Supporting Information

Total Synthesis of Methyl Sarcophytoate

Takahiro Ichige, Yusuke Okano, Naoki Kanoh, and Masaya Nakata*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

E-mail: msynktxa@applc.keio.ac.jp

General.

The optical rotations were measured on a JASCO DIP-360 polarimeter. The IR spectra were recorded using a JASCO FT IR-200 spectrometer. The 1 H and 13 C NMR spectra were measured by a JEOL GSX-270, a JEOL Lambda 300, a Varian MERCURY plus 300, or a Bruker AVANCE 500 spectrometer at ambient temperature. Chemical shifts of the 1 H NMR spectra are expressed in ppm relative to the solvent residual signal 7.26 in CDCl₃ or to tetramethylsilane ($\delta = 0.00$). Chemical shifts of the 13 C NMR spectra are expressed in ppm relative to the solvent signal 77.16 in CDCl₃ unless otherwise noted. The high and low resolution mass spectra were recorded using a JEOL GC mate (EI). Analytical thin layer chromatography (TLC) was performed using Merck TLC 60F-254 plates (0.25 mm), and visualization was accomplished with ethanolic phosphomolybudic acid. Column chromatography was performed on Fuji silysia PSQ 100 B silica gel. All reactions requiring anhydrous conditions were carried out in oven-dried glassware under an argon atmosphere. Organic solvents were distilled by appropriate procedures and stored under argon atmosphere.

(3S,6E)-8-(4-Methoxybenzyloxy)-2,6-dimethylocta-1,6-dien-3-ol (5).

 $R_{\rm f}$ = 0.27 (2:1 hexane–EtOAc).

 $[\alpha]_{\rm D}^{26}$ -7.54 (*c* 2.16, CHCl₃).

IR (neat) cm⁻¹ 3430, 2940, 2860, 1615, 1585, 1515, 1440, 1370, 1300, 1250, 1175, 1110, 1070, 1040, 900, 820, 760.

¹H NMR (300 MHz, CDCl₃) δ 1.60–1.76 (2H, m), 1.65 (3H, br s), 1.72 (3H, br s), 1.95–2.20 (2H, m), 3.80 (3H, s), 3.96–4.09 (1H, m), 3.99 (2H, d, J = 7.0 Hz), 4.43 (2H, s), 4.84 (1H, br s), 4.94 (1H, br s), 5.42 (1H, tq, J = 7.0 Hz, 1.0 Hz), 6.87 (2H, d, J = 9.0 Hz), 7.27 (2H, d, J = 9.0 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 16.68, 17.70, 32.98, 35.63, 55.38, 66.36, 71.85, 75.66, 111.26, 113.84, 121.26, 129.54, 130.69, 140.10, 147.50, 159.22.

MS (EI) m/z 290 (M⁺); HRMS (EI) m/z calcd for $C_{18}H_{26}O_3$ (M⁺) 290.1882, found 290.1874. Enantiomeric excess was determined to be >98% by comparing the ¹H NMR of (S)-MTPA and (R)-MTPA esters of 5. The absolute configuration of 5 was determined by the modified

Mosher ester analysis shown in SI-Figure 1.

R = (S)- or (R)-MTPA ester

SI-Figure 1. $\Delta\delta$ ($\delta_S - \delta_R$) values of MTPA esters of **5**.

(3Z,5S,8E)-10-(4-Methoxybenzyloxy)-4,8-dimethyldeca-3,8-dien-5-olide (8).

 $R_{\rm f}$ = 0.25 (2:1 hexane–EtOAc).

 $[\alpha]_{\rm D}^{27}$ +36.9 (c 1.87, CHCl₃).

IR (neat) cm⁻¹ 2940, 2860, 1740, 1615, 1585, 1515, 1440, 1390, 1360, 1300, 1250, 1215, 1180, 1070, 1040, 930, 820, 755.

¹H NMR (300 MHz, CDCl₃) δ 1.62 (3H, s), 1.65–1.79 (1H, m), 1.71 (3H, d, J = 2.0 Hz), 1.88–2.28 (3H, m), 2.95–3.04 (2H, m), 3.77 (3H, s), 3.97 (2H, d, J = 7.0 Hz), 4.41 (2H, s), 4.76 (1H, dd, J = 7.5 Hz, 3.0 Hz), 5.39 (1H, tq, J = 7.0 Hz, 1.0 Hz), 5.48 (1H, br s), 6.85 (2H, d, J = 9.0 Hz), 7.24 (2H, d, J = 9.0 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 16.65, 18.82, 29.93, 31.97, 33.84, 55.26, 66.23, 71.88, 82.56, 113.74, 116.58, 121.72, 129.42, 130.50, 132.69, 138.83, 159.14, 169.37.

MS (EI) m/z 330 (M⁺); HRMS (EI) m/z calcd for $C_{20}H_{26}O_4$ (M⁺) 330.1831, found 330.1845.

(2R,3S,5Z,7S,10E)-2,3-Epoxy-12-(4-methoxybenzyloxy)-2,6,10-trimethyl-7-(triethylsiloxy)dodeca-5,10-dien-1-al (10).

 $R_{\rm f} = 0.78$ (2:1 hexane–EtOAc).

 $[\alpha]_{\rm D}^{27}$ +41.5 (c 2.27, CHCl₃).

IR (neat) cm⁻¹ 2950, 2910, 2880, 1730, 1615, 1585, 1515, 1460, 1380, 1300, 1250, 1175, 1080, 1040, 1010, 820, 740.

¹H NMR (300 MHz, CDCl₃) δ 0.56 (6H, q, J = 8.0 Hz), 0.94 (9H, t, J = 8.0 Hz), 1.43 (3H, s), 1.46–1.61 (1H, m), 1.64 (3H, br s), 1.71 (3H, br s), 1.66–1.80 (1H, m), 1.82–1.98 (1H, m), 2.00–2.16 (1H, m), 2.20–2.40 (1H, m), 2.40–2.60 (1H, m), 3.01 (1H, t, J = 7.0 Hz), 3.80 (3H, s), 3.98 (2H, d, J = 7.0 Hz), 4.36–4.46 (1H, m), 4.43 (2H, s), 5.16 (1H, br t, J = 7.0 Hz), 5.39 (1H, br t, J = 7.0 Hz), 6.87 (2H, d, J = 9.0 Hz), 7.27 (2H, d, J = 9.0 Hz), 8.85 (1H, s).

¹³C NMR (75 MHz, CDCl₃) δ 4.98, 7.00, 10.16, 16.82, 18.30, 26.76, 34.69, 35.96, 55.41, 59.47, 62.47, 66.42, 70.35, 71.97, 113.87, 118.40, 120.99, 129.53, 130.72, 140.12, 142.46, 159.26, 200.02.

MS (EI) m/z 502 (M⁺); HRMS (EI) m/z calcd for $C_{29}H_{46}O_5Si$ (M⁺) 502.3115, found 502.3136.

tert-Butyl (3*S*,4*S*,5*S*,7*Z*,9*S*,12*E*)-4,5-Epoxy-3-hydroxy-14-(4-methoxybenzyloxy)-4,8,12-trimethyl-9-(triethylsiloxy)tetradeca-7,12-dienoate (11a).

 $R_{\rm f}$ = 0.53 (3:1 hexane–EtOAc).

 $[\alpha]_{D}^{27}$ -15.3 (c 2.41, CHCl₃).

IR (neat) cm⁻¹ 3470, 2955, 2880, 1730, 1615, 1515, 1455, 1370, 1250, 1155, 1070, 1040, 1010, 820, 745.

¹H NMR (300 MHz, CDCl₃) δ 0.56 (6H, q, J = 8.0 Hz), 0.93 (9H, t, J = 8.0 Hz), 1.29 (3H, s), 1.46 (9H, s), 1.63 (3H, br s), 1.70 (3H, br s), 1.40–1.78 (1H, m), 1.80–2.16 (2H, m), 2.16–2.46 (2H, m), 2.37 (1H, dd, J = 16.5 Hz, 9.5 Hz), 2.52 (1H, dd, J = 16.5 Hz, 3.0 Hz), 2.87 (1H, d, J = 2.0 Hz), 2.95 (1H, t, J = 6.5 Hz), 3.80 (3H, s), 3.85 (1H, dt, J = 9.0 Hz, 2.0 Hz), 3.98 (2H, d, J = 6.5 Hz), 4.42 (1H, t, J = 6.8 Hz), 4.43 (2H, s), 5.15 (1H, br t, J = 7.5 Hz), 5.39 (1H, tq, J = 6.5 Hz, 1.0 Hz), 6.87 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 4.96, 7.01, 13.29, 16.82, 18.10, 27.00, 28.20, 34.66, 36.00, 38.64, 55.40, 60.70, 61.87, 66.41, 70.35, 71.21, 71.88, 81.54, 113.85, 119.50, 120.84, 129.54, 130.76, 140.32, 141.27, 159.23, 171.59.

MS (EI) m/z 561 [(M-tBu) $^+$]; HRMS (EI) m/z calcd for C₃₁H₄₉O₇Si [(M-tBu) $^+$] 561.3248, found 561.3247.

tert-Butyl (3*R*,4*S*,5*S*,7*Z*,9*S*,12*E*)-4,5-Epoxy-3-hydroxy-14-(4-methoxybenzyloxy)-4,8,12-trimethyl-9-(triethylsiloxy)tetradeca-7,12-dienoate (11b).

 $R_{\rm f}$ = 0.42 (3:1 hexane–EtOAc).

 $[\alpha]_{\rm D}^{27}$ -1.07 (c 2.43, CHCl₃).

IR (neat) cm⁻¹ 3450, 2950, 2910, 2880, 1730, 1615, 1585, 1515, 1460, 1415, 1370, 1300, 1250, 1170, 1150, 1070, 1040, 1010, 980, 955, 850, 820, 745.

¹H NMR (300 MHz, CDCl₃) δ 0.56 (6H, q, J = 8.0 Hz), 0.93 (9H, t, J = 8.0 Hz), 1.29 (3H, s), 1.47 (9H, s), 1.48–1.78 (2H, m), 1.63 (3H, br s), 1.69 (3H, br s), 1.82–1.97 (1H, m), 1.98–2.28 (2H, m), 2.30–2.50 (3H, m), 2.86 (1H, d, J = 4.0 Hz), 2.94 (1H, t, J = 6.5 Hz), 3.72–3.82 (1H, m), 3.80 (3H, s), 3.98 (2H, d, J = 6.5 Hz), 4.38–4.46 (1H, m), 4.42 (2H, s), 5.13 (1H, br t, J = 6.5 Hz), 5.38 (1H, tq, J = 6.5 Hz, 1.0 Hz), 6.87 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz).

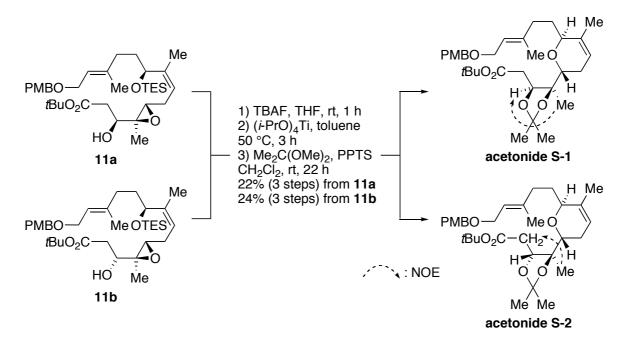
¹³C NMR (75 MHz, CDCl₃) δ 4.95, 7.01, 12.58, 16.83, 18.09, 26.92, 28.20, 34.66, 35.98, 38.88, 55.40, 60.46, 62.57, 66.40, 70.34, 71.88, 72.33, 81.58, 113.85, 119.50, 120.82, 129.54, 130.74, 140.32, 141.26, 159.22, 171.31.

MS (EI) m/z 561 [(M-tBu) $^+$]; HRMS (EI) m/z calcd for C₃₁H₄₉O₇Si [(M-tBu) $^+$] 561.3248, found 561.3257.

Structure Determination of 11a (SI-Figure 2). To a stirred solution of 11a (26.6 mg, 0.0430

mmol) in dry THF (0.215 mL) was added 1.0 M THF solution of TBAF (0.0860 mL, 0.0860 mmol) at room temperature. After 1 h at room temperature, saturated aqueous solution of NH₄Cl (0.5 mL) and water (1 mL) were added and the mixture was extracted with EtOAc (1 mL×3). The extracts were washed with brine (1 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (1.0 g of silica gel, 1:1 hexane–EtOAc) to afford alcohol (21.6 mg, 99%) as a colorless syrup. To a stirred solution of this alcohol (6.1 mg, 0.0121 mmol) in dry toluene (0.605 mL) was added (i-PrO)₄Ti (0.0036 mL, 0.0121 mmol) in dry toluene (0.806 mL) and the solution was heated at 50 °C for 3 h. After cooling to room temperature, water (2 mL) was added and the mixture was extracted with EtOAc (2 mL×3). The extracts were washed with brine (2 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (1.0 g of silica gel, 3:1 hexane–EtOAc) to afford dihydropyran (2.4 mg, 40%) as a colorless syrup. A solution of this **dihydropyran** (8.2 mg, 0.0162 mmol) in dry CH₂Cl₂ (0.0810 mL) were added 2,2-dimethoxypropane (0.0199 mL, 0.162 mmol) and PPTS (0.4 mg, 0.00162 mmol) at room temperature. After 22 h at room temperature, saturated aqueous solution of NaHCO₃ (0.5 mL) and water (1 mL) were added. The mixture was extracted with CHCl₃ (1 mL×3) and the extracts were washed with brine (1 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (1.0 g of silica gel, 3:1 hexane–EtOAc) to afford acetonide S-1 (5.0 mg, 56%) as a colorless syrup.

 $R_{\rm f}$ = 0.71 (2:1 hexane–EtOAc).


 $[\alpha]_{D}^{27}$ +17.5 (c 0.92, CHCl₃).

IR (neat) cm⁻¹ 2980, 2935, 2860, 1735, 1610, 1515, 1460, 1370, 1310, 1250, 1155, 1100, 1070, 1045, 1000, 935, 850, 820.

¹H NMR (300 MHz, CDCl₃) δ 1.26 (3H, s), 1.38 (6H, s), 1.46 (9H, s), 1.50–1.78 (2H, m), 1.62 (3H, br s), 1.68 (3H, br s), 1.90–2.24 (3H, m), 2.26–2.44 (1H, m), 2.52 (1H, dd, J = 16.5 Hz, 9.0 Hz), 2.84 (1H, dd, J = 16.5 Hz, 3.0 Hz), 3.70 (1H, dd, J = 10.0 Hz, 3.5 Hz), 3.80 (3H, s), 3.91 (1H, br s), 4.00 (2H, d, J = 6.5 Hz), 4.25 (1H, dd, J = 9.5 Hz, 3.0 Hz), 4.44 (2H, s), 5.46 (1H, t, J = 6.5 Hz), 5.54 (1H, m), 6.87 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 16.79, 18.65, 20.22, 25.61, 26.67, 28.27, 28.41, 29.71, 35.69, 37.59, 55.42, 66.44, 67.22, 71.94, 79.88, 80.95, 82.65, 107.44, 113.86, 120.02, 121.42, 129.58, 130.74, 134.58, 140.02, 159.26, 170.75.

MS (EI) m/z 544 (M⁺); HRMS (EI) m/z calcd for $C_{32}H_{48}O_7$ (M⁺) 544.3400, found 544.3418.

SI-Figure 2. Structure determination of 11.

Structure Determination of 11b (SI-Figure 2). Acetonide S-2 was synthesized from 11b (24% in 3 steps) by the same procedure as described above.

 $R_{\rm f}$ = 0.63 (2:1 hexane–EtOAc).

 $[\alpha]_{\rm D}^{27}$ +16.4 (*c* 1.76, CHCl₃).

IR (neat) cm⁻¹ 2980, 2935, 2860, 1735, 1610, 1515, 1455, 1370, 1305, 1250, 1155, 1100, 950, 850.

¹H NMR (300 MHz, CDCl₃) δ 1.11 (3H, s), 1.36 (3H, s), 1.44 (9H, s), 1.52–1.76 (2H, m), 1.61 (3H, br s), 1.66 (3H, br s), 1.88–2.34 (4H, m), 2.49 (1H, dd, J = 16.0 Hz, 9.5 Hz), 2.68 (1H, dd, J = 16.0 Hz, 2.5 Hz), 3.54 (1H, dd, J = 10.5 Hz, 3.0 Hz), 3.80 (3H, s), 3.92 (1H, d, J = 9.5 Hz), 4.00 (2H, d, J = 6.5 Hz), 4.32 (1H, dd, J = 9.5 Hz, 2.5 Hz), 4.42 (2H, s), 5.42 (1H, t, J = 6.5 Hz), 5.51 (1H, m), 6.87 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 16.70, 17.16, 20.09, 25.50, 26.87, 28.24, 28.76, 29.20, 36.24, 37.08, 55.40, 66.41, 71.78, 72.04, 76.49, 78.80, 80.88, 82.34, 107.93, 113.84, 119.26, 121.56, 129.53, 130.78, 135.32, 139.88, 159.23, 170.45.

MS (EI) m/z 544 (M⁺); HRMS (EI) m/z calcd for $C_{32}H_{48}O_7$ (M⁺) 544.3400, found 544.3425.

(2*E*,5*S*,6*R*,7*R*,9*Z*,11*S*,14*E*)-7,11-Epoxy-5,6-(isopropylidenedioxy)-16-(4-methoxybenzylox y)-2,6,10,14-tetramethylhexadeca-2,9,14-trien-1-ol (13). To a -78 °C solution of 12 (343 mg, 0.487 mmol) in dry MeOH (9.7 mL) was added BF₃•OEt₂ (0.184 mL, 1.46 mmol) and the resulting solution was warmed up to 0 °C over 2 h. After 1 h at 0 °C, saturated aqueous solution of NaHCO₃ (3 mL) and water (6 mL) were added. This was extracted with 1:1 hexane–EtOAc (9 mL×3) and the extracts were washed with brine (9 mL), dried over Na₂SO₄,

and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (11.6 g of silica gel, 1:2 hexane–EtOAc) to afford dihydropyran (224 mg, 97%) as a colorless syrup [$R_f = 0.20$ (1:1 hexane–EtOAc); $[\alpha]_D^{27}$ +16.7 (c 1.21, CHCl₃); IR (neat) cm⁻¹ 3420, 2935, 2860, 1735, 1610, 1515, 1455, 1440, 1375, 1300, 1250, 1175, 1070, 1040, 930, 820; ¹H NMR (300 MHz, CDCl₃) δ 1.28 (3H, s), 1.58–1.78 (2H, m), 1.63 (3H, br s), 1.66 (3H, br s), 1.69 (3H, br s), 1.92–2.48 (6H, m), 3.63 (1H, dd, J = 10.5 Hz, 2.5 Hz), 3.67 (1H, dd, J = 11.0 Hz, 3.5 Hz), 3.80 (3H, s), 3.92-4.06 (5H, m), 4.44 (2H, s), 5.43 (1H, br t, J = 6.5 Hz), 5.47 - 5.64 (2H, m), 6.88 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz); 13 C NMR (75 MHz, CDCl₃) δ 14.17, 16.72, 19.60, 20.01, 25.10, 29.53, 29.77, 36.59, 55.42, 66.45, 68.72, 70.97, 71.98, 74.91, 75.31, 77.05, 113.89, 119.68, 121.54, 122.52, 129.62, 130.62, 135.06, 138.21, 139.85, 159.28; MS (EI) m/z 456 $[(M-H_2O)^+]$; HRMS (EI) m/z calcd for $C_{28}H_{40}O_5$ [(M-H₂O)⁺] 456.2876, found 456.2855]. To a solution of this **dihydropyran** (121) mg, 0.255 mmol) in dry CH₂Cl₂ (2.6 mL) were added 2,2-dimethoxypropane (0.313 mL, 2.55 mmol) and PPTS (6.4 mg, 0.0255 mmol) at room temperature. After 1 h at room temperature, dry MeOH (2.6 mL) was added and the solution was stirred for 5 min. This was cooled to 0 °C and saturated aqueous solution of NaHCO₃ (1 mL) and water (3 mL) were added. The mixture was extracted with 1:1 hexane-EtOAc (4 mL×3) and the extracts were washed with brine (4 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (7.3 g of silica gel, 2:1 hexane-EtOAc) to afford 13 (134 mg, 91%) as a colorless syrup.

 $R_{\rm f}$ = 0.55 (1:1 hexane–EtOAc).

 $[\alpha]_D^{26}$ +9.58 (c 1.16, CHCl₃).

IR (neat) cm⁻¹ 3440, 2985, 2935, 2860, 1615, 1515, 1450, 1380, 1300, 1250, 1180, 1095, 1070, 1040, 930, 855, 820.

¹H NMR (300 MHz, CDCl₃) δ 1.27 (3H, s), 1.34 (3H, s), 1.38 (3H, s), 1.56–1.76 (2H, m), 1.60 (3H, br s), 1.62 (3H, br s), 1.70 (3H, br s), 1.87–2.44 (6H, m), 2.57 (1H, ddd, J = 15.0 Hz, 8.0 Hz, 3.5 Hz), 3.70–3.82 (2H, m), 3.80 (3H, s), 3.90 (1H, br d, J = 8.0 Hz), 3.94–4.04 (4H, m), 4.42 (2H, s), 5.35 (1H, br t, J = 6.0 Hz), 5.56 (2H, br s), 6.87 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 14.09, 16.55, 19.16, 20.18, 25.93, 26.71, 27.89, 28.38, 29.43, 37.57, 55.38, 66.45, 67.18, 68.94, 71.88, 77.25, 82.89, 84.09, 107.12, 113.86, 120.19, 121.70, 122.84, 129.65, 130.41, 134.63, 136.99, 139.27, 159.28.

MS (EI) m/z 514 (M⁺); HRMS (EI) m/z calcd for $C_{31}H_{46}O_6$ (M⁺) 514.3294, found 514.3294.

(2*E*,6*S*,7*Z*,10*R*,11*R*,12*S*,14*S*)-6,10:14,15-Diepoxy-11,12-(isopropylidenedioxy)-3,7,11,15-tetramethyl-1-(phenylthio)hexadeca-2,7-diene (14). To a mixture of L-(+)-DET (2.35 mg, 0.0114 mmol) and MS4AP (78.4 mg) in dry CH_2Cl_2 (0.381 mL) was added (*i*-PrO)₄Ti (0.00227 mL, 0.00762 mmol) at 0 °C. After 0.5 h at 0 °C, the reaction mixture was cooled to

-40 °C and 3.98 M CH₂Cl₂ solution of TBHP (0.0382 mL, 0.152 mmol) was added. After 0.5 h at -40 °C, a solution of 13 (39.2 mg, 0.0762 mmol) in dry CH₂Cl₂ (0.254 mL) was added and the resulting mixture was stirred at -40 °C for 17 h. The reaction was quenched with water (1 mL) and the organic layer was separated. The aqueous layer was extracted with EtOAc (1 mL×3) and the combined organic layers were washed with brine (1 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (2.0 g of silica gel, 4:1 hexane-EtOAc to 3:1 hexane-EtOAc) to afford **epoxide** (38.2 mg, 95%) as a colorless syrup [$R_f = 0.44$ (1:1 hexane–EtOAc); $[\alpha]_D^{27}$ +7.30 (c 1.89, CHCl₃); IR (neat) cm⁻¹ 3450, 2985, 2935, 2860, 1615, 1515, 1455, 1380, 1300, 1250, 1220, 1180, 1095, 1070, 1040, 930, 870, 850, 820; ¹H NMR (300 MHz, CDCl₃) δ 1.24 (3H, s), 1.32 (3H, s), 1.37 (3H, s), 1.39 (3H, s), 1.54–1.74 (8H, m), 1.86–2.38 (6H, m), 3.24 (1H, dd, J = 7.5 Hz, 5.0 Hz), 3.54 (1H, d, J = 12.0 Hz), 3.59 (1H, d, J = 12.0 Hz), 3.74 (1H, dd, J = 10.0 Hz, 4.0 Hz), 3.80 (3H, s), 3.89 (1H, br), 3.96 (1H, dd, J = 9.0 Hz, 4.5 Hz), 4.00 (2H, d, J = 7.0 Hz), 4.43 (2H, s), 5.37 (1H, br t, J = 7.0 Hz), 5.55 (1H, m), 6.88 (2H, d, J = 8.5)Hz), 7.27 (2H, d, J = 8.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 14.75, 16.83, 18.52, 20.18, 25.71, 26.76, 28.42, 28.56, 29.37, 37.47, 55.40, 58.70, 61.51, 65.99, 66.51, 67.02, 72.07, 81.22, 82.88, 107.42, 113.89, 120.12, 121.44, 129.68, 130.38, 134.56, 139.47, 159.33; MS (EI) m/z 530 (M⁺); HRMS (EI) m/z calcd for $C_{31}H_{46}O_7$ (M⁺) 530.3243, found 530.3253]. To a solution of this epoxide (212 mg, 0.399 mmol), PPh₃ (209 mg, 0.797 mmol), and imidazole (108 mg, 1.59 mmol) in dry CH₂Cl₂ (9.5 mL) was added I₂ (181 mg, 0.718 mmol) at 0 °C. The resulting mixture was shielded from light and stirred at 0 °C for 3 h. Saturated aqueous solution of Na₂S₂O₃ (2 mL) and saturated aqueous solution of NaHCO₃ (2.0 mL) were added and the organic layer was separated. The aqueous layer was extracted with hexane (4 mL×3) and the combined organic layers were washed with brine (4 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (12.8 g of silica gel, 4:1 hexane–EtOAc) to afford iodide (238 mg, 93%) as a colorless syrup [R_f = 0.83 (2:1 hexane–EtOAc); [α]_D²⁷ +8.61 (c 2.13, CHCl₃); IR (neat) cm⁻¹ 2985, 2935, 2860, 1735, 1615, 1585, 1515, 1455, 1380, 1300, 1250, 1220, 1185, 1170, 1095, 1070, 1045, 930, 870, 850, 820; ¹H NMR (300 MHz, CDCl₃) δ 1.24 (3H, s), 1.36 (3H, s), 1.39 (3H, s), 1.47 (3H, s), 1.61 (3H, br s), 1.66 (3H, br s), 1.56–1.72 (2H, m), 1.82-2.36 (6H, m), 3.12 (1H, d, J = 10.0 Hz), 3.14 (1H, dd, J = 5.5 Hz, 2.5 Hz), 3.19 (1H, d, J = 10.0 Hz), 3.73 (1H, dd, J = 10.5 Hz, 4.0 Hz), 3.80 (3H, s), 3.85 - 3.93 (1H, m), 3.93 (1H, dd, J = 9.5 Hz, 4.5 Hz), 4.00 (2H, d, J = 6.5 Hz), 4.43 (2H, s), 5.39 (1H, tq, J = 6.5 Hz, 1.0 Hz), 5.55 (1H, m), 6.88 (2H, d, J = 8.5 Hz), 7.27 (2H, d, J = 8.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 14.04, 16.65, 17.05, 18.56, 20.20, 25.68, 26.75, 28.42, 29.31, 29.54, 37.40, 55.41, 60.56, 64.67, 66.49, 66.99, 72.05, 80.96, 82.86, 107.45, 113.89, 120.04, 121.46, 129.61, 130.60, 134.55, 139.56, 159.26; MS (EI) m/z 640 (M⁺); HRMS (EI) m/z calcd for $C_{31}H_{45}O_{6}I$ (M⁺) 640.2261, found 640.2268]. To a solution of this **iodide** (65.6 mg, 0.102 mmol) in dry THF (1.0 mL) was

added NaBH₃CN (96.5 mg, 1.54 mmol) and the resulting mixture was stirred at 50 °C for 18 h. After cooling to 0 °C, water (2 mL) was added and the mixture was extracted with EtOAc (2 mL×3). The extracts were washed with brine (2 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (2.95 g of silica gel, 7:1 hexane–EtOAc) to afford the reduction product (38.6 mg, 73%) as a colorless syrup [R_f = 0.48 (4:1 hexane–EtOAc); [α]_D²⁷ +9.55 (c 0.94, CHCl₃); IR (neat) cm⁻¹ 2985, 2930, 2855, 1735, 1610, 1515, 1460, 1380, 1300, 1250, 1220, 1185, 1170, 1095, 1070, 1040, 1010, 930, 870, 850, 815; ¹H NMR (300 MHz, CDCl₃) δ 1.24 (3H, s), 1.29 (3H, s), 1.31 (3H, s), 1.37 (3H, s), 1.39 (3H, s), 1.54–1.72 (2H, m), 1.62 (3H, br s), 1.64 (3H, br s), 1.76-2.38 (6H, m), 2.99 (1H, dd, J = 8.5 Hz, 4.0 Hz), 3.73 (1H, dd, J = 10.5 Hz, 4.0 Hz), 3.80(3H, s), 3.89 (1H, br s), 3.94–4.02 (1H, m), 3.99 (2H, d, J = 6.0 Hz), 4.43 (2H, s), 5.39 (1H, tq)J = 6.0 Hz, 1.0 Hz), 5.55 (1 H, m), 6.88 (2 H, d, J = 8.5 Hz), 7.27 (2 H, d, J = 8.5 Hz);NMR (75 MHz, CDCl₃) δ 16.82, 18.61, 19.19, 20.18, 24.86, 25.75, 26.73, 28.38, 29.20, 29.27, 37.35, 55.38, 58.86, 62.17, 66.38, 67.05, 71.92, 77.08, 81.34, 82.89, 107.31, 113.84, 120.07, 121.49, 129.54, 130.63, 134.59, 139.69, 159.24; MS (EI) m/z 514 (M⁺); HRMS (EI) m/z calcd for $C_{31}H_{46}O_6$ (M⁺) 514.3294, found 514.3276]. A mixture of the reduction product (78.2 mg, 0.152 mmol) in dry CH₂Cl₂ (2.1 mL) and water (0.210 mL) was cooled to 0 °C and DDQ (41.4 mg, 0.150 mmol) was added. The resulting dark brown mixture was stirred at this temperature for 0.5 h and saturated aqueous solution of Na₂S₂O₃ (0.5 mL), saturated aqueous solution of NaHCO₃ (0.5 mL), and water (2.0 mL) were added. The mixture was extracted with hexane (2 mL×3) and the extracts were washed with brine (2 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified with silica-gel column chromatography (2.7 g of silica gel, 2:1 hexane-EtOAc) to afford allyl alcohol (53.1 mg, 89%) as a colorless syrup [$R_f = 0.10$ (4:1 hexane–EtOAc); $[\alpha]_D^{28} + 11.5$ (c 0.69, CHCl₃); IR (neat) cm⁻¹ 3450, 2985, 2935, 2870, 1450, 1380, 1260, 1190, 1095, 1060, 1045, 1010, 930, 915, 870, 845, 810; ¹H NMR (300 MHz, CDCl₃) δ 1.26 (3H, s), 1.30 (3H, s), 1.34 (3H, s), 1.37 (3H, s), 1.39 (3H, s), 1.50–1.76 (2H, m), 1.62 (3H, br s), 1.68 (3H, br s), 1.80–2.40 (6H, m), 2.98 (1H, dd, J = 7.5 Hz, 5.5 Hz), 3.73 (1H, dd, J = 10.0 Hz, 3.5 Hz), 3.89 (1H, br), 3.97 (1H, dd, J = 9.5 Hz, 4.0 Hz), 4.16 (2H, d, J = 7.0 Hz), 5.43 (1H, tq, J = 7.0 Hz, 1.0 Hz), 5.56 (1H, m); ¹³C NMR (75 MHz, CDCl₃) δ 16.54, 18.73, 19.24, 20.16, 24.88, 25.79, 26.75, 28.40, 29.14, 29.22, 37.33, 59.03, 59.41, 62.45, 67.15, 77.11, 81.36, 82.90, 107.33, 120.16, 124.00, 134.53, 138.95; MS (EI) m/z 394 (M⁺); HRMS (EI) m/z calcd for $C_{23}H_{38}O_5$ (M⁺) 394.2719, found 394.2716]. To a stirred solution of this allyl alcohol (53.1 mg, 0.135 mmol) in 10:1 CH₂Cl₂-pyridine (2.69 mL) were added at 0 °C diphenyldisulfide (88.1 mg, 0.404 mmol) and tri-n-butylphosphine (0.129 mL, 0.404 mmol). After 2.5 h at room temperature, the mixture was diluted with hexane (10 mL) and water (10 mL). The organic layer was separated and the aqueous layer was extracted with hexane (10 mL×3). The combined organic layers were washed with brine (10 mL), and dried over Na₂SO₄, and concentrated under reduced pressure.

The residue was purified with silica-gel column chromatography (3.3 g of silica gel, 7:1 hexane–EtOAc) to afford **14** (58.1 mg, 89%) as a colorless syrup.

 $R_{\rm f} = 0.54$ (4:1 hexane–EtOAc).

 $[\alpha]_D^{29}$ +8.45 (c 1.18, CHCl₃).

IR (neat) cm⁻¹ 3060, 2985, 2935, 2870, 1585, 1480, 1450, 1440, 1380, 1260, 1220, 1190, 1095, 1050, 1010, 870, 845.

¹H NMR (300 MHz, CDCl₃) δ 1.24 (3H, s), 1.28 (3H, s), 1.33 (3H, s), 1.37 (3H, s), 1.39 (3H, s), 1.51–1.65 (8H, m), 1.82 (1H, ddd, J = 15.0 Hz, 8.0 Hz, 3.0 Hz), 1.92 (1H, ddd, J = 15.0 Hz, 10.5 Hz, 4.0 Hz), 1.84–2.38 (4H, m), 2.99 (1H, dd, J = 8.0 Hz, 4.0 Hz), 3.55 (2H, d, J = 7.5 Hz), 3.72 (1H, dd, J = 10.5 Hz, 4.0 Hz), 3.84 (1H, br d, J = 7.0 Hz), 3.97 (1H, dd, J = 10.5 Hz, 3.0 Hz), 5.31 (1H, br t, J = 7.5 Hz), 5.54 (1H, m), 7.12–7.38 (5H, m).

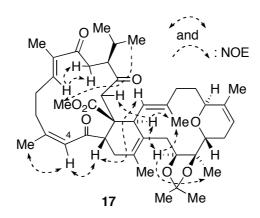
¹³C NMR (75 MHz, CDCl₃) δ 16.27, 18.61, 19.21, 20.17, 24.92, 25.75, 26.74, 28.41, 29.31, 32.33, 37.31, 58.86, 62.17, 67.03, 76.89, 81.36, 82.91, 107.32, 119.93, 120.07, 126.25, 128.86, 130.08, 134.58, 136.72, 139.46.

MS (EI) m/z 486 (M⁺); HRMS (EI) m/z calcd for $C_{29}H_{42}O_4S$ (M⁺) 486.2804, found 486.2796.

Diels–Alder Reaction Between 2 and 15. A solution of **2** (3.8 mg, 0.0105 mmol) and **15** (3.7 mg, 0.0103 mmol) in dry toluene (0.105 mL) was heated at 100 °C for 1.5 d under argon atmosphere. The resulting solution was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified with preparative TLC on silica gel (2:1 hexane–EtOAc) to afford the Diels–Alder adducts **17** (27%, 2.0 mg) and **16** (22%, 1.6 mg) along with the recovered starting materials **2** (1.5 mg, 39%) and **15** (1.1 mg, 30%).

17: $R_f = 0.67$ (2:1 hexane–EtOAc).

 $[\alpha]_{\rm D}^{27}$ +45.7 (*c* 0.50, CHCl₃).


IR (neat) cm⁻¹ 2985, 2935, 2855, 1735, 1715, 1655, 1620, 1440, 1370, 1140, 1105, 1055, 1020, 855.

¹H NMR (300 MHz, CDCl₃) δ 0.78 (3H, d, J = 6.5 Hz), 1.03 (3H, d, J = 6.5 Hz), 1.31 (3H, s), 1.44 (3H, s), 1.47 (3H, s), 1.63 (3H, br s), 1.72 (3H, br s), 1.79 (6H, br s), 1.94 (3H, s), 1.50–2.52 (13H, m), 2.35 (1H, dd, J = 14.0 Hz, 10.0 Hz), 2.61 (1H, d, J = 14.0 Hz), 2.52–2.75 (2H, m), 2.83 (1H, d, J = 18.0 Hz), 2.91 (1H, d, J = 18.0 Hz), 3.20 (1H, br d, J = 11.0 Hz), 3.36 (1H, dd, J = 13.5 Hz, 7.0 Hz), 3.53 (3H, s), 3.54 (1H, dd, J = 11.0 Hz, 3.0 Hz), 3.64 (1H, dd, J = 10.0 Hz, 3.5 Hz), 3.87 (1H, d, J = 10.0 Hz), 4.08 (1H, br d, J = 9.5 Hz), 4.74 (1H, d, J = 11.0 Hz), 5.59 (1H, m), 6.60 (1H, dd, J = 10.5 Hz, 5.0 Hz), 6.65 (1H, s).

¹³C NMR (75 MHz, CDCl₃) δ 11.46, 18.02, 19.55, 20.47, 20.59, 21.20, 21.44, 25.36, 26.08, 27.30, 29.67, 30.08, 30.72, 31.68, 31.96, 32.02, 32.40, 33.98, 39.39, 44.56, 46.30, 47.37, 49.34, 51.19, 55.71, 68.47, 79.18, 84.15, 84.41, 109.39, 120.54, 126.08, 126.94, 127.10, 127.45, 134.27, 137.05, 140.92, 143.85, 156.73, 174.46, 201.64, 203.54, 210.06.

MS (EI) m/z 718 (M⁺); HRMS (EI) m/z calcd for $C_{44}H_{62}O_8$ (M⁺) 718.4444, found 718.4447.

Results of the NOE experiments are shown in SI-Figure 3.

SI-Figure 3. NOEs of 17.

16: $R_f = 0.54$ (2:1 hexane–EtOAc).

 $[\alpha]_D^{26}$ +73.5 (c 0.39, CHCl₃).

IR (neat) cm⁻¹ 2960, 2930, 2855, 1735, 1715, 1655, 1610, 1460, 1370, 1260, 1105, 1055, 1020, 895, 855, 805.

¹H NMR (300 MHz, CDCl₃) δ 0.80 (3H, d, J = 7.0 Hz), 0.98 (3H, d, J = 7.0 Hz), 1.29 (3H, s), 1.42 (3H, s), 1.46 (3H, s), 1.64 (3H, br s), 1.73 (3H, s), 1.76 (3H, br s), 1.80 (3H, s), 2.08 (3H, s), 2.17 (1H, d, J = 19.0 Hz), 1.53–2.70 (16H, m), 2.86 (1H, dd, J = 18.0 Hz, 8.5 Hz), 3.27 (1H, d, J = 19.0 Hz), 3.46–3.55 (1H, m), 3.47 (1H, dd, J = 13.5 Hz, 5.5 Hz), 3.56 (3H, s), 3.68 (1H, dd, J = 10.0 Hz, 3.5 Hz), 3.88 (1H, d, J = 9.0 Hz), 3.90 (1H, d, J = 8.5 Hz), 4.07 (1H, d, J = 9.5 Hz), 4.64 (1H, d, J = 12.0 Hz), 5.59 (1H, m), 6.02 (1H, s), 6.24 (1H, br d, J = 8.0 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 11.90, 17.53, 18.45, 19.85, 20.52, 20.61, 20.85, 21.18, 25.46, 26.33, 29.77, 29.85, 30.29, 31.78, 32.37, 33.11, 33.63, 39.06, 39.84, 41.17, 46.83, 47.65, 48.29, 51.35, 56.20, 68.26, 79.36, 84.33, 85.19, 108.69, 120.59, 125.72, 126.82, 126.85, 127.00, 134.26, 137.86, 140.28, 141.36, 158.29, 173.64, 202.62, 203.64, 210.42.

MS (EI) m/z 718 (M⁺); HRMS (EI) m/z calcd for C₄₄H₆₂O₈ (M⁺) 718.4444, found 718.4430.

Methyl Sarcophytoate (1). A solution of **16** (2.1 mg, 0.00292 mmol) in 80% aqueous solution of AcOH (0.30 mL) was heated at 50 °C for 3 h. After cooling to room temperature, the solvents were removed under reduced pressure and the residue was purified with preparative TLC on silica gel (1:1 hexane–EtOAc) to afford **1** (1.0 mg, 50%) as a colorless syrup.

 $R_{\rm f}$ = 0.24 (2:1 hexane–EtOAc).

 $[\alpha]_D^{26}$ +152 (c 0.10, CHCl₃) [lit.³ [α]_D +157 (c 0.34, CHCl₃)].

IR (neat) cm⁻¹ 3520, 2925, 2855, 1730, 1710, 1665, 1610, 1435, 1370, 1275, 1100, 1075, 1055, 1020, 965, 940.

¹H NMR (300 MHz, CDCl₃) δ 0.82 (3H, d, J = 7.0 Hz), 0.98 (3H, d, J = 7.2 Hz), 1.31 (3H, s), 1.64 (3H, br s), 1.70 (3H, br s), 1.73 (3H, s), 1.83 (3H, d, J = 1.5 Hz), 1.96 (1H, d, J = 18.8 Hz), 2.09 (3H, d, J = 1.0 Hz), 1.60–2.25 (8H, m), 2.25–2.70 (8H, m), 2.97 (1H, dd, J = 18.0 Hz, 7.5 Hz), 3.19 (1H, d, J = 11.0 Hz), 3.28 (1H, d, J = 18.8 Hz), 3.44 (1H, dd, J = 14.0 Hz, 6.0 Hz), 3.57 (3H, s), 3.56–3.63 (1H, m), 3.65 (1H, dd, J = 10.2 Hz, 3.2 Hz), 3.98 (1H, d, J = 7.5 Hz), 4.01 (1H, d, J = 10.0 Hz), 4.69 (1H, d, J = 11.0 Hz), 5.58 (1H, m), 6.05 (1H, s), 6.25 (1H, dd, J = 8.6 Hz, 4.0 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 11.92, 17.66, 18.94, 19.52, 20.08, 20.26, 20.56, 20.93, 24.78, 25.56, 30.38, 31.31, 32.76, 33.26, 38.95, 39.85, 40.77, 46.86, 47.35, 48.59, 51.47, 56.24, 68.43, 70.76, 75.45, 79.63, 120.49, 124.22, 125.77, 126.82, 129.27, 134.52, 138.17, 140.84, 141.43, 159.41, 173.16, 203.26, 203.43, 210.52.

MS (EI) m/z 678 (M⁺); HRMS (EI) m/z calcd for $C_{41}H_{58}O_8$ (M⁺) 678.4131, found 678.4112.

Isomerization of 17 to 16. 17 (1.1 mg, 0.00153 mmol) was dissolved in AcOH (0.220 mL) and the solution was stirred at room temperature for 6.5 d. This solution was concentrated under reduced pressure to afford a 52:48 mixture of **17** and **16** (determined by the ¹H NMR analysis). This crude mixture was purified with silica-gel column chromatography (1 g of silica gel, 2:1 hexane–EtOAc) to afford the desired isomer **16** (0.5 mg, 45%) as a colorless syrup.

4Z-Isomer of Methyl Sarcoate (2). A solution of methyl sarcoate (2) (1.3 mg, 0.00361 mmol) in dry toluene (0.130 mL) was heated at 100 °C for 12 h. After cooling to room temperature, the solution was concentrated under reduced pressure to afford a 1:0.41 mixture of **2** and **4Z-isomer of 2** (contaminated with some unidentified products). This crude mixture was purified with preparative TLC on silica gel (2:1 hexane–EtOAc) to afford **4Z-isomer of 2** (contaminated with an unidentified product). This was further purified with preparative TLC on silica gel (5:1 toluene–EtOAc) to afford the pure **4Z-isomer of 2** (0.3 mg, 23%) as a pale yellow syrup.

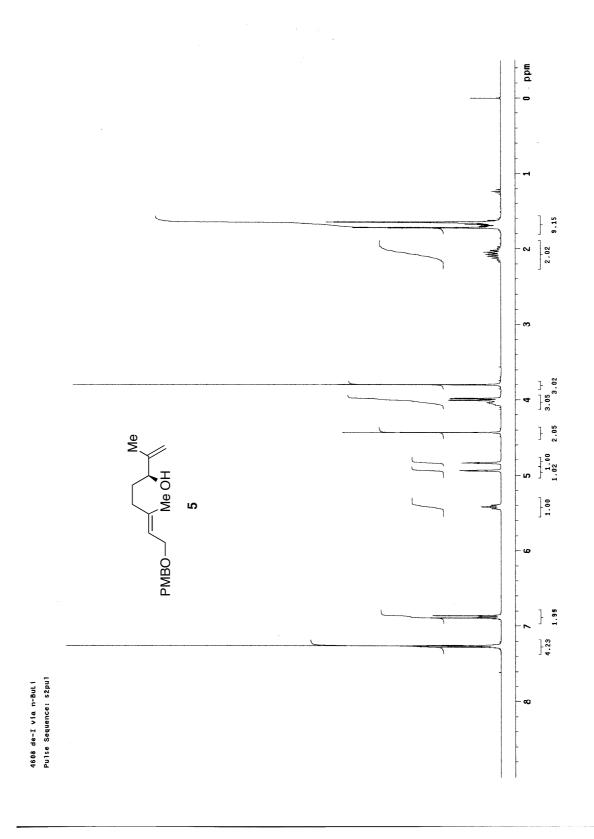
 $R_{\rm f}$ = 0.36 (2:1 hexane–EtOAc), 0.43 (5:1 toluene–EtOAc). [α]_D²⁸ +78.4 (c 0.30, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 0.94 (3H, d, J = 6.5 Hz), 0.97 (3H, d, J = 6.5 Hz), 1.76 (3H, s), 1.94–2.08 (1H, m), 2.19 (1H, dd, J = 13.5 Hz, 3.5 Hz), 2.28–2.42 (1H, m), 2.51–2.68 (2H, m), 2.82 (1H, ddd, J = 11.0 Hz, 8.5 Hz, 3.5 Hz), 3.20 (1H, dd, J = 13.5 Hz, 8.5 Hz), 3.36–3.50 (1H, m), 3.75 (1H, dd, J = 18.0 Hz, 1.5 Hz), 3.77 (3H, s), 3.95 (1H, d, J = 18.0 Hz), 6.22 (1H, d, J = 1.0 Hz), 6.40–6.52 (1H, m), 7.27 (1H, d, J = 1.5 Hz).

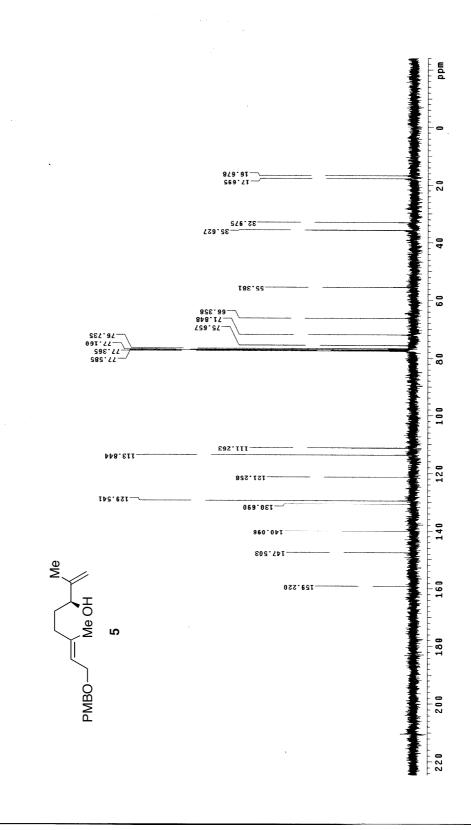
¹³C NMR (75 MHz, CDCl₃) δ 11.54, 19.67, 20.89, 25.52, 27.27, 30.28, 31.50, 35.25, 41.14, 52.72, 56.68, 124.75, 132.69, 138.44, 140.44, 141.92, 160.53, 167.35, 191.72, 202.24, 208.33. MS (EI) m/z 360 (M⁺); HRMS (EI) m/z calcd for C₂₁H₂₈O₅ (M⁺) 360.1937, found 360.1908.

Results of NOE and HMBC experiments are shown in SI-Figure 4.

Me Me Me Me
$$\frac{11}{11}$$
 Me $\frac{13}{13}$ \frac

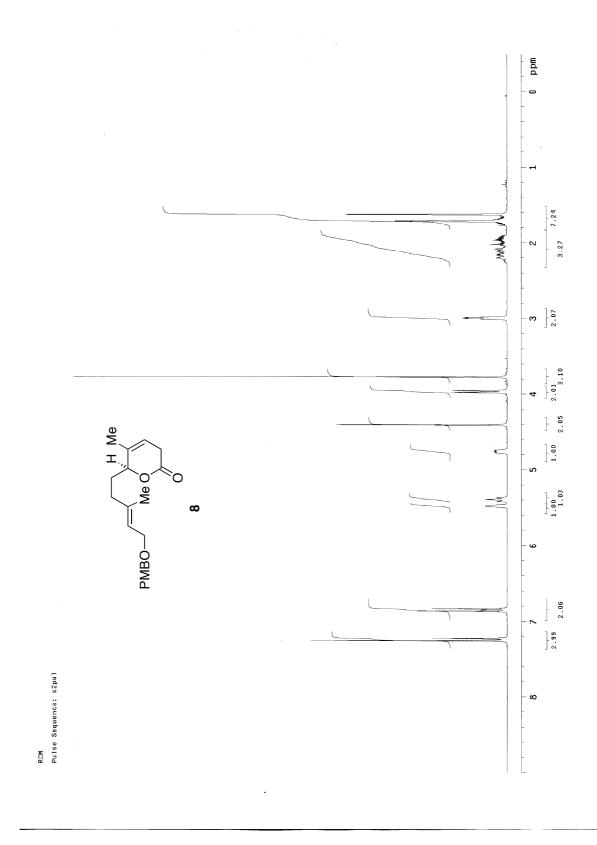

SI-Figure 4. NOEs and HMBC of 4Z-isomer of 2.

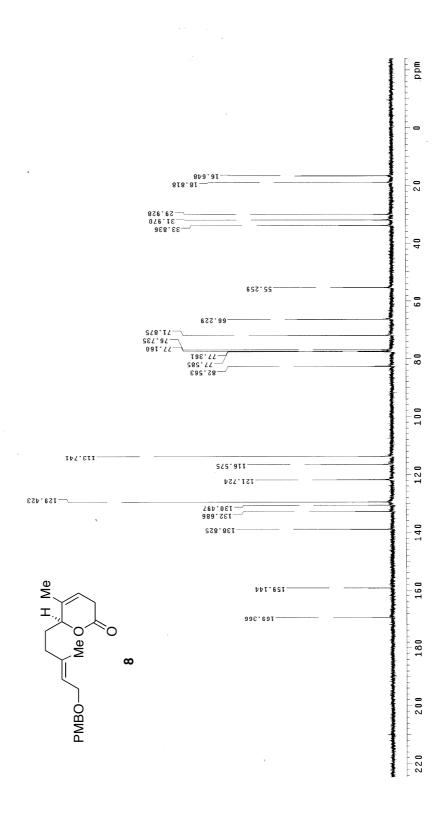
¹H NMR Data of Methyl Sarcoate (2) and Diene 15 in Toluene-d₈.


Methyl Sarcoate (2): ¹H NMR (300 MHz, toluene- d_8 , 50 °C) δ 0.85 (3H, d, J = 6.5 Hz), 0.99 (3H, d, J = 6.5 Hz), 1.63 (3H, s), 1.70–2.15 (5H, m), 1.96 (3H, d, J = 1.5 Hz), 1.98 (1H, dd, J = 13.0 Hz, 3.0 Hz), 2.67 (1H, ddd, J = 9.0 Hz, 6.0 Hz, 3.0 Hz), 2.77 (1H, d, J = 17.0 Hz), 3.16 (1H, dd, J = 13.0 Hz, 9.0 Hz), 3.26 (3H, s), 3.33 (1H, d, J = 17.0 Hz), 5.96 (1H, br dd, J = 9.0 Hz, 4.0 Hz), 5.98 (1H, br s), 7.15 (1H, s).

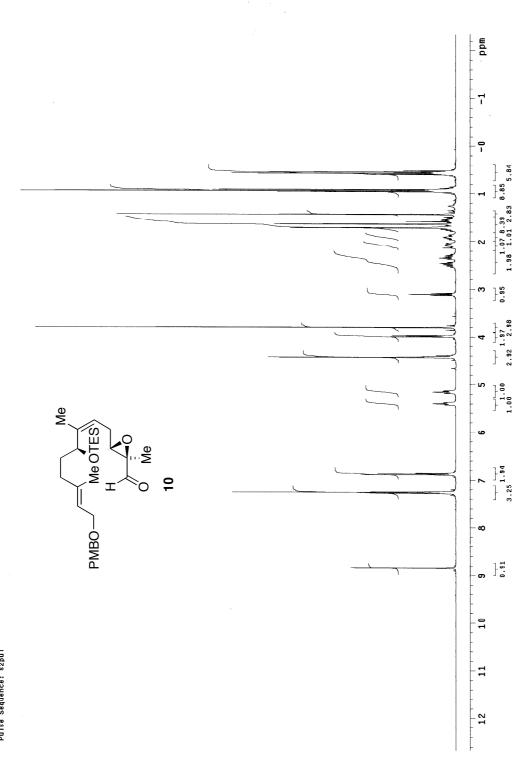
Diene 15: ¹H NMR (300 MHz, toluene- d_8 , 50 °C) δ 1.22 (3H, s), 1.30 (3H, s), 1.34 (3H, s), 1.49 (3H, br s), 1.58 (3H, s), 1.47–1.72 (2H, m), 1.91 (3H, s), 1.87–2.36 (4H, m), 2.68 (1H, dd, J = 14.5 Hz, 1.5 Hz), 3.35 (1H, dd, J = 14.5 Hz, 8.5 Hz), 3.90–3.99 (1H, br d), 3.99 (1H, dd, J = 9.5 Hz, 4.5 Hz), 4.05 (1H, dd, J = 8.5 Hz, 1.5 Hz), 5.05 (1H, s), 5.42 (1H, s), 5.52 (1H, m), 6.09 (1H, d, J = 5.5 Hz), 6.28 (1H, d, J = 5.5 Hz).

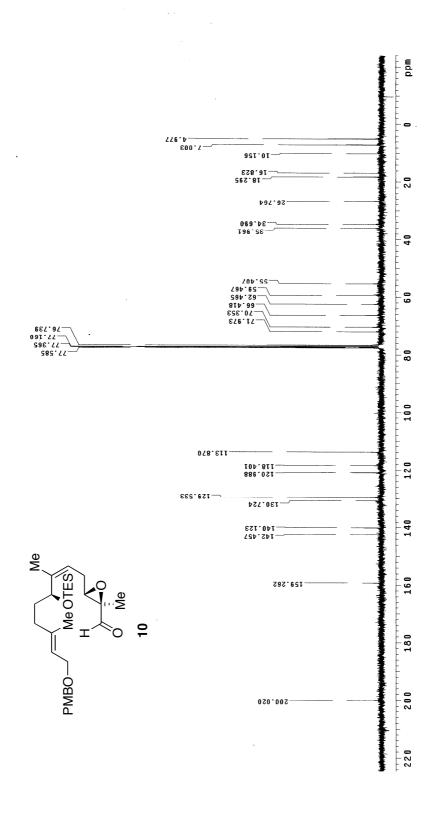
¹H NMR Spectrum of 5 (300 MHz, CDCl₃)




¹³C NMR Spectrum of 5 (75 MHz, CDCl₃)

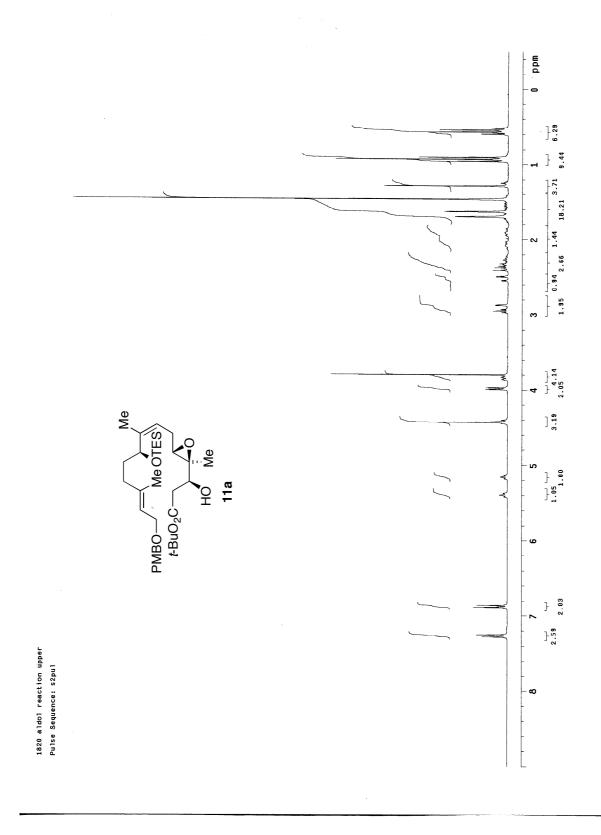
4608 de-I via n-Buli Puise Sequence: s2pui


¹H NMR Spectrum of 8 (300 MHz, CDCl₃)

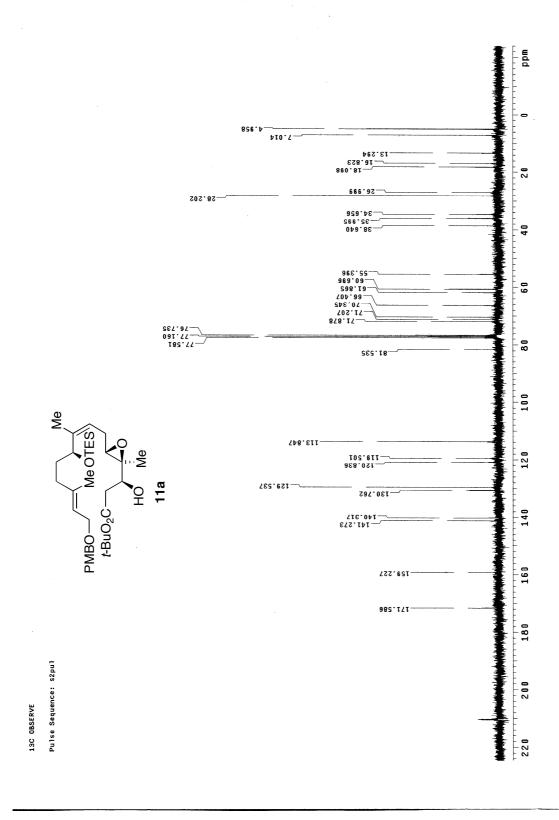


ilse Seallenser s2n

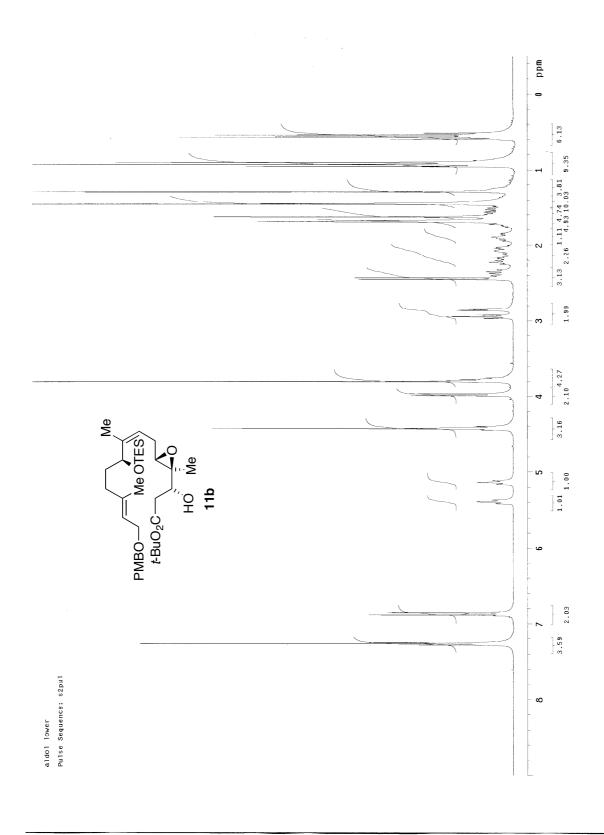
^{1}H NMR Spectrum of 10 (300 MHz, CDCl₃)

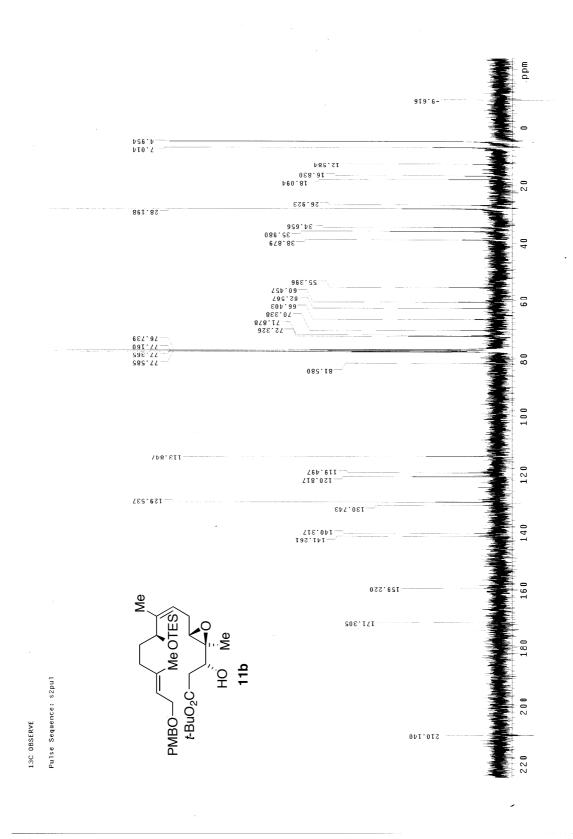


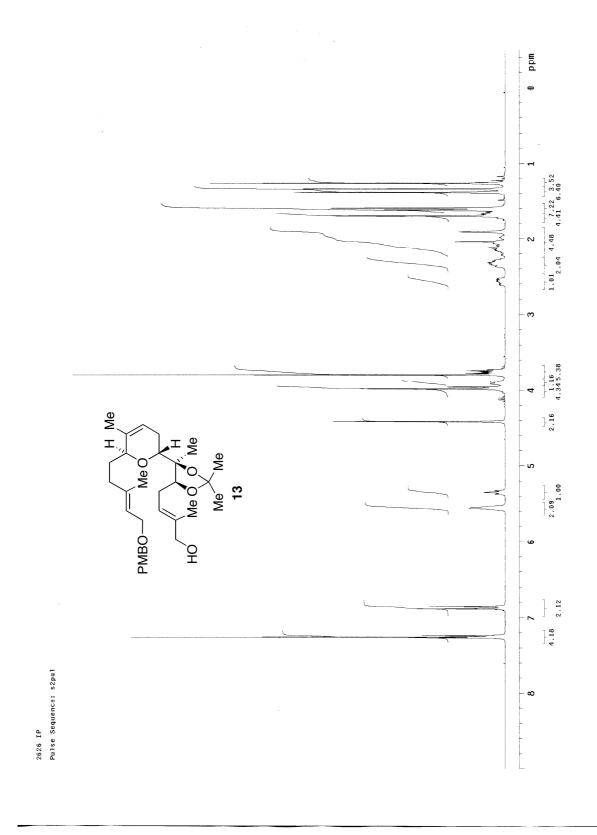
4725 SO3-Py oxidation after column Pulse Sequence: s2pul

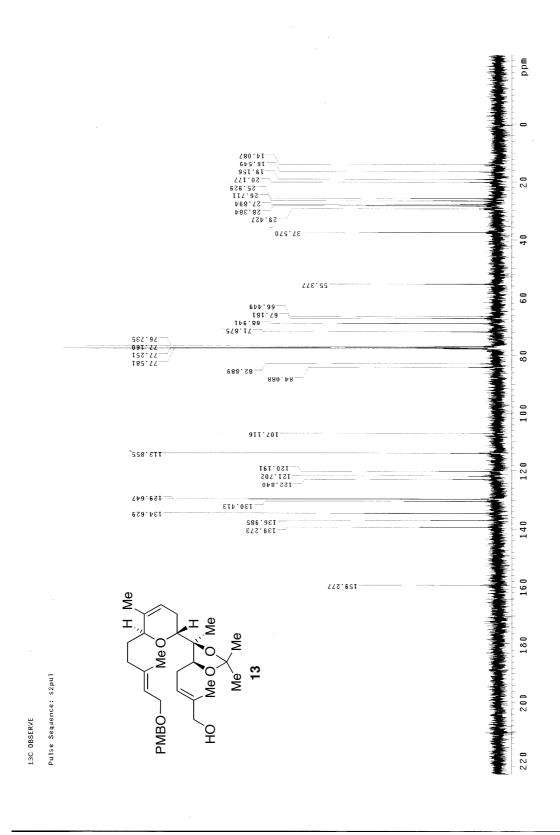


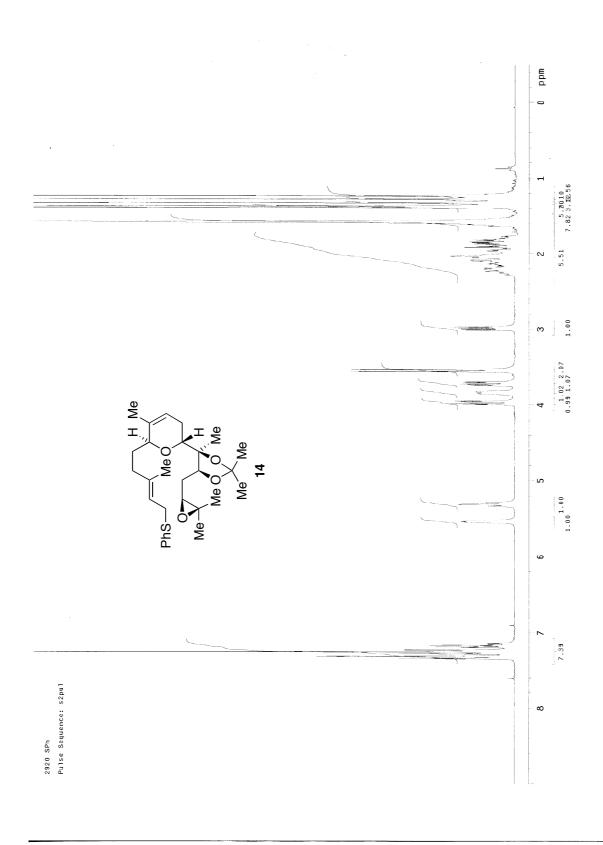
4725 \$03-Py oxidation after column Pulse Sequence: \$2pul

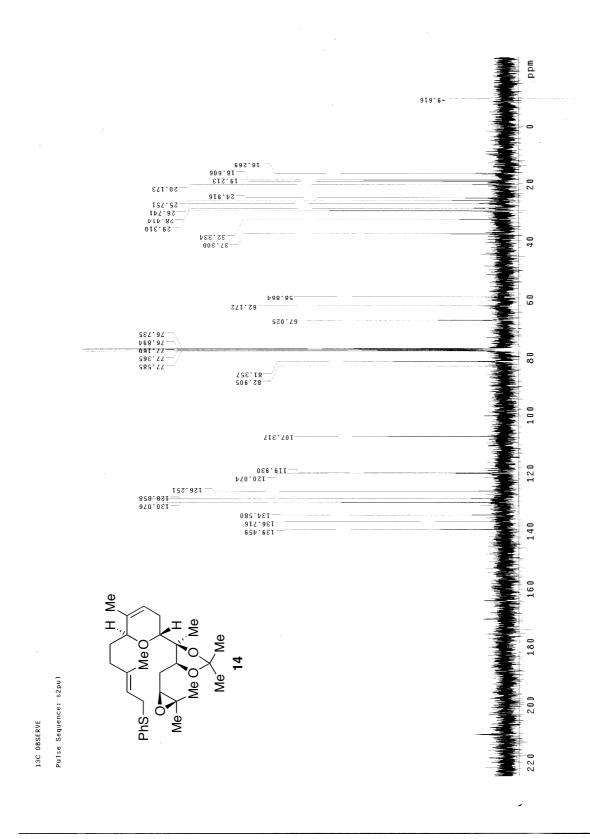

¹H NMR Spectrum of 11a (300 MHz, CDCl₃)

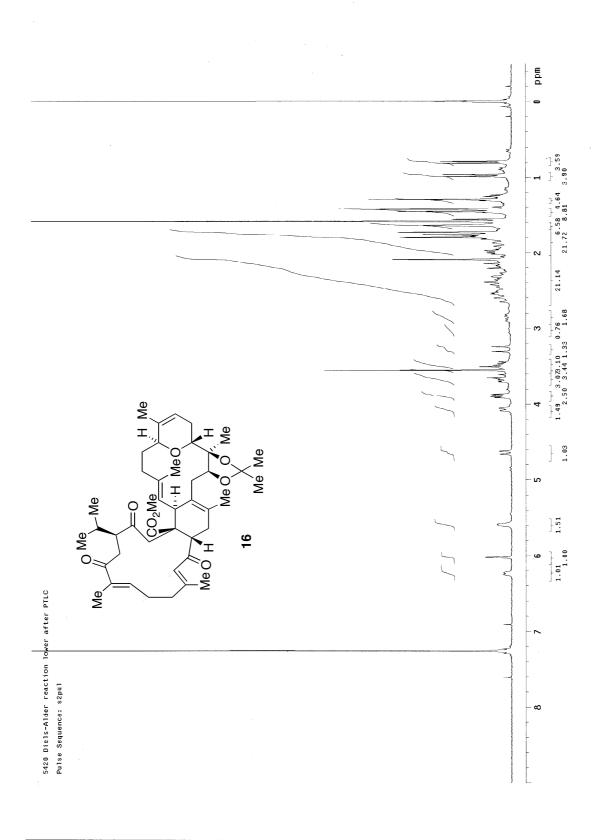

¹³C NMR Spectrum of 11a (75 MHz, CDCl₃)

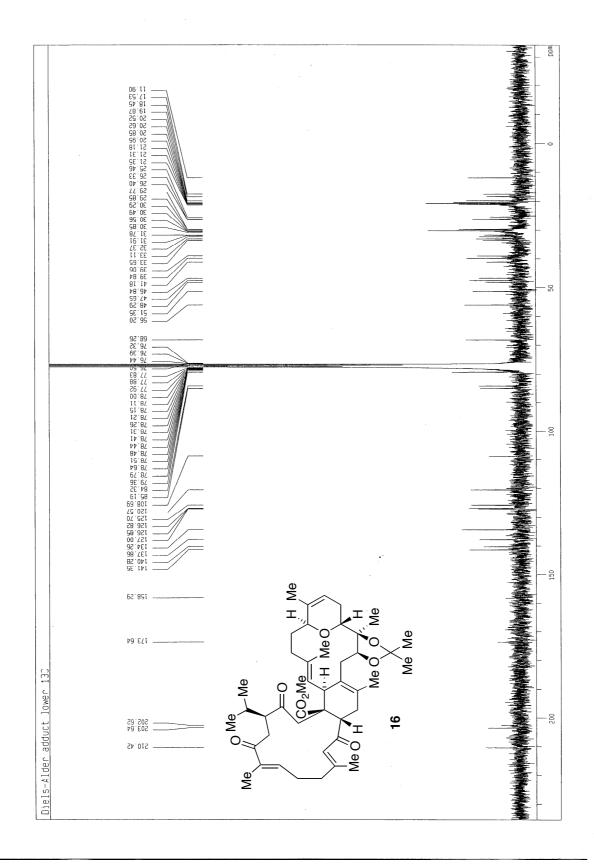

¹H NMR Spectrum of 11b (300 MHz, CDCl₃)

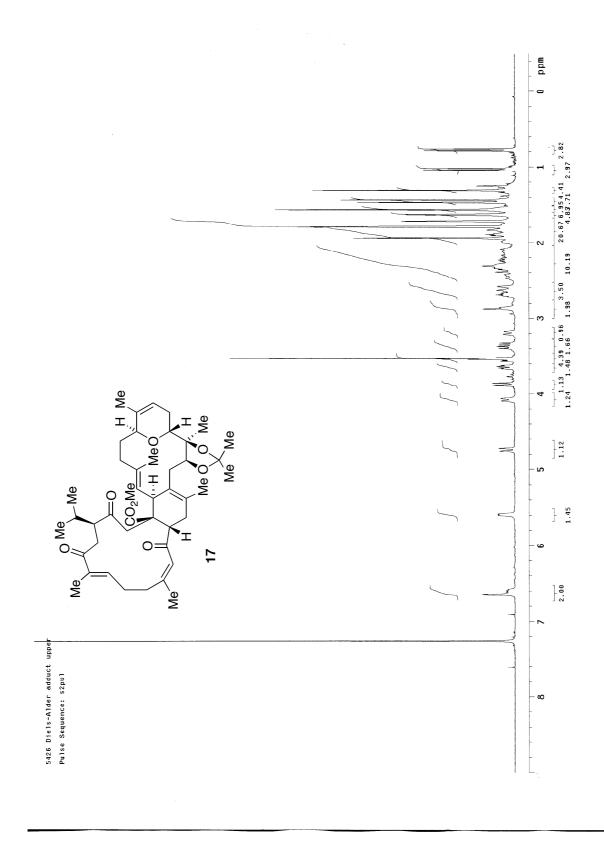

¹³C NMR Spectrum of 11b (75 MHz, CDCl₃)

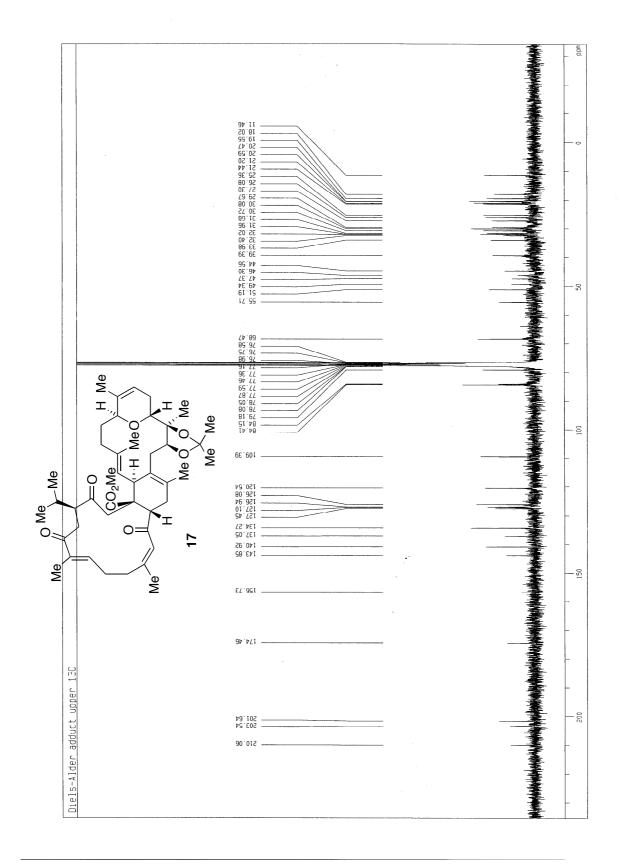

¹H NMR Spectrum of 13 (300 MHz, CDCl₃)

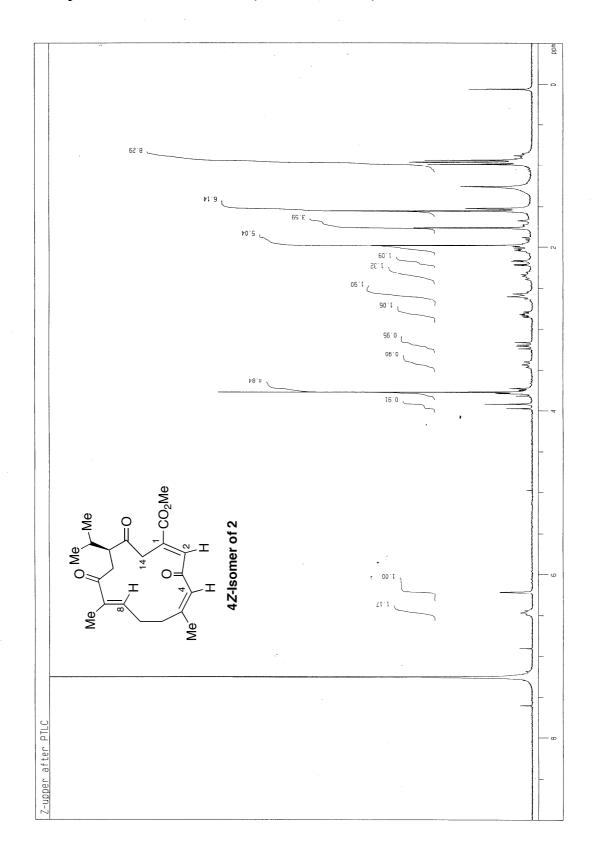

¹³C NMR Spectrum of 13 (75 MHz, CDCl₃)

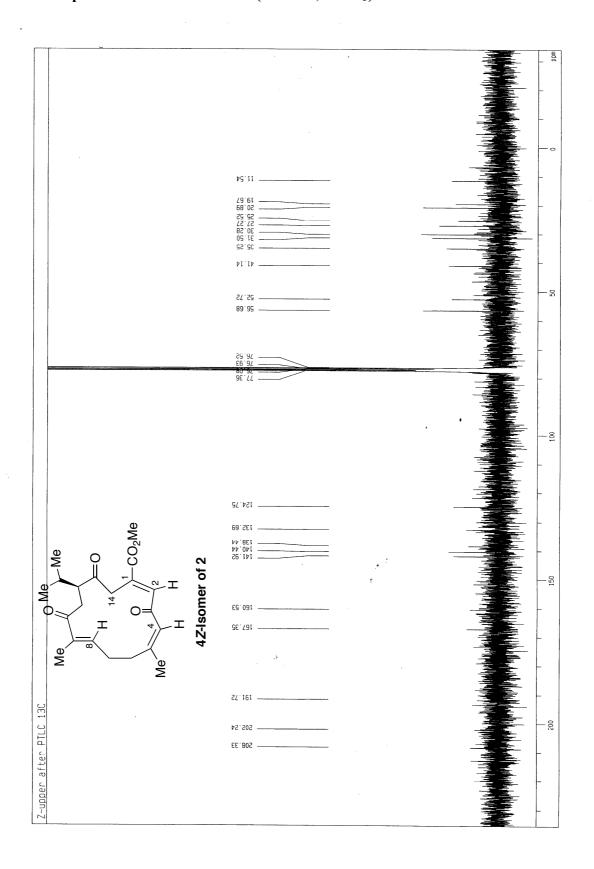

¹H NMR Spectrum of 14 (300 MHz, CDCl₃)

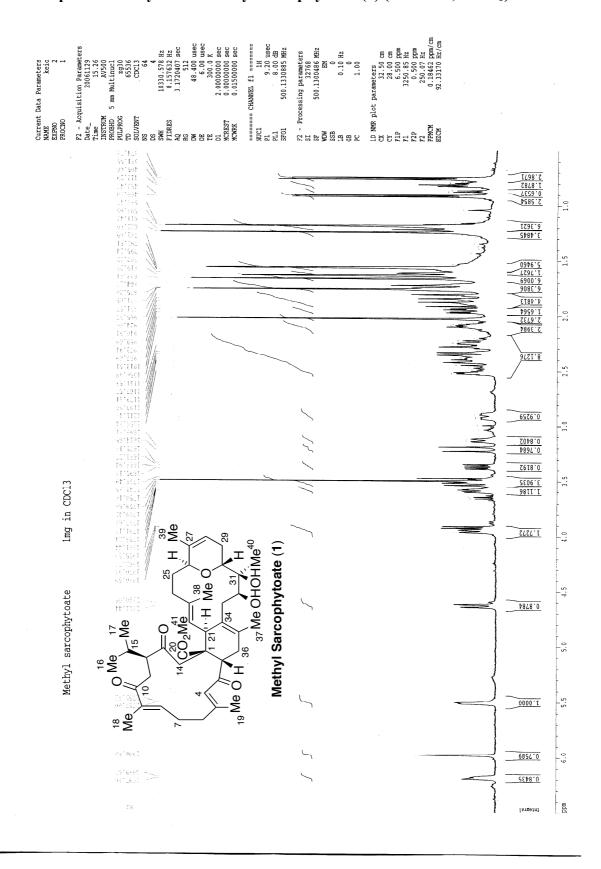

¹³C NMR Spectrum of 14 (75 MHz, CDCl₃)

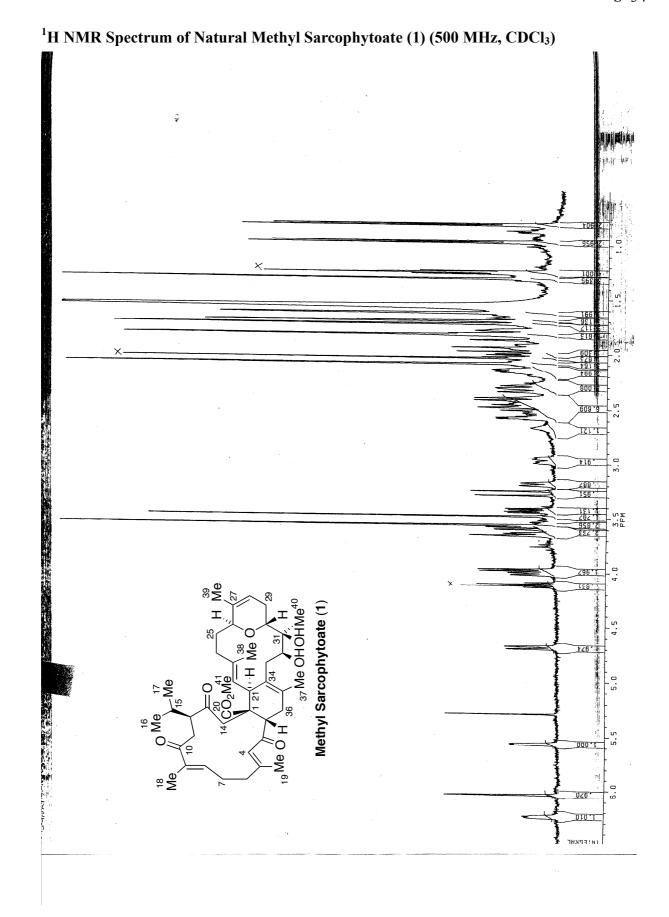

¹H NMR Spectrum of 16 (300 MHz, CDCl₃)


^{13}C NMR Spectrum of 16 (75 MHz, CDCl₃)

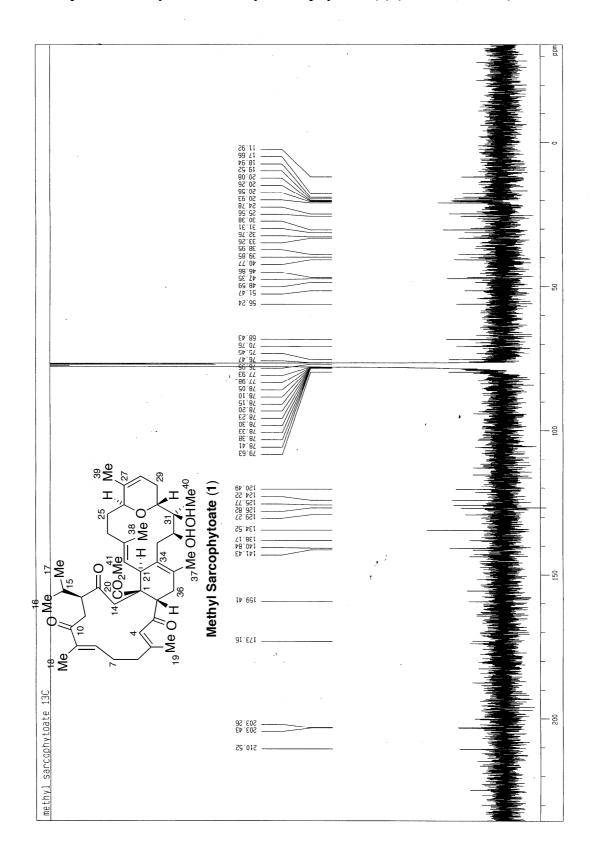

¹H NMR Spectrum of 17 (300 MHz, CDCl₃)


¹³C NMR Spectrum of 17 (75 MHz, CDCl₃)

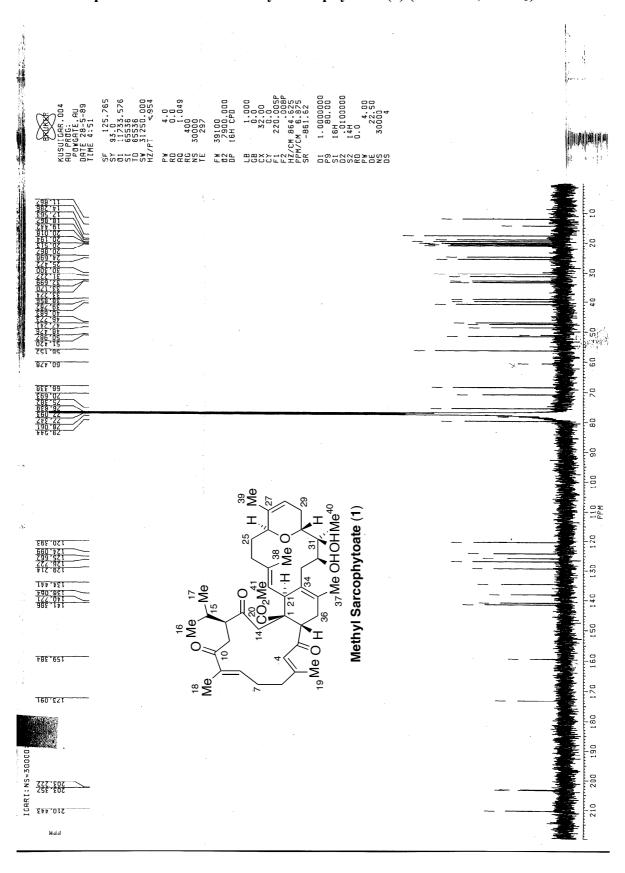

¹H NMR Spectrum of 4Z-Isomer of 2 (300 MHz, CDCl₃)



¹³C NMR Spectrum of 4Z-Isomer of 2 (75 MHz, CDCl₃)



¹H NMR Spectrum of Synthetic Methyl Sarcophytoate (1) (500 MHz, CDCl₃)



13 C NMR Spectrum of Synthetic Methyl Sarcophytoate (1) (75 MHz, CDCl₃)

¹³C NMR Spectrum of Natural Methyl Sarcophytoate (1) (125 MHz, CDCl₃)

