.8), 255 (1.8), 221 (-2.8); $[\alpha]_{\mathrm{D}}^{23}+71(c 0.18, \mathrm{MeOH})$.

Proton Number	$\delta\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)^{\mathrm{a}}$				
	chlorofusin	$+\mathrm{A}(\mathbf{6}$, syn $)$	$+\mathrm{B}(7$, syn $)$	$+\mathrm{C}(8$, anti $)$	$+\mathrm{D}(9$, anti $)$
Configuration		$4 R, 8 R, 9 R$	$4 R, 8 \mathrm{~S}, 9 \mathrm{~S}$	$4 R, 8 R, 9 \mathrm{~S}$	$4 R, 8 \mathrm{~S}, 9 R$
$\mathrm{C} 1-\mathrm{H}$	$7.77(\mathrm{~s})$	$7.87(\mathrm{~s})$	$7.81(\mathrm{~s})$	$7.83(\mathrm{~s})$	$7.82(\mathrm{~s})$
$\mathrm{C} 8-\mathrm{H}$	$4.53(\mathrm{~d})$	$4.49(\mathrm{~d})$	$4.54(\mathrm{~d})$	$4.48(\mathrm{~d})$	$4.52(\mathrm{~d})$
$\mathrm{C} 10-\mathrm{H}$	$2.38(\mathrm{br} \mathrm{m})$	$1.77,1.97(\mathrm{~m})$	$1.81(\mathrm{~m})$	$2.36(\mathrm{~m})$	$2.35(\mathrm{~m})$
$\mathrm{C} 11-\mathrm{H}$	$2.0-2.2(\mathrm{~m})$	$1.97(\mathrm{~m})$	$2.00(\mathrm{~m})$	$2.04(\mathrm{~m})$	$2.05(\mathrm{~m})$
$\mathrm{C} 12-\mathrm{H}^{1}$	$4.02(\mathrm{~m})$	$4.20(\mathrm{~m})$	$4.19(\mathrm{~m})$	$3.93(\mathrm{dd})$	$3.92(\mathrm{dd})$
$\mathrm{C} 12-\mathrm{H}^{2}$	$3.78(\mathrm{q})$	$4.00(\mathrm{dd})$	$4.00(\mathrm{dd})$	$3.78(\mathrm{dd})$	$3.77(\mathrm{dd})$
$\mathrm{C} 13-\mathrm{H}$	$1.43(\mathrm{~s})$	$1.43(\mathrm{~s})$	$1.40(\mathrm{~s})$	$1.38(\mathrm{~s})$	$1.43(\mathrm{~s})$
$\mathrm{O} 14-\mathrm{H}$	$6.26(\mathrm{~d})$	$6.14(\mathrm{~d})$	$6.12(\mathrm{~d})$	$6.41(\mathrm{~d})$	$6.27(\mathrm{~d})$
$\mathrm{C} 16-\mathrm{H}$	$2.34(\mathrm{t})$	$2.33(\mathrm{dt})$	$2.34(\mathrm{t})$	$2.34(\mathrm{t})$	$2.34(\mathrm{t})$
$\mathrm{C} 17-\mathrm{H}$	$1.55(\mathrm{sext})$	$1.53(\mathrm{app} \mathrm{sext})$	$1.53(\mathrm{app} \mathrm{sext})$	$1.53(\mathrm{app} \mathrm{sext})$	$1.54(\mathrm{app} \mathrm{sext})$
$\mathrm{C} 18-\mathrm{H}$	$0.92(\mathrm{t})$	$0.90(\mathrm{t})$	$0.91(\mathrm{t})$	$0.91(\mathrm{t})$	$0.91(\mathrm{t})$
Orn-CH${ }_{2}{ }^{\delta}$	$3.42(\mathrm{t})$	$3.40,3.51(\mathrm{~m})$	$3.44(\mathrm{~m})$	$3.41,3.52(\mathrm{~m})$	$3.45(\mathrm{~m})$

${ }^{a}$ Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

Carbon Number	$\delta\left({ }^{13} \mathrm{CNMR}\right)^{\text {a }}$				
	chlorofusin	+A (6, syn)	+B (7, syn)	+C (8, anti)	+D (9, anti)
Configuration		4R, 8R, 9R	4R, 8S, 9S	4R, 8R, 9S	4R, 8S, 9R
C1	150.0	149.8	149.5	150.7	150.4
C2 ${ }^{\text {b }}$	115.2	113.4	113.6	115.2	115.4
C3	188.1	189.0°	$188.4^{\text {c }}$	$189.3^{\text {c }}$	188.5
C4	84.7	84.7	84.6	84.7	84.8
C5	188.7	189.0°	188.9°	$188.7^{\text {c }}$	188.9
C6 ${ }^{\text {b }}$	101.3	100.7	100.3	101.7	101.4
C7	147.5	148.6	148.6	148.2	147.7
C8	68.4	68.7	68.7	68.4	68.5
C9	96.7	97.8	97.8	96.9	96.8
C10	30.3	34.5	35.0	30.3	30.2
C11	25.1	24.7	24.6	25.3	25.3
C12	68.4	70.4	70.6	68.6	68.5
C13	22.9	23.7	23.0	23.5	23.0
C15	171.4	171.4	171.7	171.4	171.6
C16	34.4	34.5	34.6	34.5	34.5
C17	17.9	18.1	18.0	18.1	18.1
C18	13.2	13.3	13.3	13.3	13.3
Orn δ	50.5	48.9	49.7	50.4	50.5

${ }^{a}$ Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.
${ }^{\mathrm{b}}$ Original assignments may be switched (i.e. $\delta 101.3$ for C2, 115.2 for C6) based on HMBC data for 10-13. This tentative reassignment is under continued investigation.
${ }^{\text {c }}$ Assignments made by analogy to $10-13$.

5. A solution of $(S)-2(52 \mathrm{mg}, 0.15 \mathrm{mmol})$ in DMF $(0.75 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ was treated with $3(96 \mathrm{mg}, 0.18 \mathrm{mmol}), \mathrm{NaHCO}_{3}(37 \mathrm{mg}, 0.44 \mathrm{mmol})$ and stirred at $23^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, treated with aqueous 1 N $\mathrm{HCl}(1 \mathrm{~mL})$ and stirred vigorously at $23^{\circ} \mathrm{C}$ for 3 h . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$ and the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ for 15 h . The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 80 \% \mathrm{EtOAc}-$ hexanes $-3 \% \mathrm{MeOH}-\mathrm{EtOAc}$ gradient) to yield 5 as an orange foam ($71 \%, 92 \mathrm{mg}$): mp $97-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) $\delta 8.17(\mathrm{~s}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, ~ J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.5,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=13.0,7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.47(\mathrm{~m}, 9 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.03-5.20(\mathrm{~m}, 3 \mathrm{H}), 4.70$ (br s, 1 H), $4.37(\mathrm{dd}, J=8.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.35(\mathrm{~m}, 5 \mathrm{H}), 3.96-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, 7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.58-$ $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{sext} ., J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 150 \mathrm{MHz}\right) \delta 193.1,182.6,172.3,171.7,170.4$, $155.9,152.7,144.7,144.0,143.8,142.5,140.7$ (2C), 135.9, 128.4 (2C), 128.0, 127.8 (2C), 127.69, 127.67, 127.1 (2C), 125.3 (2C), 120.18, 120.15, 114.3, 112.1, 98.9, 84.7, $66.2,65.9,65.6,59.5,57.8,53.7,52.3,46.7,34.6,31.5,28.7,27.6,27.0,22.9,20.2,18.0$, 13.3; IR (film) $v_{\max } 3333,3060,2935,2872,1730,1713,1666,1648,1589,1504,1449$, 1267, 1220, 1146, 1081, $739 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $882.3356\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{11}\right.$ requires 881.3290); CD ($\mathrm{MeOH}, 0.20 \mathrm{mM}$) $\lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 375(-9.9), 300(8.1), 245(-5.6)$; $[\alpha]^{23}{ }_{\mathrm{D}}-129$ (c 0.71, MeOH).

10-13. A solution of $5(15.0 \mathrm{mg}, 0.0170 \mathrm{mmol})$ in DMSO $(1.7 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(175 \mu \mathrm{~L})$ was treated with $\mathrm{I}_{2}(13.0 \mathrm{mg}, 0.0512 \mathrm{mmol}), \mathrm{AgNO}_{3}(5.8 \mathrm{mg}, 0.0341 \mathrm{mmol})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 3 d . The reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$ and diluted with EtOAc (3 mL). The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 2 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed by a stream of nitrogen. The residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}\right.$, $\left.250 \mu \mathrm{~m}, 4 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield diastereomers - $\mathbf{A}(\mathbf{1 0})(20 \%, 3.1 \mathrm{mg}),-\mathbf{B}(\mathbf{1 1})$ $(22 \%, 3.3 \mathrm{mg}),-\mathbf{C}(\mathbf{1 2})(8 \%, 1.2 \mathrm{mg})$ and $-\mathbf{D}(13)(7 \%, 1.1 \mathrm{mg})$.

Isomerization of -A (10) to -C (12): A solution of -A (10.0 mg, 0.0111 mmol$)$ in $\mathrm{AcOH}(1 \mathrm{~mL})$ was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(50 \mu \mathrm{~L})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was diluted with EtOAc $(15 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL}), 50 \%$ saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 3 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(3 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}, 250 \mu \mathrm{~m}, 2 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $-\mathrm{C}(15 \%, 1.5 \mathrm{mg})$ and recovered -A $(71 \%, 7.1 \mathrm{mg})$.
Isomerization of -B (11) to -D (13): A solution of -B ($10.0 \mathrm{mg}, 0.0111 \mathrm{mmol}$) in AcOH $(1 \mathrm{~mL})$ was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(100 \mu \mathrm{~L})$ and stirred at $23^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was diluted with EtOAc (15 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL}), 50 \%$ saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 3 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(3 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed by a stream of nitrogen and the residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}, 250 \mu \mathrm{~m}, 2 \times 4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $-\mathbf{D}(6 \%, 0.6 \mathrm{mg})$ and recovered $-\mathbf{B}$ ($74 \%, 7.4 \mathrm{mg}$).

For -A (10): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 7 \mathrm{H}), 6.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.34(\mathrm{~m}, 6 \mathrm{H}), 3.99(\mathrm{dd}, J=14.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.54$ (app sext, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 189.1,189.0,172.6,171.4,170.6,156.0,149.9,148.6$, $143.91,143.89,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 113.3, 100.6, 97.8, 84.7, 70.4, 68.6, 66.3, 66.0, 65.7, 57.9, 54.0, 49.6, 46.7, 34.5 (2C), 29.0, 27.1, 24.7, 23.7, 20.2, 18.0, 13.3; IR (film) $v_{\max } 3358,2918$, $2845,1732,1715,1695,1684,1649,1572,1454,1270,1236,1102,1076 \mathrm{~cm}^{-1}$; HR ESITOF $\mathrm{m} / \mathrm{z} 898.3307\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}\right.$ requires 897.3239); CD (MeOH, 0.20 mM$)$ $\lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 407(-9.5), 347(9.0), 301(-7.8), 246(10.2) ;[\alpha]_{\mathrm{D}}^{23}-204(c 0.18, \mathrm{MeOH})$.

For -B (11): ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left._{6}, 600 \mathrm{MHz}\right) \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=12.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 7 \mathrm{H}), 6.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.18(\mathrm{~m}, 3 \mathrm{H}), 4.55$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.33(\mathrm{~m}, 6 \mathrm{H}), 4.01(\mathrm{dd}, J=15.2$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-2.04$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{app}$ sext, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right)$ $\delta 188.9,188.4,172.5,171.7,170.5,156.1,149.4,148.5,144.0,143.8,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.41, 125.37, 120.2 (2C), 113.7, $100.4,97.8,84.7,70.5,68.7,66.3,66.0,65.8,57.9,53.8,49.1,46.7,35.0,34.6,28.8$, 26.9, 24.6, 23.0, 20.3, 18.1, 13.3; IR (film) $v_{\max } 3355,2918,2850,1716,1649,1571$, $1559,1455,1273,1101,1077 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 898.3307\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}\right.$ requires 897.3239); $\mathrm{CD}(\mathrm{MeOH}, 0.20 \mathrm{mM}) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 405(-2.8), 345$ (18.0), 256 (13.4), 221 (9.0); $[\alpha]^{23}{ }_{\mathrm{D}}+105$ (c $\left.0.44, \mathrm{MeOH}\right)$.

For -C (12): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 7 \mathrm{H}), 6.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.19(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.33(\mathrm{~m}, 5 \mathrm{H}), 3.93(\mathrm{dd}, J=14.7,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=15.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 4 H), 2.03 (app quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.63-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.54$ (app sext, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 189.3,188.8,172.6,171.5,170.5,156.0,150.9,148.2$, $143.93,143.85,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.2, 101.7, 96.9, 84.7, 68.6, 68.4, 66.3, 66.0, 65.8, 57.9, 53.8, $50.4,46.7,34.5,30.2,28.8,27.4,25.3,23.5,20.3,18.1,13.3$; IR (film) $v_{\max } 3361,2919$, 2854, 1733, 1717, 1699, 1685, 1651, 1574, 1559, 1456, 1271, 1240, 1080, $1043 \mathrm{~cm}^{-1}$; HR ESI-TOF $m / z 898.3307\left(M+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}\right.$ requires 897.3239); CD (MeOH , $0.20 \mathrm{mM}) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 397(-6.7), 345(11.6), 273(-3.7), 228(8.7) ;[\alpha]^{23}{ }_{\mathrm{D}}-38(c 0.18$, $\mathrm{MeOH})$.

For -D (13): ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=11.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 7 \mathrm{H}), 6.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=19.2,12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.34(\mathrm{~m}, 5 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dd, $J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.45(\mathrm{~m}, 1 \mathrm{H})$, 2.33-2.39 (m, 2H), $2.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.78(\mathrm{~m}, 3 \mathrm{H})$, $1.51-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{app} \operatorname{sext}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right) \delta 188.9,188.5,172.5$, $171.6,170.5,156.0,150.3,147.7,143.9,143.8,140.8$ (2C), 136.0, 128.4 (2C), 128.0, 127.8 (2C), 127.7 (2C), 127.2 (2C), 125.4 (2C), 120.2 (2C), 115.4, 101.4, 96.8, 84.8, 68.52 , 68.49, 66.3, 66.0, 65.8, 57.9, 53.9, 50.5, 46.7, 34.5, 30.2, 28.8, 27.5, 25.3, 23.0, 20.3, 18.1, 13.3; IR (film) $v_{\max } 3334,2932,1731,1696,1647,1573,1452,1239,1081$, 1044, $739 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $898.3303\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{O}_{12}\right.$ requires 897.3239); CD (MeOH, 0.20 mM$) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 398$ (-6.0), 346 (11.9), 291 (-4.4), 256 (3.0), 220 (4.6); $[\alpha]^{23}{ }_{\mathrm{D}}-58$ (c 0.18, MeOH).

Proton Number	$\delta\left({ }^{1} \mathrm{H} N M R\right)^{\text {a }}$				
	chlorofusin	-A (10, syn)	-B (11, syn)	-C (12, anti)	-D (13, anti)
Configuration		4S, 8S, 9S	4S, 8R, 9R	4S, 8S, 9R	4S, 8R, 9S
$\mathrm{C} 1-\mathrm{H}$	7.77 (s)	7.86 (s)	7.82 (s)	7.83 (s)	7.80 (s)
C8-H	4.53 (d)	4.48 (d)	4.55 (d)	4.48 (d)	4.52 (d)
C10-H	2.38 (br m)	1.83, 1.95 (m)	1.80 (m)	2.35 (t)	2.37 (m)
$\mathrm{C} 11-\mathrm{H}$	2.0-2.2 (m)	1.97, 1.98 (m)	1.97 (m)	2.03 (app quint)	2.04 (m)
C12-H ${ }^{1}$	4.02 (m)	4.18 (m)	4.20 (m)	3.93 (dd)	3.93 (dd)
C12-H ${ }^{2}$	3.78 (q)	3.99 (dd)	4.01 (dd)	3.79 (dd)	3.77 (dd)
$\mathrm{C} 13-\mathrm{H}$	1.43 (s)	1.42 (s)	1.39 (s)	1.38 (s)	1.42 (s)
O14-H	6.26 (d)	6.14 (d)	6.13 (d)	6.41 (d)	6.26 (d)
C16-H	2.34 (t)	2.34 (t)	2.35 (t)	2.35 (t)	2.35 (t)
C17-H	1.55 (sext)	1.54 (app sext)	1.54 (app sext)	1.54 (app sext)	1.54 (app sext)
C18-H	0.92 (t)				
$\mathrm{Orn}-\mathrm{CH}_{2}{ }^{\text {b }}$	3.42 (t)	3.44 (m)	3.39, 3.51 (m)	3.47 (t)	3.41, 3.52 (m)

${ }^{a}$ Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.

Note: For comparison of geminal proton shifts that appear as one signal in Williams' work with shifts for the analogous protons that we observe as two signals, the value for the former is employed twice in determining the Abs(diff) values for the above chart. For comparison of shifts reported as a range in Williams' work or our experimental data, the center of the range was used in the above table and in calculations for the above chart.

Carbon Number	$\delta\left({ }^{13} \mathrm{CNMR}\right)^{\mathrm{a}}$				
	chlorofusin	-A (10, syn)	-B (11, syn)	-C (12, anti)	-D (13, anti)
Configuration		4S, 8S, 9S	4S, 8R, 9R	4S, 8S, 9R	4S, 8R, 9S
C1	150.0	149.9	149.4	150.9	150.3
$\mathrm{C} 2{ }^{\text {b }}$	115.2	113.3	113.7	115.2	115.4
C3	188.1	189.0	188.4	189.3	188.5
C4	84.7	84.7	84.7	84.7	84.8
C5	188.7	189.1	188.9	188.8	188.9
C6 ${ }^{\text {b }}$	101.3	100.6	100.4	101.7	101.4
C7	147.5	148.6	148.5	148.2	147.7
C8	68.4	68.6	68.7	68.4	68.5
C9	96.7	97.8	97.8	96.9	96.8
C10	30.3	34.5	35.0	30.2	30.2
C11	25.1	24.7	24.6	25.3	25.3
C12	68.4	70.4	70.5	68.6	68.5
C13	22.9	23.7	23.0	23.5	23.0
C15	171.4	171.4	171.7	171.5	171.6
C16	34.4	34.5	34.6	34.5	34.5
C17	17.9	18.0	18.1	18.1	18.1
C18	13.2	13.3	13.3	13.3	13.3
Orn δ	50.5	49.6	49.1	50.4	50.5

${ }^{a}$ Assignment was assisted by COSY, HMQC, HMBC and ROESY NMR.
${ }^{\text {b }}$ Original assignments may be switched (i.e. $\delta 101.3$ for C2, 115.2 for C6) based on HMBC data for 10-13. This tentative reassignment is under continued investigation.

Stereochemical Assignment of Chlorofusin. For convenience of relating the spectroscopic properties and relative stereochemistries of the benzylamine and butylamine adducts discussed beforehand as well as for relating chromophore enantiomeric pairs, notations of $\mathbf{A}-\mathbf{D}$ and the enantiomeric series (+ or -) referring to the sign of the longest wavelength Cotton effect are used below for $\mathbf{6 - 9}(\mathbf{+ A - D})$ and $\mathbf{1 0}-\mathbf{1 3}$ $(-\mathbf{A}-\mathbf{D})$. Using the diagnostic spectroscopic properties of the two sets of four diastereomers along with the analogous N, O-ketal equilibrations that define the respective syn/anti pairs in each series allowed the full relative and absolute stereochemical assignments for all eight diastereomers. Moreover, only diastereomer $+\mathbf{D}$ ($\mathbf{9}, 4 R, 8 S, 9 R$) matched all of the spectroscopic properties reported for the chlorofusin chromophore. With $-\mathbf{A}-\mathbf{D}$ and $\mathbf{+ A}-\mathbf{D}$ the signals most diagnostic of a syn versus anti relationship between the C 8 and C 9 oxygen substituents are again those derived from $\mathrm{C} 10-\mathrm{H}$ and $\mathrm{C} 12-\mathrm{H}$. The $\mathrm{C} 10-\mathrm{H}$ signals associated with $-\mathbf{C}(\mathrm{m}, 2.35 \mathrm{ppm}),-\mathbf{D}(\mathrm{m}, 2.37$ $\mathrm{ppm}),+\mathbf{C}(\mathrm{m}, 2.36 \mathrm{ppm}),+\mathbf{D}(\mathrm{m}, 2.35 \mathrm{ppm})$ and chlorofusin $(\mathrm{br} \mathrm{m}, 2.38 \mathrm{ppm})$ are all very similar to one another, whereas those for $-\mathbf{A}(\mathrm{m}, 1.83 \mathrm{ppm} ; \mathrm{m}, 1.95 \mathrm{ppm})$ and $+\mathbf{A}(\mathrm{m}$, $1.77 \mathrm{ppm} ; \mathrm{m}, 1.97 \mathrm{ppm})$ are similar and those for $\mathbf{- B}(\mathrm{m}, 1.80 \mathrm{ppm})$ and $+\mathbf{B}(\mathrm{m}, 1.81$ $\mathrm{ppm})$ are similar but distinct from chlorofusin. For $\mathrm{C} 12-\mathrm{H}$, the signals are analogously diagnostic with -C (dd, 3.79 ppm ; dd, 3.93 ppm), -D (dd, 3.77 ppm ; dd, 3.93 ppm), +C (dd, 3.78 ppm ; dd, 3.93 ppm), +D (dd, 3.77 ppm ; dd, 3.92 ppm) and chlorofusin ($\mathrm{q}, 3.78$ $\mathrm{ppm} ; \mathrm{m}, 4.02 \mathrm{ppm}$) being similar to one another, and $-\mathbf{A}$ (dd, $3.99 \mathrm{ppm} ; \mathrm{m}, 4.18 \mathrm{ppm}$), \mathbf{B} (dd, $4.01 \mathrm{ppm} ; \mathrm{m}, 4.20 \mathrm{ppm}$), +A (dd, $4.00 \mathrm{ppm} ; \mathrm{m}, 4.20 \mathrm{ppm}$) and $+\mathbf{B}$ (dd, 4.00 ppm ; $\mathrm{m}, 4.19 \mathrm{ppm}$) being similar to one another but distinct from chlorofusin. In the ${ }^{13} \mathrm{C}$ NMR data for these eight compounds, the chemical shifts of the $\mathbf{C} 2$ signals of $\mathbf{- C}(115.2 \mathrm{ppm})$, -D (115.4 ppm), +C (115.2 ppm), +D (115.4 ppm) and chlorofusin (115.2 ppm) are nearly 2 ppm downfield of the analogous signals for $\mathbf{- A}(113.3 \mathrm{ppm}), \mathbf{- B}(113.7 \mathrm{ppm})$, $+\mathbf{A}(113.4 \mathrm{ppm})$ and $\boldsymbol{+ B}(113.6 \mathrm{ppm})$. [The assignments C6 and C2 appear to have been switched in the original Williams work based on the observance of much stronger HMBC correlations between the $\mathrm{C} 1-\mathrm{H}$ signals of $-\mathbf{A}-\mathbf{D}$ and what were assigned as the C 6 signals (four bond) while the $\mathrm{C} 1-\mathrm{H}$ correlations with what were assigned as the C 2 signals were weak (two bond). This reassignment, which is inconsequential to the comparisons, would appear to be confirmed with HMQC data from a dechloro-derivative obtained during N, O-spiroketal isomerization. While this tentative reassignment is under continued investigation the data in this manuscript is reported in terms of the Williams assignment.] Other ${ }^{13} \mathrm{C}$ NMR data distinguishing syn from anti: For C6: -C (101.7 ppm), -D (101.4 ppm), +C (101.7 ppm), +D (101.4 ppm), chlorofusin (101.3 ppm), versus -A
(100.6 ppm), $\mathbf{- B}(100.4 \mathrm{ppm}),+\mathbf{A}(100.7 \mathrm{ppm})$ and $+\mathbf{B}(100.3 \mathrm{ppm}) ; \mathbf{C} 9:-\mathbf{C}(96.9 \mathrm{ppm})$, -D (96.8 ppm), +C (96.9 ppm), +D (96.8 ppm), chlorofusin (96.7 ppm), versus -A (97.8 ppm), -B (97.8 ppm), +A (97.8 ppm) and +B (97.8 ppm); C10: -C (30.2 ppm), -D (30.2 $\mathrm{ppm}),+\mathbf{C}(30.3 \mathrm{ppm}),+\mathbf{D}(30.2 \mathrm{ppm})$, chlorofusin (30.3 ppm), versus $-\mathbf{A}(34.5 \mathrm{ppm}),-\mathbf{B}$ $(35.0 \mathrm{ppm}),+\mathbf{A}(34.5 \mathrm{ppm})$ and $+\mathbf{B}(35.0 \mathrm{ppm}) ; \mathbf{C} 12:-\mathbf{C}(68.6 \mathrm{ppm}),-\mathbf{D}(68.5 \mathrm{ppm}),+\mathbf{C}$ (68.6 ppm), +D (68.5 ppm), chlorofusin (68.4 ppm), versus -A (70.4 ppm), $\mathbf{- \mathbf { B }}$ (70.5 $\mathrm{ppm}),+\mathbf{A}(70.4 \mathrm{ppm})$ and $+\mathbf{B}(70.6 \mathrm{ppm})$; Orn delta: $\mathbf{- C}(50.4 \mathrm{ppm}),-\mathbf{D}(50.5 \mathrm{ppm}),+\mathbf{C}$ $(50.4 \mathrm{ppm}),+\mathbf{D}(50.5 \mathrm{ppm})$, chlorofusin $(50.5 \mathrm{ppm})$, versus -A (49.6 ppm), $\mathbf{- B}(49.1$ $\mathrm{ppm}),+\mathbf{A}(48.9 \mathrm{ppm})$ and $+\mathbf{B}(49.7 \mathrm{ppm}) .{ }^{1} \mathrm{H}$ NMR data distinguishing +/-C from +/-D as well as syn versus anti: C8-H: -C (d, 4.48 ppm$),+\mathbf{C}(\mathrm{d}, 4.48 \mathrm{ppm})$, versus $-\mathbf{D}(\mathrm{d}, 4.52$ $\mathrm{ppm}),+\mathbf{D}(\mathrm{d}, 4.52 \mathrm{ppm})$, chlorofusin ($\mathrm{d}, 4.53 \mathrm{ppm}$), [also versus -A (d, 4.48 ppm$),+\mathbf{A}(\mathrm{d}$, $4.49 \mathrm{ppm}),+\mathbf{B}(\mathrm{d}, 4.55 \mathrm{ppm})$ and $-\mathbf{B}(\mathrm{d}, 4.54 \mathrm{ppm})] ; \mathrm{C} 13-\mathrm{H}:-\mathbf{C}(\mathrm{s}, 1.38 \mathrm{ppm}),+\mathbf{C}(\mathrm{s}$, $1.38 \mathrm{ppm})$, versus -D ($\mathrm{s}, 1.42 \mathrm{ppm}$), +D ($\mathrm{s}, 1.43 \mathrm{ppm}$), chlorofusin ($\mathrm{s}, 1.43 \mathrm{ppm}$), [also versus $-\mathbf{A}(\mathrm{s}, 1.42 \mathrm{ppm}),+\mathbf{A}(\mathrm{s}, 1.43 \mathrm{ppm}), \mathbf{- B}(\mathrm{s}, 1.39 \mathrm{ppm})$ and $+\mathbf{B}(\mathrm{s}, 1.40 \mathrm{ppm})$, O14-H: -C (d, 6.41 ppm$),+\mathbf{C}(\mathrm{d}, 6.41 \mathrm{ppm})$, versus $\mathbf{- D}(\mathrm{d}, 6.26 \mathrm{ppm}),+\mathbf{D}(\mathrm{d}, 6.27 \mathrm{ppm})$, chlorofusin (d, 6.26 ppm), [also versus -A (d, 6.14 ppm), +A (d, 6.14 ppm$),-\mathbf{B}(\mathrm{d}, 6.13$ $\mathrm{ppm})$ and $+\mathbf{B}(\mathrm{d}, 6.12 \mathrm{ppm})] .{ }^{13} \mathbf{C}$ NMR data distinguishing $+/-\mathbf{C}$ from $+/-\mathbf{D}$ as well as syn versus anti: C1: -C (150.9 ppm), +C (150.7 ppm), versus -D (150.3 ppm), +D (150.4 $\mathrm{ppm})$, chlorofusin (150.0 ppm), [also versus -A (149.9 ppm), +A (149.8 ppm), -B (149.4 ppm) and +B (149.5 ppm)]; C3: -C (189.3 ppm), +C (189.3 ppm), versus -D (188.5 $\mathrm{ppm}),+\mathbf{D}(188.5 \mathrm{ppm})$, chlorofusin $(188.1 \mathrm{ppm})$, [also versus $\mathbf{- A}(189.0 \mathrm{ppm}),+\mathbf{A}(189.0$ $\mathrm{ppm}),-\mathbf{B}(188.4 \mathrm{ppm})$ and $+\mathbf{B}(188.4 \mathrm{ppm})] ; \mathbf{C} 6:-\mathbf{C}(101.7 \mathrm{ppm}),+\mathbf{C}(101.7 \mathrm{ppm})$, versus -D (101.4 ppm), +D (101.4 ppm), chlorofusin (101.3 ppm), [also versus -A $(100.6 \mathrm{ppm}),+\mathbf{A}(100.7 \mathrm{ppm}),-\mathbf{B}(100.4 \mathrm{ppm})$ and $+\mathbf{B}(100.3 \mathrm{ppm})] ; \mathbf{C 7}:-\mathbf{C}(148.2$ $\mathrm{ppm}),+\mathbf{C}(148.2 \mathrm{ppm})$, versus $\mathbf{- D}(147.7 \mathrm{ppm}),+\mathbf{D}(147.7 \mathrm{ppm})$, chlorofusin (147.5 $\mathrm{ppm})$, [also versus $\mathbf{- A}(148.6 \mathrm{ppm}), \boldsymbol{+}(148.6 \mathrm{ppm}), \mathbf{- B}(148.5 \mathrm{ppm})$ and $+\mathbf{B}(148.6$ $\mathrm{ppm})] ; \mathbf{C} 13:-\mathbf{C}(23.5 \mathrm{ppm}),+\mathbf{C}(23.5 \mathrm{ppm})$, versus $-\mathbf{D}(23.0 \mathrm{ppm}),+\mathbf{D}(23.0 \mathrm{ppm})$, chlorofusin (22.9 ppm), [also versus -A (23.7 ppm), +A (23.7 ppm), -B (23.0 ppm) and $+\mathbf{B}(23.0 \mathrm{ppm})] .{ }^{1} \mathrm{H}$ NMR data distinguishing -D (13) from $\mathbf{+} \mathbf{D}(\mathbf{9})$ allowing the absolute configuration assignment: Orn delta: -D (m, $3.41 \mathrm{ppm} ; \mathrm{m}, 3.52 \mathrm{ppm}, 1 \mathrm{H}$ each) versus +D (m, $3.45 \mathrm{ppm}, 2 \mathrm{H}$), chlorofusin ($\mathrm{t}, 3.42 \mathrm{ppm}, 2 \mathrm{H}$).

The ROESY NMR data for these eight diastereomers reveals a correlation only between $\mathrm{C} 8-\mathrm{H}$ and $\mathrm{C} 4-\mathrm{Me}$ (and not $\mathrm{C} 4-\mathrm{Me} / \mathrm{C} 8-\mathrm{OH}$) when those groups are cis with respect to one another $(-\mathbf{A}, \mathbf{-},+\mathbf{A}$ and $\mathbf{+ C})$ and a correlation between $\mathrm{C} 4-\mathrm{Me}$ and both $\mathbf{C} 8-\mathrm{H}$ and $\mathrm{C} 8-\mathrm{OH}$ when $\mathrm{C} 4-\mathrm{Me}$ is trans with respect to $\mathrm{C} 8-\mathrm{H}(-\mathbf{B},-\mathbf{D},+\mathbf{B}$ and $+\mathbf{D})$. Regardless of the relative stereochemistry of the chromophore, an NOE is seen between C4-Me and $\mathrm{C} 8-\mathrm{H}$, and furthermore, the correlations are consistent with the ROESY NMR data for $\mathbf{S 1 9}$ (x-ray).

Comparison of the CD spectra of all eight diastereomers shows that the region between $250-470 \mathrm{~nm}$ is apparently dependent on the stereochemistry of the chromophore alone with nearly equal and opposite spectra observed for $-\mathbf{A}$ and $+\mathbf{A}$, for $-\mathbf{B}$ and $+\mathbf{B}$, for $-\mathbf{C}$ and $+\mathbf{C}$ and for $-\mathbf{D}$ and $+\mathbf{D}$ (See figure below). Of particular note is the sign of the longest wavelength Cotton effect ($395-410 \mathrm{~nm}$). As with azaphilone 2, a positive longest wavelength Cotton effect is diagnostic of C4-R stereochemistry and a negative Cotton effect is diagnostic of C4-S stereochemistry.

Cbz-L-Ala-L-Asn(Trt)-D-Asn(Trt)-OBn (S21). A solution of Fmoc-L-Asn(Trt)-D-Asn(Trt)- $\mathrm{OBn}^{5}(511 \mathrm{mg}, 0.490 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.9 \mathrm{~mL})$ was treated with piperidine $(0.15 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and stirred at $23^{\circ} \mathrm{C}$ for 100 min . Chromatography $\left(\mathrm{SiO}_{2}\right.$, 70% EtOAc-hexanes) afforded the crude dipeptide as a gray solid which was directly employed in the next reaction. A flask containing the intermediate dipeptide (401 mg , 0.490 mmol), commercially available Cbz-L-Ala-OH ($142 \mathrm{mg}, 0.637 \mathrm{mmol}$), HOAt (177 $\mathrm{mg}, 1.30 \mathrm{mmol})$ and EDCI ($9.25 \mathrm{~g}, 1.30 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ was slowly treated with anhydrous DMF (3.3 mL), stirred at $0^{\circ} \mathrm{C}$ for 1 h then stirred at $23^{\circ} \mathrm{C}$ for 24 h under argon. The reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous $0.1 \mathrm{~N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 70 \% \mathrm{EtOAc}$-hexanes) afforded S21 as a white solid ($60 \%, 300 \mathrm{mg}$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-d_{6}, 600 \mathrm{MHz}\right) \delta 8.76(\mathrm{~s}$, $1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 11 \mathrm{H})$, $7.14-7.29(\mathrm{~m}, 30 \mathrm{H}), 5.07(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{dd}, J=14.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=13.7$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 172.3,171.0,170.9,168.8,168.7,155.7,144.8$ (3C), 144.7 (3C), 137.0, 135.9, 128.61 (6C), 128.59 (6C), 128.5 (3C), 128.4 (3C), 127.9. 127.8 (3C), 127.7 (2C), 127.53 (6C), 127.51 (6C), 126.41 (2C), 126.38 (2C), 69.5, 69.4, 66.1, 65.6, 50.1 (2C), 49.2, 39.0, 37.6, 18.8; IR (film) $v_{\max } 3311,3058,3032,1666,1492$, 1448, 1215, 751, $699 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 1026.4412\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{64} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{8}\right.$ requires 1025.4364); $[\alpha]^{23}{ }_{\mathrm{D}}-5\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Cbz-L-Ala-L-Asn(Trt)-D-Asn(Trt)-D-Leu-L-Thr-D-Leu-D-ADA-OMe (S22). A solution of S21 ($356 \mathrm{mg}, 0.347 \mathrm{mmol}$) in THF (4.4 mL) was cooled to $0^{\circ} \mathrm{C}$, treated with a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(146 \mathrm{mg}, 3.47 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{~mL})$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was quenched with the addition of aqueous $2 \mathrm{~N} \mathrm{HCl}(1.7 \mathrm{~mL})$, acidified to pH 3 and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 7 \%\right.$ $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the carboxylic acid as a white foam which was directly employed in the next reaction. Concurrently, Boc-D-Leu-L-Thr-D-Leu-D-ADA-OMe ${ }^{5}$ $(218 \mathrm{mg}, 0.347 \mathrm{mmol})$ was treated with 4 N HCl -dioxane $(1.0 \mathrm{~mL})$. The reaction
solution was stirred for 1 h , and the volatiles were removed with a stream of nitrogen. The residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ and concentrated under reduced pressure $(2 \times 2 \mathrm{~mL})$ to afford the terminal amine as a sticky oil which was directly employed in the next reaction. A flask containing the carboxylic acid, the amine, HOAt ($142 \mathrm{mg}, 1.04 \mathrm{mmol}$), EDCI ($200 \mathrm{mg}, 1.04 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(88.0 \mathrm{mg}, 1.04 \mathrm{mmol})$ was cooled to $0^{\circ} \mathrm{C}$, treated with anhydrous DMF (2.3 mL) and stirred at $23^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 9 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded S 22 as a white solid $(57 \%, 286$ $\mathrm{mg}):{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.28(\mathrm{~m}$, $30 \mathrm{H}), 5.11(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ $(\mathrm{m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 3 \mathrm{H}), 3.93$ $(\mathrm{qd}, J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.75(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 6 \mathrm{H}), 1.48(\mathrm{~m}, 3 \mathrm{H})$, $1.25(\mathrm{~m}, 14 \mathrm{H}), 0.99(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~m}, 9 \mathrm{H}), 0.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 150 \mathrm{MHz}\right) \delta 172.9,172.5,172.3,172.2,171.4,171.0,170.0,168.9,168.8,155.9$, 144.82 (3C), 144.77 (3C), $136.9,128.6$ (12C), 128.4 (2C), $127.90,127.88$ (2C), $127.5(12 \mathrm{C}), 126.4$ (6C), $69.50,69.48,66.6,65.8,59.8,58.7,52.2,51.9,51.7,50.7,50.4$, $50.2,40.9,40.3,38.5,38.0,36.3,31.3,30.7,28.9,28.7,25.4,24.2,24.0,23.2,23.0,22.2$, 21.6, 21.5, 19.6, 18.3, 14.0; IR (film) $v_{\text {max }} 3307,2926,1661,1518,1448,1242,753,700$ cm^{-1}; HR ESI-TOF $\mathrm{m} / \mathrm{z} 1446.7732\left(\mathrm{M}+\mathrm{H}^{+} \mathrm{C}_{84} \mathrm{H}_{103} \mathrm{~N}_{9} \mathrm{O}_{13}\right.$ requires 1445.7676); $[\alpha]^{23}{ }_{\mathrm{D}}$ -15 (c $0.20, \mathrm{MeOH})$.

Cbz-L-Ala-L-Asn(Trt)-D-Asn(Trt)-D-Leu-L-Thr-D-Leu-D-ADA-OH (S23). A solution of S22 ($724 \mathrm{mg}, 0.501 \mathrm{mmol}$) in THF (6.2 mL) was cooled to $0{ }^{\circ} \mathrm{C}$, treated with a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(210 \mathrm{mg}, 5.01 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(6.2 \mathrm{~mL})$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 90 min before being quenched with addition of aqueous $2 \mathrm{~N} \mathrm{HCl}(2.5 \mathrm{~mL})$. The resulting mixture was acidified to pH 3 and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded S 23 as a white solid $(85 \%, 464$ $\mathrm{mg}):{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(\mathrm{brs}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{brs}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 5 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 30 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.7,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~m}$, $9 \mathrm{H}), 1.23(\mathrm{~m}, 14 \mathrm{H}), 0.98(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~m}, 9 \mathrm{H}), 0.80(\mathrm{dd}, J=12.1,6.3 \mathrm{~Hz}$, 6 H), the two OH protons were not observed; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) $\delta 173.8$,
172.8, 172.2 (2C), $171.5,171.1,170.0,169.0,168.8,160.0,144.9$ (3C), 144.8 (3C), 136.9, 128.6 (12C), 128.4 (2C), 127.9 (3C), 127.5(12C), 126.3 (6C), 69.5 (2C), 66.3, 65.7, 58.8, 52.9, 51.8, 51.2, 51.1, 50.6, 50.3, 40.7, 40.4, 38.6, 38.2, 31.4, 29.1, 29.0, 28.9, $28.8,25.4,24.3,24.1,23.2,23.0,22.2,21.8,21.4,19.8,18.3,14.0$; IR (film) $v_{\max } 3326$, 2927, 2855, 1655, 1524, 1496, 752, 699, $598 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $1432.7575(\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{83} \mathrm{H}_{101} \mathrm{~N}_{9} \mathrm{O}_{13}$ requires 1431.7519); $[\alpha]^{23}{ }_{\mathrm{D}}-20(c 0.2, \mathrm{MeOH})$.

16. A solution of $\mathbf{S} 23(19.6 \mathrm{mg}, 0.0137 \mathrm{mmol})$ in trifluoroacetic acid (1.1 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(55 \mu \mathrm{~L})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 70 min . The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 2.0 \mathrm{~mL})$ to provide crude $\mathbf{1 5}$ as a gray solid (11.8 mg), which was directly employed in the next step. A solution of $\mathbf{9}$ $(10.2 \mathrm{mg}, 0.0114 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.19 \mathrm{~mL})$ and DMF $(0.19 \mathrm{~mL})$ was treated with piperidine $(5.6 \mu \mathrm{~L}, 0.057 \mathrm{mmol})$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the free amine $\mathbf{1 4}(7.3 \mathrm{mg})$ as a yellow-orange solid which was directly used in next step. A flask containing 15 (11.8 $\mathrm{mg}), 14(7.3 \mathrm{mg})$, HOAt ($6.2 \mathrm{mg}, 0.046 \mathrm{mmol}$), EDCI ($8.7 \mathrm{mg}, 0.046 \mathrm{mmol}$), and $\mathrm{NaHCO}_{3}(3.8 \mathrm{mg}, 0.046 \mathrm{mmol})$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated with anhydrous DMF $(0.11$ mL) and stirred at $23^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with EtOAc (10 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 2.0 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 2.0 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 8 \%\right.$ $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 16 as a yellow solid ($10.0 \mathrm{mg}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600$ $\mathrm{MHz}) \delta 8.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.64$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.40(\mathrm{~m}$, $10 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{app} \mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.10(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{dd}, J$ $=8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=15.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m} \mathrm{3H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}$, $1 \mathrm{H}), 3.95(\mathrm{dd}, J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}$, $1 \mathrm{H}), 2.55(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.45-1.67(\mathrm{~m}, 12 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 16 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}$), $0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 9 \mathrm{H}), 0.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}, $150 \mathrm{MHz}) \delta 188.9,188.4,172.8,172.3,172.15,172.06$ (2C), 171.7, 171.6, 171.5, 171.1, $170.8,170.43,170.40,155.9,150.3,147.6,136.9,136.0,128.42$ (2C), 128.40 (2C), $128.1,127.90$ (3C), 127.85 (2C), 115.4, 101.4, 96.8, 84.7, 69.8, 68.5, 68.4, 66.8, 66.2, $66.0,65.6,59.1,58.1,52.9,52.0,51.4,51.2,50.5,50.1$ (2C), 50.0, 40.5, 40.3, 37.1, 36.3,
34.5, 32.1, 31.3, 30.2, 29.3, 29.0, 28.8 (2C), 27.1, 25.5, 25.3, 24.1, 24.0, 23.2, 23.1, 23.0, $22.2,21.4,20.2,19.6,18.0,17.9,14.0,13.3$; IR (film) $v_{\max } 3271,2923,2853,1735$, 1624, 1558, 1455, 1367, 1247, $1081 \mathrm{~cm}^{-1}$; HR ESI-TOF m/z $1605.7833\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{78} \mathrm{H}_{113} \mathrm{ClN}_{12} \mathrm{O}_{22}$ requires 1604.7781); $[\alpha]^{23}{ }_{\mathrm{D}}+13(c 0.12, \mathrm{MeOH})$.

Chlorofusin (1). A solution of $16(6.0 \mathrm{mg}, 0.0037 \mathrm{mmol})$ in anhydrous THF (1.3 mL) and DMF $(0.65 \mathrm{~mL})$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(9.0 \mathrm{mg})$ and stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at $23{ }^{\circ} \mathrm{C}$ for 4 h . The catalyst was removed by filtration through Celite and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt ($5.1 \mathrm{mg}, 0.037$ $\mathrm{mmol})$, $\mathrm{EDCI}(7.2 \mathrm{mg}, 0.037 \mathrm{mmol}), \mathrm{NaHCO}_{3}(3.2 \mathrm{mg}, 0.037 \mathrm{mmol})$, cooled to $0{ }^{\circ} \mathrm{C}$, treated with anhydrous DMF $(1.2 \mathrm{~mL})$ and stirred at $23^{\circ} \mathrm{C}$ for 40 h . The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 11 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 1 as a yellow solid (3.0 mg , 60%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-d_{6}, 600 \mathrm{MHz}\right) \delta 9.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H})$, $7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.26(\mathrm{~d}, ~ J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.98(\mathrm{br} \mathrm{m}$, $4 \mathrm{H}), 3.78(\mathrm{dd}, J=7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.42(\mathrm{br} \mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=14,11 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, \mathrm{HMQC}, 1 \mathrm{H}), 2.38(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, 2.34 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.00-2.15 (br m, 2H), 1.70-1.86 (br m, 6H), 1.50-1.63 (br m, 6 H), $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.41(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 1.27(\mathrm{br} \mathrm{m}, 14 \mathrm{H}), 1.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.10$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.2,3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~m}$, 6 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 188.9,188.3,173.2,173.1,172.6,172.5,172.0$, $171.8,171.5$ (2C), 171.0, 170.4, 150.2, 147.7, 115.3, 101.4, 96.8, 84.8, 68.6, 68.5, 65.1, $65.0,63.4$ (HMQC), 62.3, 54.1, 52.8, 52.2, 51.2, 50.9, 50.6, 49.2, 49.1, 39.0 (HMQC), 38.9 (HMQC), 37.4, 36.2, 34.5, 31.4, 30.5, 30.1, 28.72, 28.70, 28.6, 28.4 (HMQC), 27.1, $26.0,25.2,24.2,24.1,23.3,23.0$ (2C), 22.1, 20.7, 20.4, 20.3, 20.2, 18.1, 16.6, 14.0, 13.3; IR (film) $v_{\max } 3320,2926,2855,1655,1536,1205,1184,1138 \mathrm{~cm}^{-1} ;$ HR ESI-TOF m / z $1363.6921\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{63} \mathrm{H}_{99} \mathrm{ClN}_{12} \mathrm{O}_{19}\right.$ requires 1362.6831); CD (MeOH, 0.13 mM$) \lambda_{\text {ext }}$
$\mathrm{nm}(\Delta \varepsilon) 397$ (4.1), $345(-7.7), 295(3.3), 254(2.4), 223(-5.1), 201(17.1) ;[\alpha]^{23}{ }_{\mathrm{D}}+14(c$ $0.05, \mathrm{MeOH})$.

S24. A solution of S23 ($42.1 \mathrm{mg}, 0.0294 \mathrm{mmol}$) in trifluoroacetic acid (1.0 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(50 \mu \mathrm{~L})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 70 min . The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 2.0 \mathrm{~mL})$ to provide crude 15 as a gray solid (27.5 mg), which was directly employed in the next step. A solution of $\mathbf{6}$ ($24.0 \mathrm{mg}, 0.0267 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.44 \mathrm{~mL})$ and DMF $(0.44 \mathrm{~mL})$ was treated with piperidine ($13 \mu \mathrm{~L}, 0.134 \mathrm{mmol}$) and stirred at $23{ }^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the free amine $(17.0 \mathrm{mg})$ as a yellow-orange solid which was directly used in next step. A flask containing 15 (27.5 mg), the free amine (17.0 mg), HOAt ($14.6 \mathrm{mg}, 0.107 \mathrm{mmol}$), EDCI ($20.5 \mathrm{mg}, 0.107$ $\mathrm{mmol})$, and $\mathrm{NaHCO}_{3}(9.0 \mathrm{mg}, 0.107 \mathrm{mmol})$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated with anhydrous DMF (0.26 mL) and stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 5.0 \mathrm{~mL})$, saturated aqueous NaHCO_{3} $(2 \times 5.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10.0 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography (SiO_{2}, $8 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded S 24 as a yellow solid ($26.0 \mathrm{mg}, 61 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 10 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 6.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\operatorname{app} \mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H})$, 5.08 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~m}$, $4 \mathrm{H}), 4.35(\mathrm{dd}, J=8.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.01$ $(\mathrm{m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 3 \mathrm{H}), 2.33$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.73(\mathrm{~m}, 12 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.23$ (br m, 16H), 1.09 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right) \delta$ 189.0, 188.9, 172.8, 172.3, 172.13 (2C), 172.06, 171.7, 171.6, 171.3, 171.1, 170.8, 170.4, $170.4,155.9,149.6,148.5,136.9,136.0$, 128.4 (4C), 128.0, 127.9 (3C), 127.8 (2C), 113.4, 100.7, 97.8, 84.7, 70.4, 68.6, 66.8, 66.3, 66.0 (2C), 65.6, 59.2, 58.1, 53.0, 52.0, $51.2,51.1,50.1$ (2C), $50.0,48.8,40.4,40.1,37.1,36.3,34.5,32.0,31.4,29.03,28.97$, 28.8 (2C), 26.4, 25.5, 24.7, 24.1, 24.0, 23.6, 23.2, 23.1, 22.2, 21.40, 21.36, 20.2, 19.6, 18.1, 17.9, 14.0, 13.3; IR (film) $v_{\max } 3273,2922,2849,1734,1632,1555,1467,1238$,
$685 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 1605.7834\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{78} \mathrm{H}_{113} \mathrm{ClN}_{12} \mathrm{O}_{22}\right.$ requires 1604.7781); $[\alpha]^{23}{ }_{\mathrm{D}}+29(c 0.20, \mathrm{MeOH})$.

S25. A solution of S24 ($26.0 \mathrm{mg}, 0.0162 \mathrm{mmol}$) in anhydrous THF (5.4 mL) and DMF $(2.7 \mathrm{~mL})$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(39.0 \mathrm{mg})$ and stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at $23^{\circ} \mathrm{C}$ for 4 h . The catalyst was removed by filtration through Celite, and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt ($22.0 \mathrm{mg}, 0.162 \mathrm{mmol}$), EDCI ($31.0 \mathrm{mg}, 0.162 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(13.6 \mathrm{mg}, 0.162 \mathrm{mmol})$, cooled to $0^{\circ} \mathrm{C}$, treated with anhydrous DMF (5.4 mL) and stirred at $23^{\circ} \mathrm{C}$ for 40 h . The reaction mixture was diluted with EtOAc (60 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 11 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded $\mathbf{S 2 5}$ as a yellow solid (13.6 mg , 62%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right) \delta 9.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H})$, $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, ~ J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H})$, 3.88-4.04 (br m, 6H), $3.63(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.77$ (dd, $J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, \mathrm{HMQC}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.06 (m, 1H), 1.70-1.96 (br m, 9H), 1.50-1.66 (br m, 6H), 1.41 (s, 3H), 1.35-1.45 (br m, 2 H), 1.26 (br m, 14H), $1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.92(\mathrm{~m}, 6 \mathrm{H})$, $0.86(\mathrm{~m}, 6 \mathrm{H}), 0.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right) \delta 189.0,188.9$, 173.22, 173.18, 173.1, 173.0, 172.6, 171.74, 171.70, 171.5, 171.3, 171.2, 170.4, 149.7, 148.3, 113.4, 100.6, 97.9, 84.7, 70.8, 69.0, 65.1, 64.9, 63.6 (HMQC), 62.4, 53.9, 52.7, 52.3, 51.6, 50.9, 49.7, 49.2, 49.1, 39.0 (HMQC), 38.9 (HMQC), 37.5, 36.2, 34.7, 34.5, $31.4,29.9,28.72,28.68,28.5,28.3,26.8,26.1,24.5,24.4,24.1,23.6,23.4,23.2,22.1$, 20.7, 20.5, 20.4 (2C), 18.1, 16.5, 14.0, 13.3; IR (film) $v_{\text {max }} 3315,2962,2927,2860,1650$, 1567, 1538, 1446, 1410, 1332, 1312, 1261, 1239, 1102, 1077, $1057 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 1363.6896\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{63} \mathrm{H}_{99} \mathrm{ClN}_{12} \mathrm{O}_{19}\right.$ requires 1362.6838); CD ($\mathrm{MeOH}, 0.20 \mathrm{mM}$) $\lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 407(9.0), 348(-6.8), 302(7.1), 240(-11.1), 202(20.8) ;[\alpha]^{23}{ }_{\mathrm{D}}+135(c$ $0.14, \mathrm{MeOH})$.

S26. A solution of S23 ($74.0 \mathrm{mg}, 0.0515 \mathrm{mmol}$) in trifluoroacetic acid (2.0 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(100 \mu \mathrm{~L})$ was stirred at $23^{\circ} \mathrm{C}$ for 70 min . The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 3.0 \mathrm{~mL})$ to provide crude 15 as a gray solid (52.1 mg), which was directly employed in the next step. A solution of 7 $(42.0 \mathrm{mg}, 0.0468 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.78 \mathrm{~mL})$ and DMF $(0.78 \mathrm{~mL})$ was treated with piperidine ($23 \mu \mathrm{~L}, 0.234 \mathrm{mmol}$) and stirred at $23{ }^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the free amine $(28.3 \mathrm{mg})$ as a yellow-orange solid which was directly used in next step. A flask containing 15 (52.1 mg), the free amine (28.3 mg), HOAt ($26.0 \mathrm{mg}, 0.192 \mathrm{mmol}$), EDCI ($37.0 \mathrm{mg}, 0.192$ $\mathrm{mmol})$, and $\mathrm{NaHCO}_{3}(16.0 \mathrm{mg}, 0.192 \mathrm{mmol})$ was cooled to $0^{\circ} \mathrm{C}$, treated with anhydrous DMF (0.47 mL) and stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with $\operatorname{EtOAc}(50 \mathrm{~mL})$, washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 5.0 \mathrm{~mL})$, saturated aqueous NaHCO_{3} $(2 \times 5.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10.0 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography (SiO_{2}, $8 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded S26 as a yellow solid ($51.0 \mathrm{mg}, 68 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 10 \mathrm{H})$, $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=12.7,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.08$ $(\mathrm{m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{dd}, J=8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=15.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}$, $4 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=15.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}$, $3 \mathrm{H}), 2.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.79(\mathrm{~m}, 13 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~m}, 16 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 150$ $\mathrm{MHz}) \delta 188.8,188.3,172.8,172.3,172.2,172.06,172.05,171.7,171.6,171.5,171.1$, $170.8,170.43,170.41,155.9,149.4,148.6,136.9,136.0,128.42$ (2C), 128.41 (2C), $128.0,127.9$ (3C), 127.8 (2C), 113.6, 100.4, 97.7, 84.6, 70.5, 69.9, 68.7, 66.8, 66.3, 66.0 (2C), 65.6, 59.2, 58.1, 52.9, 52.0, 51.6, 51.2, 50.1, 50.0, 49.5, 40.4, 40.1, 37.1, 36.3, 35.6, 34.9, 34.6, 32.1, 31.4, 28.9, 28.81, 28.79, 26.7, 25.4, 24.6, 24.1, 24.0, 23.2, 23.1, 23.0, $22.2,21.4,20.2,19.6,18.0,17.9,14.1,13.3$; IR (film) $v_{\max } 3287,2910,2849,1735,1628$, 1465, 1352, 1235, 1174, $786 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 1605.7870\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{78} \mathrm{H}_{113} \mathrm{ClN}_{12} \mathrm{O}_{22}$ requires 1604.7781$)$; $[\alpha]^{23}{ }_{\mathrm{D}}-7(c 0.10, \mathrm{MeOH})$.

S27. A solution of S26 ($45.0 \mathrm{mg}, 0.0280 \mathrm{mmol}$) in anhydrous THF (9.0 mL) and DMF $(4.5 \mathrm{~mL})$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(67.5 \mathrm{mg})$ and stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at $23^{\circ} \mathrm{C}$ for 4 h . The catalyst was removed by filtration through Celite, and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt ($38.0 \mathrm{mg}, 0.280 \mathrm{mmol}$), EDCI ($54.0 \mathrm{mg}, 0.280 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(24.0 \mathrm{mg}, 0.280 \mathrm{mmol})$, cooled to $0^{\circ} \mathrm{C}$, treated with anhydrous DMF (9.3 mL) and stirred at $23^{\circ} \mathrm{C}$ for 40 h . The reaction mixture was diluted with EtOAc (120 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(40 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 11 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded $\mathbf{S 2 7}$ as a yellow solid (24.8 mg , 65%): ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 600 \mathrm{MHz}\right) \delta 9.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H})$, 7.84 (br s, 1H), $7.81(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.67(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.98(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}$, $1 \mathrm{H}), 4.56(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=$ $13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90-4.06 (br m, 7H), 3.65 (br m, 1H), 3.35 (m, HMQC, 2H), 2.93 (m, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (m, HMQC, $1 \mathrm{H}), 2.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.93-2.07 (br m, 2H), 1.73-1.89 (br m, 6H), 1.50-1.70 (br $\mathrm{m}, 8 \mathrm{H}$), 1.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.38-1.45 (br m, 2H), 1.27 (br m, 14H), 1.16 (d, J = $6.2 \mathrm{~Hz}, 4 \mathrm{H}$), $1.10(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 150 \mathrm{MHz}$) $\delta 188.9,188.0,173.3,173.2,172.8$, $172.7,172.5,172.0,171.7,171.6,171.5,171.3,170.9,170.5,149.4,148.4,113.7,100.4$, 97.7, 84.6, 70.6, 68.7, 65.2, 65.0, 63.5 (HMQC), 62.3, 54.1, 52.8, 52.1, 51.7, 50.9, 49.2 (2C), 49.0, 39.0 (HMQC), 38.9 (HMQC), 37.5, 36.2, 35.0, 34.6, 31.4, 30.0, 28.74, 28.69, 28.6, 28.3, 27.0, 26.0, 24.7, 24.2, 24.1, 23.4, 23.2, 23.0, 22.1, 20.7, 20.4 (2C), 20.2, 18.1, 16.5, 14.0, 13.3; IR (film) $v_{\max } 3314,2951,2926,2855,1648,1537,1451,1413,1337$, 1239, 1105, 1078, $1054 \mathrm{~cm}^{-1}$ HR ESI-TOF $\mathrm{m} / \mathrm{z} 1363.6914\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{63} \mathrm{H}_{99} \mathrm{ClN}_{12} \mathrm{O}_{19}\right.$ requires 1362.6838); $\mathrm{CD}(\mathrm{MeOH}, 0.20 \mathrm{mM}) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 403$ (1.4), 345 (-11.4), 255 (9.2), 222 (-8.5), 201 (22.8); $[\alpha]^{23}{ }_{\mathrm{D}}-47$ (c 0.13, MeOH).

S28. A solution of S23 ($21.6 \mathrm{mg}, 0.0151 \mathrm{mmol}$) in trifluoroacetic acid $(0.6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(30 \mu \mathrm{~L})$ was stirred at $23^{\circ} \mathrm{C}$ for 70 min . The volatiles were removed with a stream of nitrogen, and the residue was triturated with hexanes $(3 \times 1.0 \mathrm{~mL})$ to provide crude 15 as a gray solid (15.0 mg), which was directly employed in the next step. A solution of $\mathbf{8}$ $(12.3 \mathrm{mg}, 0.0137 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.23 \mathrm{~mL})$ and DMF $(0.23 \mathrm{~mL})$ was treated with piperidine ($7 \mu \mathrm{~L}, 0.069 \mathrm{mmol}$) and stirred at $23^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was concentrated with a stream of nitrogen and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the free amine $(8.2 \mathrm{mg})$ as a yellow-orange solid which was directly used in next step. A flask containing 15 (15.0 mg), the free amine (8.2 mg), HOAt ($7.5 \mathrm{mg}, 0.055 \mathrm{mmol}$), EDCI ($10.5 \mathrm{mg}, 0.055$ $\mathrm{mmol})$, and $\mathrm{NaHCO}_{3}(4.6 \mathrm{mg}, 0.055 \mathrm{mmol})$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated with anhydrous DMF (0.13 mL) and stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with EtOAc (20 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 5.0 \mathrm{~mL})$, saturated aqueous NaHCO_{3} $(2 \times 5.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(5.0 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography (SiO_{2}, $8 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{S 2 8}$ as a yellow solid ($12.0 \mathrm{mg}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}$, $1 \mathrm{H}), 7.78(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 10 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.55(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{dd}, J=8.2$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=14.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H})$, $3.96(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{q}, ~ J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H})$, $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.44-1.67(\mathrm{~m}, 12 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 16 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~m}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 189.2,188.7,172.8,172.3,172.1$ (2C), 172.0, 171.7, 171.6, $171.4,171.1,170.8,170.6,170.4,155.9,150.6,148.2,136.9,136.0,128.42$ (2C), 128.41 (2C), 128.0, 127.9 (3C), 127.8 (2C), 115.1, 101.7, 96.9, 84.7, 69.9, 68.6, 68.4, 66.8, 66.2, $66.0,65.6,59.2,58.1,52.9,52.0,51.6,51.3,50.5,50.1$ (2C), 50.0, 40.4, 40.1, 37.1, 36.4, $34.5,32.0,31.4,30.3,29.1,29.0,28.8$ (2C), 27.2, 25.4, 25.3, 24.1, 24.0, 23.4, 23.2, 23.1, $22.2,21.4,20.2,19.6,18.1,18.0,14.0,13.3$; IR (film) $v_{\max } 3310,2927,2855,1732,1652$, 1537, 1454, 1243, 1079, $698 \mathrm{~cm}^{-1}$; HR ESI-TOF $\mathrm{m} / \mathrm{z} 1605.7869\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{78} \mathrm{H}_{113} \mathrm{ClN}_{12} \mathrm{O}_{22}$ requires 1604.7781); $[\alpha]^{23}{ }_{\mathrm{D}}+10(c 0.30, \mathrm{MeOH})$.

S29. A solution of $\mathbf{S 2 8}(12.4 \mathrm{mg}, 0.0077 \mathrm{mmol})$ in anhydrous THF $(2.5 \mathrm{~mL})$ and DMF $(1.3 \mathrm{~mL})$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(18.6 \mathrm{mg})$ and stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at $23^{\circ} \mathrm{C}$ for 4 h . The catalyst was removed by filtration through Celite, and the solvent was removed with a stream of nitrogen. The residue was treated with HOAt $(10.5 \mathrm{mg}, 0.077 \mathrm{mmol})$, EDCI ($14.8 \mathrm{mg}, 0.077 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(6.5 \mathrm{mg}, 0.077 \mathrm{mmol})$, cooled to $0{ }^{\circ} \mathrm{C}$, treated with anhydrous DMF (2.6 mL) and stirred at $23{ }^{\circ} \mathrm{C}$ for 40 h . The reaction mixture was diluted with EtOAc (30 mL), washed with aqueous $1 \mathrm{~N} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 11 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded $\mathbf{S 2 9}$ as a yellow solid (6.4 mg , 61%): ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 9.08$ (br s, 2H), $8.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.99(\mathrm{br} \mathrm{m}, 4 \mathrm{H})$, $3.80(\mathrm{q}, ~ J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, \mathrm{HMQC}, 1 \mathrm{H}), 2.40(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.85(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 1.50-1.62(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.43$ (br m, $2 \mathrm{H}), 1.26(\mathrm{br} \mathrm{m}, 14 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~m}, 6 \mathrm{H})$, $0.87(\mathrm{~m}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{app} \mathrm{t}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 150 \mathrm{MHz}\right) \delta 189.1,188.7,174.1,173.1,173.0,172.8,172.6,172.5,172.0,171.8$, $171.5,171.4,171.1,170.5,150.6,148.2,115.1,101.8,96.9,84.7,68.6,68.3,65.2,65.0$, 63.2 (HMQC), $62.2,54.0,52.8,52.1,51.4,50.84,50.76,49.3,49.2,39.0$ (HMQC), 38.9 (HMQC), 37.4, 36.2, 34.5, 31.4, 30.3, 30.1, 28.73, 28.70, 28.6 (2C), 27.2, 26.0, 25.3, 24.2, 24.1, 23.5, 23.4, 23.3, 22.1, 20.7, 20.4, 20.3, 20.2, 18.1, 16.6, 14.0, 13.3; IR (film) $v_{\max } 3309,2923,2852,1646,1536,1452,1411,1367,1238,1179,1078,1030 \mathrm{~cm}^{-1} ; \mathrm{HR}$ ESI-TOF $m / z 1363.6921\left(M+\mathrm{H}^{+}, \mathrm{C}_{63} \mathrm{H}_{99} \mathrm{ClN}_{12} \mathrm{O}_{19}\right.$ requires 1362.6838); CD (MeOH , $0.20 \mathrm{mM}) \lambda_{\text {ext }} \mathrm{nm}(\Delta \varepsilon) 401(3.6), 244(-5.6), 281(1.6), 227(-7.1), 202(16.9) ;[\alpha]^{23}{ }_{\mathrm{D}}$ +24 (c 0.13, MeOH).

${ }^{1} \mathrm{H}$ NMR shift comparsion of synthetic and natural chlorofusin ${ }^{6, a}$					
${ }^{1} \mathrm{H}$ NMR shifts			${ }^{1} \mathrm{H}$ NMR shifts		
Position	1, natural	1, synthetic	Position	1, natural	1, synthetic
Thr-1			Leu-7		
NH	8.73 (br s)	8.75 (br s)	NH	9.08 (br s)	9.09 (br s)
$\alpha-\mathrm{CH}$	3.66 (br s)	3.66 (br m)	$\alpha-\mathrm{CH}$	3.95 (m)	3.95 (m) ${ }^{\text {b }}$
$\beta-\mathrm{CH}$	4.02 (m)	4.02 (m) ${ }^{\text {b }}$	$\beta-\mathrm{CH}_{2}$	1.60 (m)	1.60 (m) ${ }^{\text {b }}$
$\gamma-\mathrm{CH}_{3}$	1.16 (d)	1.16 (d) ${ }^{\text {b }}$	$\gamma-\mathrm{CH}$	1.71-1.88 (m)	1.70-1.86 (m)
OH	5.28 (br s)	5.29 (d)	$\delta-\mathrm{CH}_{3}{ }^{1}$	0.92 (d)	0.92 (m)
Ala-2			$\delta-\mathrm{CH}_{3}{ }^{2}$	0.82 (d)	0.82 (d)
NH	8.61 (d)	8.62 (s)	ADA-8		
$\alpha-\mathrm{CH}$	3.95 (m)	3.96 (m) ${ }^{\text {b }}$	NH	7.70 (d)	7.70 (d)
$\beta-\mathrm{CH}_{3}$	1.26 (br m)	1.27 (br m)	$\alpha-\mathrm{CH}$	4.02 (m)	4.02 (m) ${ }^{\text {b }}$
Asn-3			$\beta-\mathrm{CH}_{2}$	1.71-1.88 (m)	1.70-1.86 (m)
NH	6.93 (br s)	6.93 (br s)	$\gamma-\mathrm{CH}^{1}$	1.38 (m)	1.38 (m) ${ }^{\text {b }}$
$\alpha-\mathrm{CH}$	4.75 (dt)	4.75 (m)	$\gamma-\mathrm{CH}^{2}$	1.26 (br m)	1.27 (br m)
$\beta-\mathrm{CH}^{1}$	2.93 (dd)	2.93 (m)	$\delta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)
$\beta-\mathrm{CH}^{2}$	2.62 (dd)	2.63 (m)	$\varepsilon-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)
$\delta-\mathrm{NH}^{1}$	6.90 (br s)	6.91 (s)	$\zeta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)
$\delta-\mathrm{NH}^{2}$	6.82 (br s)	6.82 (s)	$\eta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)
Asn-4			$\theta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)
NH	7.84 (br s)	7.84 (br s)	${ }_{1-\mathrm{CH}}^{3}$	0.87 (t)	0.87 (t)
$\alpha-\mathrm{CH}$	4.41 (ddd)	4.40 (m)	Orn-9		
$\beta-\mathrm{CH}^{1}$	2.75 (dd)	2.75 (dd)	NH	6.69 (br s)	6.69 (br s)
$\beta-\mathrm{CH}^{2}$	2.48 (dd)	2.49 (m) ${ }^{\text {b }}$	$\alpha-\mathrm{CH}$	4.59 (brt)	4.59 (m)
$\delta-\mathrm{NH}^{1}$	7.24 (br s)	7.25 (s)	$\beta-\mathrm{CH}_{2}$	1.71-1.88 (m)	1.70-1.86 (m)
$\delta-\mathrm{NH}^{2}$	7.00 (br s)	7.01 (s)	$\gamma-\mathrm{CH}^{1}$	1.71-1.88 (m)	1.70-1.86 (m)
Leu-5			$\gamma-\mathrm{CH}^{2}$	1.55 (sextet)	1.54 (m) ${ }^{\text {b }}$
NH	7.51 (d)	7.51 (d)	$\delta-\mathrm{CH}_{2}$	3.42 (t, 2H)	3.42 (brt, 2H)
$\alpha-\mathrm{CH}$	4.48 (dt)	4.47 (m)	Chromophore		
$\beta-\mathrm{CH}^{1}$	1.60 (m)	1.60 (m) ${ }^{\text {b }}$	$1-\mathrm{CH}$	7.77 (s)	7.77 (s)
$\beta-\mathrm{CH}^{2}$	1.13 (br m)	1.13 (m) ${ }^{\text {b }}$	$8-\mathrm{CH}$	4.53 (d)	4.53 (d)
$\gamma-\mathrm{CH}$	1.41 (m)	1.41 (m) ${ }^{\text {b }}$	$10-\mathrm{CH}_{2}$	2.38 (br m)	2.38 (br m)
$\delta-\mathrm{CH}_{3}{ }^{1}$	0.78 (d)	0.78 (d)	$11-\mathrm{CH}_{2}$	2.0-2.2 (br m)	2.0-2.15 (br m)
$\delta-\mathrm{CH}_{3}{ }^{2}$	0.77 (d)	0.78 (d)	$12-\mathrm{CH}^{1}$	4.02 (m)	4.02 (m) ${ }^{\text {b }}$
Thr-6			$12-\mathrm{CH}^{2}$	3.78 (q)	3.78 (dd)
NH	7.07 (br s)	7.07 (s)	$13-\mathrm{CH}_{3}$	1.43 (s)	1.43 (s)
$\alpha-\mathrm{CH}$	3.92 (m)	3.92 (m) ${ }^{\text {b }}$	$14-\mathrm{OH}$	6.26 (d)	6.26 (d)
$\beta-\mathrm{CH}$	3.92 (m)	3.92 (m) ${ }^{\text {b }}$	$16-\mathrm{CH}_{2}$	2.34 (t)	2.34 (t)
$\gamma-\mathrm{CH}_{3}$	1.10 (d)	1.10 (d)	$17-\mathrm{CH}_{2}$	1.55 (sextet)	1.54 (m) ${ }^{\text {b }}$
OH	5.05 (br s)	5.05 (s)	$18-\mathrm{CH}_{3}$	0.92 (t)	0.92 (m)

[^0]| ${ }^{13} \mathrm{C}$ NMR shift comparsion of synthetic and natural chlorofusin ${ }^{6, a}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{13} \mathrm{C}$ NMR shifts | | | ${ }^{13} \mathrm{C}$ NMR shifts | | |
| Position | 1, natural | 1, synthetic | Position | 1, natural | 1, synthetic |
| Thr-1 | | | ADA-8 | | |
| α-carbonyl | 173.0 | 173.1 | α-carbonyl | 171.9 | 172.0 |
| $\alpha-\mathrm{CH}$ | 63.1 | $63.4{ }^{\text {b }}$ | α-CH | 53.9 | 54.1 |
| $\beta-\mathrm{CH}$ | 65.0 | 65.1 | $\beta-\mathrm{CH}_{2}$ | 30.0 | 30.1 |
| $\gamma-\mathrm{CH}_{3}$ | 20.3 | 20.4 | $\gamma-\mathrm{CH}_{2}$ | 25.9 | 26.0 |
| Ala-2 | | | $\delta-\mathrm{CH}_{2}$ | 28.6 | 28.7 |
| α-carbonyl | 171.6 | 171.5 | $\varepsilon-\mathrm{CH}_{2}$ | 28.5 | 28.7 |
| $\alpha-\mathrm{CH}$ | 50.8 | 50.9 | $\zeta-\mathrm{CH}_{2}$ | 28.4 | 28.6 |
| $\beta-\mathrm{CH}_{3}$ | 16.5 | 16.6 | $\mathrm{\eta}-\mathrm{CH}_{2}$ | 31.2 | 31.4 |
| Asn-3 | | | $\theta-\mathrm{CH}_{2}$ | 22.0 | 22.1 |
| α-carbonyl | 170-174 ${ }^{7}$ | 170-174 | ${ }_{1-C H}$ | 13.9 | 14.0 |
| $\alpha-\mathrm{CH}$ | 49.0 | 49.1 | Orn-9 | | |
| $\beta-\mathrm{CH}_{2}$ | 37.3 | 37.4 | α-carbonyl | 170-174 | 170-174 |
| γ-carbonyl | 170.9^{7} | 171.0 | α-CH | 51.2 | 51.2 |
| Asn-4 | | | $\beta-\mathrm{CH}_{2}$ | 28.3 | $28.4{ }^{\text {b }}$ |
| α-carbonyl | 170-174 | 170-174 | $\gamma-\mathrm{CH}_{2}$ | 27.0 | 27.1 |
| α-CH | 52.0 | 52.2 | $\delta-\mathrm{CH}_{2}$ | 50.5 | 50.6 |
| $\beta-\mathrm{CH}_{2}$ | 36.2 | 36.2 | Chromophore | | |
| γ-carbonyl | 170.3 | 170.4 | $1-\mathrm{CH}$ | 150.0 | 150.2 |
| Leu-5 | | | 2-C | 115.2 | 115.3 |
| α-carbonyl | 173.1 | 173.2 | 3-carbonyl | 188.1 | 188.3 |
| $\alpha-\mathrm{CH}$ | 49.2 | 49.2 | 4-C | 84.7 | 84.8 |
| $\beta-\mathrm{CH}_{2}$ | 38.7 | $39.0{ }^{\text {b }}$ | 5-carbonyl | 188.7 | 188.9 |
| $\gamma-\mathrm{CH}$ | 24.0 | 24.1 | 6-C | 101.3 | 101.4 |
| $\delta-\mathrm{CH}_{3}{ }^{1}$ | 23.2 | 23.3 | 7-C | 147.5 | 147.7 |
| $\delta-\mathrm{CH}_{3}{ }^{2}$ | 20.6 | 20.7 | $8-\mathrm{CH}$ | 68.4 | 68.6 |
| Thr-6 | | | 9-C | 96.7 | 96.8 |
| α-carbonyl | 170-174 | 170-174 | $10-\mathrm{CH}_{2}$ | 30.3 | 30.5 |
| $\alpha-\mathrm{CH}$ | 62.1 | 62.3 | $11-\mathrm{CH}_{2}$ | 25.1 | 25.2 |
| $\beta-\mathrm{CH}$ | 64.9 | 65.0 | $12-\mathrm{CH}_{2}$ | 68.4 | 68.5 |
| $\gamma-\mathrm{CH}_{3}$ | 20.2 | 20.3 | $13-\mathrm{CH}_{3}$ | 22.9 | $23.0{ }^{\text {b }}$ |
| Leu-7 | | | 15-carbonyl | 171.4 | 171.5 |
| α-carbonyl | 172.4 | 172.5 | $16-\mathrm{CH}_{2}$ | 34.4 | 34.5 |
| $\alpha-\mathrm{CH}$ | 52.7 | 52.8 | $17-\mathrm{CH}_{2}$ | 17.9 | 18.1 |
| $\beta-\mathrm{CH}_{2}$ | 38.7 | $38.9{ }^{\text {b }}$ | $18-\mathrm{CH}_{3}$ | 13.2 | 13.3 |
| $\gamma-\mathrm{CH}$ | 24.1 | 24.2 | | | |
| $\delta-\mathrm{CH}_{3}{ }^{1}$ | 23.1 | $23.0{ }^{\text {b }}$ | | | |
| $\delta-\mathrm{CH}_{3}{ }^{2}$ | 20.1 | 20.2 | | | |

${ }^{\text {a }}$ Values reported in ppm. Assignments made by analogy to 6-13, chlorofusin and using HMQC NMR.
${ }^{\text {b }}$ Chemical shift value determined by HMQC NMR.

${ }^{1} \mathrm{H}$ NMR shift comparsion of all four $4 R$ synthetic chlorofusin diastereomers to the natural product ${ }^{6, a}$					
Position	Natural chlorofusin	1, (4R, $8 \mathrm{~S}, 9 R$)	S25, (4R,8R,9R)	S27, (4R, $8 \mathrm{~S}, 9 \mathrm{~S}$)	S29, (4R,8R,9S)
Thr-1					
NH	8.73 (br s)	8.75 (br s)	8.85 (br s)	8.72 (br s)	9.08 (br s)
$\alpha-\mathrm{CH}$	3.66 (br s)	3.66 (br m)	3.63 (br m)	3.65 (br m)	3.69 (br m)
$\beta-\mathrm{CH}$	4.02 (m)	4.02 (m) ${ }^{\text {b }}$	4.01 (m) ${ }^{\text {b }}$	4.02 (m) ${ }^{\text {b }}$	4.02 (m) ${ }^{\text {b }}$
$\gamma-\mathrm{CH}_{3}$	1.16 (d)	1.16 (d) ${ }^{\text {b }}$	1.16 (d)	1.16 (d) ${ }^{\text {b }}$	1.16 (d) ${ }^{\text {b }}$
OH	5.28 (br s)	5.29 (d)	5.33 (d)	5.30 (d)	5.38 (d)
Ala-2					
NH	8.61 (d)	8.62 (s)	8.72 (s)	8.62 (s)	8.88 (s)
$\alpha-\mathrm{CH}$	3.95 (m)	3.96 (m) ${ }^{\text {b }}$	4.10 (m)	3.95 (m) ${ }^{\text {b }}$	3.95 (m) ${ }^{\text {b }}$
$\beta-\mathrm{CH}_{3}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
Asn-3					
NH	6.93 (br s)	6.93 (br s)	6.94 (br s)	6.93 (br s)	7.22 (br s)
$\alpha-\mathrm{CH}$	4.75 (dt)	4.75 (m)	4.78 (m)	4.74 (m)	4.75 (m)
$\beta-\mathrm{CH}^{1}$	2.93 (dd)	2.93 (m)	2.95 (m)	2.93 (m)	2.92 (m)
$\beta-\mathrm{CH}^{2}$	2.62 (dd)	2.63 (m)	2.58 (m)	2.63 (dd)	2.58 (m)
$\delta-\mathrm{NH}^{1}$	6.90 (br s)	6.91 (s)	6.89 (s)	6.89 (s)	6.92 (br s)
$\delta-\mathrm{NH}^{2}$	6.82 (br s)	6.82 (s)	6.89 (s)	6.74 (br s)	6.84 (s)
Asn-4					
NH	7.84 (br s)	7.84 (br s)	7.82 (br s)	7.84 (br s)	7.86 (br s)
$\alpha-\mathrm{CH}$	4.41 (ddd)	4.40 (m)	4.38 (m)	4.41 (m)	4.40 (m)
$\beta-\mathrm{CH}^{1}$	2.75 (dd)	2.75 (dd)	2.77 (dd)	2.75 (dd)	2.75 (m)
$\beta-\mathrm{CH}^{2}$	2.48 (dd)	2.49 (m) ${ }^{\text {b }}$			
$\delta-\mathrm{NH}^{1}$	7.24 (br s)	7.25 (s)	7.25 (s)	7.25 (s)	7.26 (s)
$\delta-\mathrm{NH}^{2}$	7.00 (br s)	7.01 (s)	7.01 (s)	7.01 (s)	7.01 (s)
Leu-5					
NH	7.51 (d)	7.51 (d)	7.52 (d)	7.50 (d)	7.56 (d)
$\alpha-\mathrm{CH}$	4.48 (dt)	4.47 (m)	4.48 (m)	4.47 (m)	4.47 (m)
$\beta-\mathrm{CH}^{1}$	1.60 (m)	1.60 (m) ${ }^{\text {b }}$	1.60 (m) ${ }^{\text {b }}$	1.60 (m) ${ }^{\text {b }}$	1.59 (m) ${ }^{\text {b }}$
$\beta-\mathrm{CH}^{2}$	1.13 (br m)	1.13 (m) ${ }^{\text {b }}$	1.12 (m) ${ }^{\text {b }}$	1.13 (m) ${ }^{\text {b }}$	1.13 (m) ${ }^{\text {b }}$
γ-CH	1.41 (m)	1.41 (m) ${ }^{\text {b }}$			
$\delta-\mathrm{CH}_{3}{ }^{1}$	0.78 (d)	0.78 (d)	0.77 (d)	0.77 (d)	0.78 (m)
$\delta-\mathrm{CH}_{3}{ }^{2}$	0.77 (d)	0.78 (d)	0.77 (d)	0.77 (d)	0.78 (m)
Thr-6					
NH	7.07 (br s)	7.07 (s)	7.12 (s)	7.08 (s)	7.09 (s)
$\alpha-\mathrm{CH}$	3.92 (m)	3.92 (m) ${ }^{\text {b }}$	3.92 (m) ${ }^{\text {b }}$	3.93 (m) ${ }^{\text {b }}$	3.91 (m) ${ }^{\text {b }}$
β-CH	3.92 (m)	3.92 (m) ${ }^{\text {b }}$	3.92 (m) ${ }^{\text {b }}$	3.93 (m) ${ }^{\text {b }}$	3.91 (m) ${ }^{\text {b }}$
$\gamma-\mathrm{CH}_{3}$	1.10 (d)	1.10 (d)	1.10 (d) ${ }^{\text {b }}$	1.10 (d)	1.09 (d)
OH	5.05 (br s)	5.05 (s)	5.01 (d)	5.08 (d)	5.04 (d)
Leu-7					
NH	9.08 (br s)	9.09 (br s)	9.09 (br s)	9.13 (br s)	9.08 (br s)
$\alpha-\mathrm{CH}$	3.95 (m)	3.95 (m) ${ }^{\text {b }}$	3.95 (m) ${ }^{\text {b }}$	3.95 (m) ${ }^{\text {b }}$	3.96 (m) ${ }^{\text {b }}$
$\beta-\mathrm{CH}_{2}$	1.60 (m)	1.60 (m) ${ }^{\text {b }}$	1.60 (m) ${ }^{\text {b }}$	1.60 (m) ${ }^{\text {b }}$	1.59 (m) ${ }^{\text {b }}$
γ-CH	1.71-1.88 (m)	1.70-1.86 (m)	1.70-1.96 (m)	1.73-1.89 (br m)	1.65-1.85 (m)
$\delta-\mathrm{CH}_{3}{ }^{1}$	0.92 (d)	0.92 (m)	0.92 (m)	0.91 (m)	0.92 (m)
$\delta-\mathrm{CH}_{3}{ }^{2}$	0.82 (d)	0.82 (d)	0.86 (m)	0.83 (d)	0.82 (d)
ADA-8					
NH	7.70 (d)	7.70 (d)	7.77 (d)	7.72 (d)	7.71 (d)
$\alpha-\mathrm{CH}$	4.02 (m)	4.02 (m) ${ }^{\text {b }}$			
$\beta-\mathrm{CH}_{2}$	1.71-1.88 (m)	1.70-1.86 (m)	1.70-1.96 (m)	1.73-1.89 (br m)	$1.65-1.85$ (m)
$\gamma-\mathrm{CH}^{1}$	1.38 (m)	1.38 (m) ${ }^{\text {b }}$			
$\gamma-\mathrm{CH}^{2}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
$\delta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
$\varepsilon-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
$\zeta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
$\eta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
$\theta-\mathrm{CH}_{2}$	1.26 (br m)	1.27 (br m)	1.26 (br m)	1.27 (br m)	1.26 (br m)
${ }^{1}-\mathrm{CH}_{3}$	0.87 (t)	0.87 (t)	0.86 (m)	0.87 (m)	0.87 (m)
Orn-9					
NH	6.69 (br s)	6.69 (br s)	6.76 (br s)	6.67 (br s)	6.67 (br s)
$\alpha-\mathrm{CH}$	4.59 (br t)	4.59 (m)	4.59 (m)	4.56 (m)	4.56 (m)
$\beta-\mathrm{CH}_{2}$	1.71-1.88 (m)	1.70-1.86 (m)	1.70-1.96 (m)	1.66 (m) ${ }^{\text {b }}$, 1.73-1.89 (br m)	1.65-1.85 (m)
$\gamma-\mathrm{CH}^{1}$	1.71-1.88 (m)	1.70-1.86 (m)	1.70-1.96 (m)	1.59 (m) ${ }^{\text {b }}$	$1.65-1.85$ (m)
$\gamma-\mathrm{CH}^{2}$	1.55 (sextet)	1.54 (m) ${ }^{\text {b }}$	1.55 (m) ${ }^{\text {b }}$	1.59 (m) ${ }^{\text {b }}$	1.55 (m) ${ }^{\text {b }}$
$\delta-\mathrm{CH}_{2}$	3.42 (t, 2H)	3.42 (brt, 2H)	3.43 (m), 3.50 (m)	3.35 (m, 2H) ${ }^{\text {b }}$	3.39 (m), 3.52 (m)
Chromophore					
1-CH	7.77 (s)	7.77 (s)	7.88 (s)	7.81 (s)	7.78 (s)
$8-\mathrm{CH}$	4.53 (d)	4.53 (d)	4.50 (d)	4.54 (d)	4.48 (d)
$10-\mathrm{CH}_{2}$	2.38 (br m)	2.38 (br m)	1.88 (br m) ${ }^{\text {b }}$	1.73-1.89 (br m)	2.40 (br m)
$11-\mathrm{CH}_{2}$	2.0-2.2 (m)	2.00-2.15 (br m)	1.93 (m) ${ }^{\text {b }}$, 2.06 (m)	1.93-2.07 (br m)	2.03 (m)
$12-\mathrm{CH}^{1}$	4.02 (m)	4.02 (m) ${ }^{\text {b }}$	4.23 (m)	4.22 (dd)	4.02 (m) ${ }^{\text {b }}$
$12-\mathrm{CH}^{2}$	3.78 (q)	3.78 (dd)	4.02 (m) ${ }^{\text {b }}$	4.02 (m) ${ }^{\text {b }}$	3.80 (dd)
$13-\mathrm{CH}_{3}$	1.43 (s)	1.43 (s)	1.41 (s)	1.41 (s)	1.38 (s)
$14-\mathrm{OH}$	6.26 (d)	6.26 (d)	5.98 (d)	5.98 (d)	6.38 (d)
$16-\mathrm{CH}_{2}$	2.34 (t)	2.34 (t)	2.34 (t)	2.33 (t)	2.34 (t)
$17-\mathrm{CH}_{2}$	1.55 (sextet)	1.54 (m) ${ }^{\text {b }}$	1.55 (m) ${ }^{\text {b }}$	1.54 (m) ${ }^{\text {b }}$	1.55 (m) ${ }^{\text {b }}$
$18-\mathrm{CH}_{3}$	0.92 (t)	0.92 (m)	0.92 (m)	0.91 (m)	0.92 (m)

[^1]| ${ }^{13} \mathrm{C}$ NMR shift comparsion of all four $4 R$ synthetic chlorofusin diastereomers to the natural product ${ }^{6, a}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Position | Natural chlorofusin | 1, (4R, $8 \mathrm{~S}, 9 R$) | S25, (4R, $8 R, 9 R$) | S27, (4R, $8 \mathrm{~S}, 9 \mathrm{~S}$) | S29, (4R, $8 R, 9 \mathrm{~S}$) |
| Thr-1 | | | | | |
| α-carbonyl | 173.0 | 173.1 | 173.1 | 173.2 | 173.0 |
| $\alpha-\mathrm{CH}$ | 63.1 | $63.4{ }^{\text {b }}$ | $63.6{ }^{\text {b }}$ | $63.5{ }^{\text {b }}$ | $63.2{ }^{\text {b }}$ |
| $\beta-\mathrm{CH}$ | 65.0 | 65.1 | 65.1 | 65.2 | 65.2 |
| $\gamma-\mathrm{CH}_{3}$ | 20.3 | 20.4 | $20.4{ }^{\text {D }}$ | $20.4{ }^{\text {D }}$ | 20.3 |
| Ala-2 | | | | | |
| α-carbonyl | 171.6 | 171.5 | 171.5 | 171.5 | 171.5 |
| $\alpha-\mathrm{CH}$ | 50.8 | 50.9 | 50.9 | 50.9 | 50.8 |
| $\beta-\mathrm{CH}_{3}$ | 16.5 | 16.6 | 16.5 | 16.5 | 16.6 |
| Asn-3 | | | | | |
| α-carbonyl | $170-174^{7}$ | 170-174 | 170-174 | 170-174 | 170-174 |
| $\alpha-\mathrm{CH}$ | 49.0 | 49.1 | 49.1 | 49.0 | 49.3 |
| $\beta-\mathrm{CH}_{2}$ | 37.3 | 37.4 | 37.5 | 37.5 | 37.4 |
| γ-carbonyl | 170.9^{7} | 171.0 | 171.2 | 170.9 | 171.1 |
| Asn-4 | | | | | |
| α-carbonyl | 170-174 | 170-174 | 170-174 | 170-174 | 170-174 |
| $\alpha-\mathrm{CH}$ | 52.0 | 52.2 | 52.3 | 52.1 | 52.1 |
| $\beta-\mathrm{CH}_{2}$ | 36.2 | 36.2 | 36.2 | 36.2 | 36.2 |
| γ-carbonyl | 170.3 | 170.4 | 170.4 | 170.5 | 170.5 |
| Leu-5 | | | | | |
| α-carbonyl | 173.1 | 173.2 | 173.2 | 173.3 | 173.1 |
| α-CH | 49.2 | 49.2 | 49.2 | $49.2{ }^{\text {b }}$ | 49.2 |
| $\beta-\mathrm{CH}_{2}$ | 38.7 | $39.0{ }^{\text {b }}$ | $39.0{ }^{\text {a }}$ | $39.0{ }^{\text {b }}$ | $39.0{ }^{\text {b }}$ |
| γ-CH | 24.0 | 24.1 | 24.1 | 24.1 | 24.1 |
| $\delta-\mathrm{CH}_{3}{ }^{1}$ | 23.2 | 23.3 | 23.4 | 23.2 | 23.4 |
| $\delta-\mathrm{CH}_{3}{ }^{2}$ | 20.6 | 20.7 | 20.7 | 20.7 | 20.7 |
| Thr-6 | | | | | |
| α-carbonyl | 170-174 | 170-174 | 170-174 | 170-174 | 170-174 |
| $\alpha-\mathrm{CH}$ | 62.1 | 62.3 | 62.4 | 62.3 | 62.2 |
| $\beta-\mathrm{CH}$ | 64.9 | 65.0 | 64.9 | 65.0 | 65.0 |
| $\gamma-\mathrm{CH}_{3}$ | 20.2 | 20.3 | $20.4{ }^{\text {b }}$ | $20.4{ }^{\text {b }}$ | 20.4 |
| Leu-7 | | | | | |
| α-carbonyl | 172.4 | 172.5 | 172.6 | 172.5 | 172.5 |
| α-CH | 52.7 | 52.8 | 52.7 | 52.8 | 52.8 |
| $\beta-\mathrm{CH}_{2}$ | 38.7 | $38.9{ }^{\text {b }}$ | $38.9{ }^{\text {a }}$ | $38.9{ }^{\text {b }}$ | $38.9{ }^{\text {b }}$ |
| $\gamma-\mathrm{CH}$ | 24.1 | 24.2 | 24.4 | 24.2 | 24.2 |
| $\delta-\mathrm{CH}_{3}{ }^{1}$ | 23.1 | $23.0{ }^{\text {b }}$ | 23.2 | 23.0 | 23.3 |
| $\delta-\mathrm{CH}_{3}{ }^{2}$ | 20.1 | 20.2 | 20.5 | 20.2 | 20.2 |
| ADA-8 | | | | | |
| α-carbonyl | 171.9 | 172.0 | 171.7 | 172.0 | 171.8 |
| α-CH | 53.9 | 54.1 | 53.9 | 54.1 | 54.0 |
| $\beta-\mathrm{CH}_{2}$ | 30.0 | 30.1 | 29.9 | 30.0 | 30.1 |
| $\gamma-\mathrm{CH}_{2}$ | 25.9 | 26.0 | 26.1 | 26.0 | 26.0 |
| $\delta-\mathrm{CH}_{2}$ | 28.6 | 28.7 | 28.7 | 28.7 | 28.7 |
| $\varepsilon-\mathrm{CH}_{2}$ | 28.5 | 28.7 | 28.7 | 28.7 | 28.7 |
| $\zeta-\mathrm{CH}_{2}$ | 28.4 | 28.6 | 28.5 | 28.6 | $28.6{ }^{\text {b }}$ |
| $\eta-\mathrm{CH}_{2}$ | 31.2 | 31.4 | 31.4 | 31.4 | 31.4 |
| $\theta-\mathrm{CH}_{2}$ | 22.0 | 22.1 | 22.1 | 22.1 | 22.1 |
| ${ }_{\mathrm{l}}^{-\mathrm{CH}_{3}}$ | 13.9 | 14.0 | 14.0 | 14.0 | 14.0 |
| Orn-9 | | | | | |
| α-carbonyl | 170-174 | 170-174 | 170-174 | 170-174 | 170-174 |
| $\alpha-\mathrm{CH}$ | 51.2 | 51.2 | 51.6 | 51.7 | 51.4 |
| $\beta-\mathrm{CH}_{2}$ | 28.3 | $28.4{ }^{\text {b }}$ | 28.3 | 28.3 | $28.6{ }^{\text {b }}$ |
| $\gamma-\mathrm{CH}_{2}$ | 27.0 | 27.1 | 26.8 | 27.0 | 27.2 |
| $\delta-\mathrm{CH}_{2}$ | 50.5 | 50.6 | 49.7 | $49.2{ }^{\text {b }}$ | 50.8 |
| Chromophore | | | | | |
| 1-CH | 150.0 | 150.2 | 149.7 | 149.4 | 150.6 |
| 2-C | 115.2 | 115.3 | 113.4 | 113.7 | 115.1 |
| 3-carbonyl | 188.1 | 188.3 | 188.9 | 188.0 | 189.1 |
| 4-C | 84.7 | 84.8 | 84.7 | 84.6 | 84.7 |
| 5-carbonyl | 188.7 | 188.9 | 189.0 | 188.9 | 188.7 |
| 6-C | 101.3 | 101.4 | 100.6 | 100.4 | 101.8 |
| 7-C | 147.5 | 147.7 | 148.3 | 148.4 | 148.2 |
| $8-\mathrm{CH}$ | 68.4 | 68.6 | 69.0 | 68.7 | 68.3 |
| 9-C | 96.7 | 96.8 | 97.9 | 97.7 | 96.9 |
| $10-\mathrm{CH}_{2}$ | 30.3 | 30.5 | 34.7 | 35.0 | 30.3 |
| $11-\mathrm{CH}_{2}$ | 25.1 | 25.2 | 24.5 | 24.7 | 25.3 |
| $12-\mathrm{CH}_{2}$ | 68.4 | 68.5 | 70.8 | 70.6 | 68.6 |
| $13-\mathrm{CH}_{3}$ | 22.9 | $23.0{ }^{\text {b }}$ | 23.6 | 23.4 | 23.5 |
| 15-carbonyl | 171.4 | 171.5 | 171.3 | 171.3 | 171.4 |
| $16-\mathrm{CH}_{2}$ | 34.4 | 34.5 | 34.5 | 34.6 | 34.5 |
| $17-\mathrm{CH}_{2}$ | 17.9 | 18.1 | 18.1 | 18.1 | 18.1 |
| $18-\mathrm{CH}_{3}$ | 13.2 | 13.3 | 13.3 | 13.3 | 13.3 |

[^2]${ }^{\mathrm{b}}$ Chemical shift value determined by HMQC NMR.

Authentic Natural Chlorofusin. An authentic, but aged, sample of natural chlorofusin (1 mg) received in 2003 from Dr. Stephen Wrigley of Cubist Pharmaceuticals [which had acquired Terragen Discovery Inc. which had in turn earlier aquired Xenova Discovery Ltd. that was responsible for the isolation of the natural product] was examined at the time of its receipt. A 0.4 mg portion of the sample failed to provide a discernable ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}, S. S. Pfeiffer and P. Desai, unpublished, Figure attached) and proved inactive in a p53-MDM2 inhibition assay at the concentrations tested (I. Hwang, unpublished). We refrigerated this and the remaining untouched sample in hopes of returning to it at a later date for further purification once we had the chromatographic behavior and properties of such molecules well in hand. Last week (May 3, 2007) and following the Yao disclosure (web 5-2-07) as well as following the completion of our own studies detailed herein, we elected to begin a reexamination of this sample. The CD spectrum of the prior NMR sample $(0.4 \mathrm{mg})$ was examined and it exhibited a positive long wavelength Cotton effect and empirically appeared nearly identical in shape to the CD spectrum of $\mathbf{9}$ and synthetic 1, but of an intensity that indicated that most of the material did not appear to be chlorofusin. The remaining untouched sample was purified by filtration and extensively dried (from a solution of anhydrous HPLC grade methanol by a stream of nitrogen ($\times 3$), followed by reduced pressure for 48 h). This treatment provided a sample of natural chlorofusin that displayed a CD spectrum (sign and magnitude) identical to our synthetic material confirming the absolute configuration assignment. Its ${ }^{1} \mathrm{H}$ NMR spectrum, though broadened and still containing residual impurities, clearly matches that reported by Williams and is of a quality that insures its CD and ${ }^{1} \mathrm{H}$ NMR spectra represent those of the natural product reported by Williams.

References:

1. Wei, W.-G.; Yao, Z.-J. J. Org. Chem. 2005, 70, 4585-4590.
2. Atomic coordinates for S13A (CCDC646443) have been deposited with the Cambridge Crystallographic Data Center.
3. Atomic coordinates for S13B (CCDC646442) have been deposited with the Cambridge Crystallographic Data Center.
4. Atomic coordinates for S19D (CCDC646441) have been deposited with the Cambridge Crystallographic Data Center.
5. Desai, P.; Pfeiffer, S. S.; Boger, D. L. Org. Lett. 2003, 5, 5047-5050.
6. Duncan, S. J.; Grueschow, S.; Williams, D. H.; McNicholas, C.; Purewal, R.; Hajek, M.; Gerlitz, M.; Martin, S.; Wrigley, S. K.; Moore, M., J. Am. Chem. Soc. 2001, 123, 554-560. Correction: J. Am. Chem. Soc. 2002, 124, 14503.
7. Duncan, S. J.; Williams, D. H.; Ainsworth, M.; Martin, S.; Ford, R.; Wrigley, S. K. Tetrahedron Lett. 2002, 43, 1075-1078.

(

$6 \chi^{\prime} \varepsilon 1$
90＊81
9 9＇0Z $^{\text {O }}$
て0＇६て
8て＇¢乙
て¢ ${ }^{\circ}$ L
18.88
七て＇0¢
てs＇ャ¢

69.97
$97^{\circ} 09$
88.89
$98 . \angle 9$
92.99
10.99
$9 Z .99$
67.89
$Z 9^{\circ} .89$
$L L^{\prime} \downarrow 8 \longrightarrow$

9ع'LOL

	SE＊SIL
	LLOZL
	$98^{\circ} \mathrm{GZL}$
	Sl＊LZ
	0ぐLZ
	Z8．LZし
	10＊8て1
	とャ－8てレ
	ع0＇9\＆L
	LLOカー
	カ8®もー
	て6とカレ
	99＊ くも
	0ع＊OSL
	10．99L

\qquad
LG＇ZLL
$87^{\circ} 881$
L8．881 \qquad

[^0]: ${ }^{\text {a }}$ Values reported in ppm. Assignments made by analogy to 6-13, chlorofusin and using HMQC NMR.
 ${ }^{\mathrm{b}}$ Chemical shift value determined by HMQC NMR.

[^1]: ${ }^{\text {a }}$ Values reported in ppm. Assignments made by analogy to 6-13, chlorofusin and using HMQC NMR.
 ${ }^{\mathrm{b}}$ Chemical shift value determined by HMQC NMR.
 S48

[^2]: ${ }^{9}$ Values reported in ppm. Assignments made by analogy to 6-13, chlorofusin and using HMQC NMR.

