SUPPORTING INFORMATION

DIASTEREOMERIC REISSERT COMPOUNDS OF ISOQUINOLINE \& 6,7-DIMETHOXY-3,4-DIHYDROISOQUINOLINE IN STEREOSELECTIVE SYNTHESIS

Harry W. Gibson, Michael A. G. Berg, Jennifer Clifton Dickson, Pierre R. Lecavalier, Hong Wang and Joseph S. Merola

Department of Chemistry, Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

- General Procedures S7
- Chromatographic treatment of 2-l-menthoxycarbonyl-1,2- S8 dihydroisoquinaldonitriles $[(S)-\mathbf{8} /(R)-8]$
- l-Menthoxyacetic acid S9
- (-)-Menthoxyacetyl Chloride S9
- Aryl 1-isoquinolyl carbinyl l-menthyl carbonates S9
- Racemic 1-isoquinolyl phenyl carbinol (via 3, $\mathrm{R}=\alpha-\mathrm{C}_{10} \mathrm{H}_{7}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$) $\quad \mathrm{S} 10$
- Racemic 1-isoquinolyl tert-butyl carbinol (rac-16)(via 3, $\mathrm{R}=\alpha-\mathrm{C}_{10} \mathrm{H}_{7}$, $\quad \mathrm{S} 11$ $\mathrm{R}^{\prime}=$ tert -Bu)
- Optical purity analysis of isoquinolyl alcohols
- 1-Alkyl-2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitriles and 1-alkyl- S13 2-cholesteryloxycarbonyl-1,2-dihydroisoquinaldonitriles
- 1-Deuterio-2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitrile $\quad[(S)-\mathbf{8 - d} \quad$ S14 $/(R)-\mathbf{8 - d}]$
- Quenching of the anion from 2-cholesteryloxycarbonyl-1,2- S14 dihydroisoquinaldonitrile [(S)-11]
- 6,7-Dimethoxy-3,4-dihydroisoquinoline (17)
- 1-Methyl-6,7-dimethoxy-3,4-dihydroisoquinoline S15
- 1-Benzyl-6,7-dimethoxy-3,4-dihydroisoquinoline S15
- 1-i-Propyl-6,7-dimethoxy-3,4-dihydroisoquinoline S16
- (S)- α-Methylbutyryl chloride S16
- 8-Phenyl-l-menthyl chloroformate S16
- Reaction of the anion of 1-cyano-2-(l-menthoxycarbonyl)-6,7-dimethoxy- S17 1,2,3,4-tetrahydroisoquinoline (S)-19 with water
- Use of n-butyllithium in the methylation of 2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (S)-19
- 1-i-Propyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinoline ($\mathbf{2 5 b}$) from (S) $\mathbf{- 1 9}$ using LDA as the base
- Cyanoacylation of 1-substituted 3,4-dihydroisoquinolines: General Procedure
- 1-Methyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (25a) by cyanoacylation
- 1-Methyl-2-(l-menthoxycarbonyl)-1-hydroxy-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (29)
- 1-Benzyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline ($\mathbf{2 5 c}$) by cyanoacylation
- 1-Methyl-(8'-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroiso-quinoline (26a) by cyanoacylation
- Transformations of chiral dihydro-Reissert compounds and alkylated

derivatives

- 2-(l-menthoxycarbonyl)-1-carboxamido-6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinoline (30) by hydrolysis of [(S)-19] with hydrogen peroxide and base
- Table S1: Reactions of diastereomeric isoquinoline Reissert compounds
- Figure S1. Partial $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of chromatographic fractions S23 of 2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitrile $[(S)-8 /(R)-8]$ in CDCl_{3}.
- Figure S2. HPLC traces for 2-cholesteryloxycarbonyl-1,2- S24 dihydroisoquinaldonitriles (11).
- Figure S3. X-ray crystal structure of diastereomerically pure (S)-2- S25 cholesteryloxycarbonyl-1,2-dihydroisoquinaldonitrile [(S)-11].
- Figure S4. HPLC traces for 1-isoquinolyl tert-butyl carbinyl l-menthyl carbonate (12).
- Figure S5. X-ray crystal structure of diastereomerically pure 1-isoquinolyl tert-butyl carbinyl l-menthyl carbonate [(S)-12].
- Figure S6. HPLC trace for 1 -isoquinolyl o-tolyl carbinyl l-menthyl carbonate derived from 1:1 (S)-8:(R)-8 and o-tolualdehyde.
- Figure S7. HPLC trace for 1-isoquinolyl o-anisyl carbinyl l-menthyl carbonate derived from 1:1 (S)-8:(R)-8 and o-anisaldehyde.
- Figure S8. HPLC trace for 1-isoquinolyl tert-butyl carbinyl cholesteryl pivaldehyde.
- Figure S9. $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra $\left(25^{\circ} \mathrm{C}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ of racemic 1isoquinolyl tert-butyl carbinol (rac-16) and rac-16 and quinine (1.0:3.6 molar ratio) after exchange with $\mathrm{D}_{2} \mathrm{O}$.
- Figure S10. $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra $\left(25^{\circ} \mathrm{C}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ of $(S)-1-$ isoquinolyl tert-butyl carbinol $[(S) \mathbf{- 1 6}]$ and quinine (1:3 molar ratio) after exchange with $\mathrm{D}_{2} \mathrm{O}$.
- Figure S11. HPLC trace for 1-methyl-2-l-menthoxycarbonyl-1,2-
dihydroisoquinaldonitrile (22a) derived from 1:1 (S)-8:(R)-8 and methyl iodide.
- Figure S12. HPLC trace for 1-n-butyl-2-l-menthyloxycarbonyl-1,2dihydroisoquinaldonitrile (22b) derived from 1:1 (S)-8:(R)-8 and n-butyl bromide.
- Figure S13. HPLC trace for 1-methyl-2-cholesteryloxycarbonyl-1,2- S35 dihydroisoquinaldonitrile (23a) derived from diastereomerically pure (S)-11 and methyl iodide.
- Figure S14. Partial $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of a sample of 2-l- S36 menthoxycarbonyl-1,2-dihydroisoquinaldonitrile $[(S)-8 /(R)-8]$ prepared by quenching the anion with $\mathrm{D}_{2} \mathrm{O}$.
- Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of 2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-

1,2,3,4-tetrahydroisoquinoline (18) ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) a, top) at ambient temperature, b, bottom) at $50^{\circ} \mathrm{C}$.

- Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra of 2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-

1,2,3,4-tetrahydroisoquinoline (18) (200 MHz , toluene- d_{8}) a, top) at ambient temperature. b , bottom) at $70^{\circ} \mathrm{C}$.

- Figure S17. X-ray crystal structure of mixed diastereomers of 2-(S- $\alpha-$ methylbutyryl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (18).
- Figure S18. HPLC traces for 2-(l-menthoxycarbonyl)-l-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (19). Top trace, compound (S)-19. Middle trace, compound $(R)-19$. Bottom trace, a mixture of compounds $(S)-19$ and $(R)-19$.
- Figure S19. ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ spectrum ($270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$) of (1S)-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline [(S)-19] at ambient temperature.
- Figure S20. ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ spectrum $\quad\left(\begin{array}{lllllll} & (200 & \left.\mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) & \text { of } & (1 S)-2-(l- & \mathrm{S} 42\end{array}\right.$ menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline [(S)-19] at $45^{\circ} \mathrm{C}$.
- Figure S21. X-ray crystal structure of diastereomerically pure S-2-l- S43 menthoxycarbonyl-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline [(S)19].
- Figure S22. HPLC trace for 2-(8'-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (20).
- Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2-(8^{\prime}-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (20) at ambient temperature; inset: deuterated $\mathbf{2 0}$ to identify H_{1} signals.
- Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-methyl-2-[(S)- α -
ambient temperature.
- Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-methyl-2-[(S)- $\alpha-$ methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (24a) at $50^{\circ} \mathrm{C}$.
- Figure S26. X-ray crystal structure of mixed diastereomers of 1-methyl-2-[(S)- $\alpha-$ methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquin-oline (24a).
- Figure S27. Partial ${ }^{1} \mathrm{H}$ NMR spectrum (200 MHz , toluene- d_{8}) of 1-methyl-2-($l-$ menthoxycarbonyl)-l-cyano-1,2,3,4-tetrahydro-6,7-dimethoxyisoquin-oline (25a) at $45^{\circ} \mathrm{C}$.
- Figure S28. X-ray crystal structure of 1:1 mixture of diastereomers of 1-isopropyl-2-l-menthoxycarbonyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquino-line (25b).
- Figure S29. Partial ${ }^{1} \mathrm{H}$ NMR spectrum (200 MHz , toluene- d_{8}) of 1-methyl-2-(8'- S51 phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (26a) at $45^{\circ} \mathrm{C}$.
- Figure S30. Electron impact mass spectrum of 1-methyl-2-(8'-phenyl-l- S52 menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (26a).
- Figure S31. Minimized structures of the E-rotamers of (R) - and (S)-2- S53 menthoxyacetyl-1,2-dihydroisoquinaldonitrile (10).
- Figure S32. Minimized structures of E - and Z-urethane isomers of planar anions S54 derived from $\mathbf{8}$ and $\mathbf{2 0}$.
- REFERENCES

General Procedures:

Unless otherwise noted commercial reagent grade materials were used without purification. Benzene, toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from calcium hydride and stored over $4 \AA$ molecular sieves. DMF was used as received, or vacuum distilled, and stored over $4 \AA$ molecular sieves. Diethyl ether was dried over freshly made sodium ribbon and distilled. THF was predried over KOH followed by anhydrous NaSO_{4} and distilled under argon from potassium using benzophenone as an indicator. n-Butyllithium was used as a nominally 2.4 M solution in hexane as purchased; periodically, this solution was titrated against a known weight of 2,6dimethoxybenzyl alcohol and the molarity of the solution recalculated. All reactions involving organic solvents were performed under an inert atmosphere of argon or nitrogen.

Melting points were determined in capillaries and are corrected. Infrared spectra were determined on neat samples (liquids) or KBr pellets (solids). NMR spectra were obtained on 80, 270 and 400 MHz instruments using tetramethylsilane as an internal standard; the following abbreviations are used in describing ${ }^{1} \mathrm{H}$ NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad); coupling constants (J values) are given in Hz . Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a 200 MHz instrument. Elemental analyses were determined by commercial laboratories. All optical rotations (α) were obtained at the sodium Dline at $25^{\circ} \mathrm{C}$ on a polarimeter at least 30 min after turning on the instrument. The polarimeter cell was carefully washed with acetone and dried under nitrogen; the volume of the cell was 1 mL and the path length (l) was 1 dm . A solution of the analyte of concentration $c(\mathrm{~g} / \mathrm{mL})$ was made by weighing a sample directly into a volumetric flask on the analytical balance. The solution was added to the cleaned cell and the optical rotation was taken. The polarimeter was calibrated by use of a sample of commercial (-)-menthol. Specific rotations are reported as $[\alpha]_{D}{ }^{25}\{=\alpha / l c\}$
without units (degree $\bullet \mathrm{mL} / \mathrm{g} \bullet \mathrm{dm}$) followed by "[c (in g / dL), solvent]"; for neat compounds we report $\alpha_{\mathrm{D}}{ }^{25} \cdot{ }^{\mathrm{S} 1}$ HPLC was performed on a dual pump model with UV detection set at a wavelength of 254 nm . The columns used were a Pirkle covalent phenylglycine modified spherisorb S5NH column ($4.6 \times 250 \mathrm{~mm}$) and a Chiralcel OD column ($4.6 \times 250 \mathrm{~mm}$); HPLC grade solvents for the mobile phase were deaerated using a nitrogen bubbler prior to use. X-ray crystallography was performed with $\mathrm{M}_{0} \mathrm{~K} \alpha(\lambda=0.71073 \AA)$ radiation source at $298^{\circ} \mathrm{K}$. Solution was achieved by direct methods using SHELXTL PLUS. Refinement was by Full-Matrix Least Squares riding model. Fixed isotropic U was used to place the hydrogen atoms. High resolution fast atom bombardment mass spectra (HR FAB MS) were obtained using xenon in the positive ion mode; the matrix was 3-nitrobenzoic acid-poly(ethylene glycol) (NBA-PEG).

Chromatographic Treatment of 2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitriles [(S)-8/(R)-8]. A sample was fractionated by automated flash chromatography by slow gradient elution with hexanes:ethyl acetate from 100:0 to $90: 10$. In the proton NMR spectra (Figure S1a) the ratios of the signals for the Z-isomers at $6.39 \mathrm{ppm}\left(\mathrm{H}_{1}\right)$ and $6.87 \mathrm{ppm}\left(\mathrm{H}_{3}\right)$ vs. those for the E isomers at 6.18 and 6.22 ppm (both signals together, $\left.\mathrm{H}_{1}\right)$ and $7.02 \mathrm{ppm}\left(\mathrm{H}_{3}\right)$ over the 6 fractions range from $60: 40$ to $64: 36$. On the other hand the ratios of the signals for H_{1} of the two diastereomers at 6.18 and 6.22 ppm change significantly in sequence from $31: 69$ to $38: 62$ to $45: 55$ to $53: 47$ to $61: 39$ to $66: 34$, respectively. Moreover, the low temperature spectrum of fraction 1 (Figure S 1 b) shows that the individual H_{3} signals for the Z - and E-urethane isomers are each comprised of $\sim 60: 40$ diastereomers in contrast to the original sample (Figure 1c) in which the two diastereomers were present in essentially equal proportions. In ~ 30 other Reissert compounds we observed that the predominant Z-isomers produce chemical shifts for H_{3} that are upfield relative to the E-isomers; for H_{1} the opposite trend is observed because of its proximity to
the carbonyl oxygen in the Z-isomer. The change in diastereomeric ratio (as judged by the ratio of the minor upfield H_{1} signals at 6.18 and 6.22 ppm) most notably affects the H_{3} signals at 6.9 ppm and the upfield portion of the H_{4} signals at 6.0 ppm ; this is consistent with the assignment of the Z-urethane configuration to these signals, which places the menthyl moiety in the vicinity of H_{3} and H_{4}. The lack of effect of diastereoisomerism on the less well-resolved signals of the E-urethanes $\left(\mathrm{H}_{3}\right.$ at 7.0 ppm and the downfield portion of the H_{4} signals at 6.0 ppm$)$ results from the menthyl moiety being remote from these protons. On the other hand, the sensitivity of the H_{1} signals at 6.18 and 6.22 ppm reflects their proximity to the menthyl moiety in the E-urethanes. 1-Menthoxyacetic Acid. Using a reported procedure ${ }^{\mathrm{S} 2}$ this compound was made from l-menthol and chloroacetic acid. Pure (-)-menthoxyacetic acid was obtained by vacuum distillation, bp $112-115^{\circ} \mathrm{C} / 0.3$ torr. $\alpha_{\mathrm{D}}{ }^{25}=-92.4^{\circ}$ (neat). Reported ${ }^{\mathrm{S} 2 \mathrm{a}}$ bp $134-7^{\circ} \mathrm{C} / 2$ torr, $\alpha_{\mathrm{D}}{ }^{25}=-92.4$ (neat). FTIR (neat): v 3600-2600(O-H), $2870(\mathrm{C}-\mathrm{H}), 1762(\mathrm{C}=\mathrm{O}), 1732(\mathrm{C}=\mathrm{O}), 1455,1237,1127(\mathrm{C}-$ $\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ; \delta 0.80-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.20-2.20(\mathrm{~m}, 5 \mathrm{H}), 3.19$ and $3.21(0.5$ each $\mathrm{H}, \mathrm{t}, \mathrm{J}=12$), 4.06 and 4.24 (1 H each, $\mathrm{d}, \mathrm{J}=18$), $10.01(\mathrm{~s}, 1 \mathrm{H})$.
(-)-Menthoxyacetyl Chloride. A solution of (-)-menthoxyacetic acid in thionyl chloride was allowed to reflux for 24 h and then cooled to room temperature. The excess thionyl chloride was distilled ($1 \mathrm{~atm} ., 70^{\circ} \mathrm{C}$) from the product, which was purified by distillation under reduced pressure, bp $80-82^{\circ} \mathrm{C} / 0.3$ torr. FTIR (neat): v $2800(\mathrm{C}-\mathrm{H}), 1798(\mathrm{C}=\mathrm{O}), 1455,1237,1127(\mathrm{C}-\mathrm{O})$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.80-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.20-2.20(\mathrm{~m}, 5 \mathrm{H}), 3.19$ and $3.21(0.5$ each H, t, $\mathrm{J}=12), 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right) . \alpha_{\mathrm{D}}{ }^{25}=-92.1$ (neat). Reported bp $117-120^{\circ} \mathrm{C} / 3$ torr, $\alpha_{\mathrm{D}}{ }^{25}=-89.6^{\circ}$ (neat). ${ }^{\text {S2b }}$

Aryl 1-Isoquinolyl Carbinyl l-Menthyl Carbonates. Condensation of 2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitriles $[(S)-\mathbf{8} /(R)-8]$ with aromatic aldehydes was carried out at $-40^{\circ} \mathrm{C}$ in

DMF as described. Benzaldehyde, o-tolualdehyde, veratraldehyde and o-anisaldehyde afforded the corresponding carbonates $\mathbf{5}, \mathrm{R}=d$-menthyl, $\mathrm{R}^{\prime}=$ aryl. The products were analyzed by HPLC on a Pirkle column (See Table S1 and Figures S6 and S7 below). Because these doubly benzylic carbinol esters racemized rapidly (over a period of a few days or less), no attempt was made to isolate and purify them.

Racemic 1-Isoquinolyl Phenyl Carbinol

a. By the Phase Transfer Method: ${ }^{\mathrm{S} 3}$ Aqueous $\mathrm{NaOH}(50 \%, 7 \mathrm{~mL})$ was added to a well stirred solution of the Reissert compound $\mathbf{1 a}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5},(1.0 \mathrm{~g}, 3.9 \mathrm{mmol})$ in benzene (35 mL), benzaldehyde ($3.9 \mathrm{~mL}, 39 \mathrm{mmol}$) and trimethylbenzylammonium chloride ($74 \mathrm{mg}, 3.9 \mathrm{mmol}$) and the mixture was allowed to stir for 24 h . The very thick mixture was diluted with water (200 $\mathrm{mL})$. The benzene layer was washed with water ($2 \times 30 \mathrm{~mL}$), aq. sat'd $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$, and $\mathrm{NaHSO}_{3}(10 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporation to yield the crude alcohol ($750 \mathrm{mg}, 85 \%$), which was purified by recrystallization from ethanol, mp 113$115^{\circ} \mathrm{C}$ (reported $\left.{ }^{\mathrm{S} 4} \mathrm{mp} \mathrm{114-116}^{\circ} \mathrm{C}\right)$. FTIR (KBr): $v \quad 3500-2500(\mathrm{O}-\mathrm{H}), 2900(\mathrm{C}-\mathrm{H}), 1550 \mathrm{~cm}^{-1} ~$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.60-$ $7.80(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.85-8.00(\mathrm{~m}, 1 \mathrm{H}), 8.50-8.60(\mathrm{~m}, 1 \mathrm{H})$. LR MS (DICI): m/z $339\left(8 \%, \mathrm{M}^{+}\right), 234\left[100 \%,\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)^{+}\right], 217\left[95 \%,\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)^{+}\right], 105\left(80 \%, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right)$, $77\left(80 \%, \mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right)$.
b. $\quad \mathbf{B y}$ the $\mathbf{N a H} / \mathbf{D M F}$ Method via 3, $\mathbf{R}=\boldsymbol{\alpha}-\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{7}, \mathbf{R}^{\mathbf{\prime}}=\mathbf{C}_{\mathbf{6}} \mathbf{H}_{5}:{ }^{\mathrm{S5}} \mathrm{NaH}(60 \%, 100 \mathrm{mg}, 2.5$ mmol) was added to a well stirred solution of the compound $\mathbf{1 a}, \mathrm{R}=\alpha-\mathrm{C}_{10} \mathrm{H}_{7}{ }^{\mathrm{S} 6}(700 \mathrm{mg}, 2.26$ $\mathrm{mmol})$ and benzaldehyde $(0.30 \mathrm{~mL}, 3.0 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1.7 h at $0^{\circ} \mathrm{C}$ and quenched into ice-water $(200 \mathrm{~mL})$ and extracted with ether $(2 \mathrm{x} 40 \mathrm{~mL})$ and ethyl acetate $(2 \times 40 \mathrm{~mL})$. The combined extract was washed with water $(2 \times 20 \mathrm{~mL})$, saturated aq.
$\mathrm{NaHSO}_{3}(2 \times 20 \mathrm{~mL})$ and water $(4 \times 20 \mathrm{~mL})$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to yield the crude ester, 620 mg (75\%). Recrystallization (hexane-ethyl acetate) afforded the pure ester 3, R $=\alpha-\mathrm{C}_{10} \mathrm{H}_{7}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$ as a colorless crystalline solid, mp $134-137^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 8: 7.2-7.7 (m, 11H), $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.05(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H}), 8.41(\mathrm{t}, \mathrm{J}=8$, $1 \mathrm{H}), 8.59(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H}), 8.94(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 83.27, H 4.92, N 3.60. Found: C 83.52, H 4.97, N 3.58.

A solution of the naphthoate ester in THF (15 mL), water $(15 \mathrm{~mL})$, EtOH $(15 \mathrm{~mL})$ and $\mathrm{NaOH}(0.5 \mathrm{~g})$ was allowed to reflux overnight. The product was isolated and purified as in the procedure above to yield the alcohol (82%). Spectral data were identical to those of the compound prepared by the phase transfer method above.

Racemic 1-Isoquinolyl tert-Butyl Carbinol (16).

a. By the $\mathbf{N a H} / \mathbf{D M F}$ Method via 3, $\mathbf{R}=\boldsymbol{\alpha}-\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{7}, \mathbf{R}{ }^{\prime}=$ tert-Bu: By the above method Reissert compound 1a, $\mathrm{R}=\alpha-\mathrm{C}_{10} \mathrm{H}_{7}{ }^{\mathrm{S} 6}$ and pivaldehyde yielded 100% of the $\mathbf{3}, \mathrm{R}=\alpha-\mathrm{C}_{10} \mathrm{H}_{7}$, $\mathrm{R}^{\prime}=$ tert $-\mathrm{Bu}, \mathrm{mp} 136-137^{\circ} \mathrm{C}$ (hexane-ethyl acetate). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.17(\mathrm{~s}, 9 \mathrm{H}), 6.73(\mathrm{~s}$, 1H, CHO), 7.45-7.75 (m, 6H), 7.85 (m, 2H), 8.02 (d, J=8, 1H), 8.42 (dd, J=1, 7; 1H), 8.54 (bd, $\mathrm{J}=7,1 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=7,1 \mathrm{H}), 8.88(\mathrm{bd}, \mathrm{J}=7,1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C} 81.27, \mathrm{H} 6.28, \mathrm{~N}$ 3.79. Found: C 81.24, H 6.24, N 3.90.

The naphthoate ester was hydrolyzed (88\%) to rac-16, mp $101-102^{\circ} \mathrm{C}$, purified by several recrystallizations from ethyl acetate/hexane. Spectral data of this sample were identical with those of the sample synthesized by the PTC method (below).
B. By the PTC Method: The method described above with $\mathbf{1 a}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ and pivaldehyde produced (25\%) the alcohol, mp $100-101^{\circ} \mathrm{C}$. FTIR (KBr): v 3300-3500 (O-H) and 2810-2600 $(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{~s}, 9 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H}), 5.34(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H}), 7.55-7.75$
$(\mathrm{m}, 3 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H}), 8.50(\mathrm{~d}, \mathrm{~J}=8,1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}$ 78.10, H 7.98, N 6.51. Found: C 77.97, H 7.98, N 6.34.

Optical Purity Analysis of Isoquinolyl Alcohols

a. Attempts to Form Diastereomeric Derivatives: A set of model reactions of racemic 1isoquinolyl phenyl carbinol with acetyl chloride to form the acetate $3, \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$ showed that the best conditions for the esterification were in refluxing toluene with pyridine as the base (96% yield). Then l-(-)-menthyl chloroformate and cholesteryl chloroformate were used as chiral esterification reagents with racemic 1-isoquinolyl phenyl carbinol. The chloroformates were found not to be reactive enough toward the tertiary alcohol; these reactions did not proceed to high conversion under any of the conditions used. N-Phenylsulfonylprolyl chloride was also tried, but without success.

The synthesis of diastereomeric silyl acetals from racemic 1-isoquinolyl phenyl carbinol, l-menthol and dimethyldichlorosilane ${ }^{\mathrm{S7}}$ also proved problematic because of the difficulty in forming the silyl acetals quantitatively and isolation of the pure product; $\mathrm{Si}_{\mathrm{CH}}^{3}$ peaks from side products also interfered with NMR analysis.
b. Use of Chiral Shift Reagents and Chiral Solvents: The chiral lanthanide shift reagents tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium (III) $\left\{\mathrm{Eu}(\mathrm{hfc})_{3}\right\}$ and tris[3-(hexafluoropropylhydroxymethylene)-(+)-camphorato]praseodynium (III) $\left\{\operatorname{Pr}(\mathrm{hfc})_{3}\right\}$ were applied in a 1:5 mole ratio to racemic 1-isoquinolyl phenyl carbinol and rac-16. Also the chiral amines R-(+)-1-(α-napthyl)ethyl amine and S-(-)- α-methylbenzylamine were used in a 3:1 ratio relative to racemic 1-isoquinolyl phenyl carbinol and rac-16. These techniques proved unsuccessful due to problems with line broadening.
c. Use of Quinine as a Chiral Solvating Agent: For racemic 1-isoquinolyl phenyl carbinol in $\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}$ NMR singlets for the methine and hydroxyl protons occur at 6.40 and 6.38 ppm in CDCl_{3}, respectively. In the case of racemic 1-isoquinolyl tert-butyl carbinol (rac-16) one doublet $(\mathrm{J}=6.8 \mathrm{~Hz})$ each for the methine $\left(\mathrm{H}_{\alpha}, 5.25 \mathrm{ppm}\right)$ and hydroxyl signals (4.50 ppm) (Figure S9a) was identifiable by exchanging the compound with $\mathrm{D}_{2} \mathrm{O}$, resulting in two singlets, a broad OH signal and a sharp H_{α} peak. H_{8} of $\mathbf{1 6}$ appears as a doublet at 8.13 ppm (Figure S9a). Quinine was employed as a chiral solvating agent (CSA). ${ }^{\text {S8 }}$ When racemic 1-isoquinolyl phenyl carbinol was mixed with quinine (3 eq.), the signal for the methine $\left(\mathrm{H}_{\alpha}\right)$ proton was shifted into a complex splitting pattern in the aromatic region, making interpretation extremely difficult.

Rac-16 was mixed with quinine in a molar ratio of $1: \geq 3$ [e.g., $10 \mathrm{mg}(46 \mu \mathrm{~mol})$ of rac-16 and $53 \mathrm{mg}(164 \mu \mathrm{~mol})$ of quinine] and dissolved in a minimal amount of CDCl_{3} in a vial. Ten drops of $\mathrm{D}_{2} \mathrm{O}$ were then added and the sample was shaken vigorously for 1 h . Molecular sieves were added and the sample was allowed to stand for 5 min . The sample was filtered into an NMR tube and the minimum amount of CDCl_{3} was added to allow NMR determination. The H_{α} protons displayed two singlets (Figure S 9 b) and proton H_{8} appeared as an overlapping pair of doublets (Figure S9b inset). Integration of the outer peaks for H_{8} was used as a verification of the enantiomeric ratio determined by integration of the methine $\left(\mathrm{H}_{\alpha}\right)$ singlets; for the racemate, this yielded a 50.0:50.0 composition with a standard error of the mean, σ_{n}, of ± 0.7 percent $(n=20)$. In the case of the pure enantiomer only one of the methine singlets was present at 5.21 ppm and only one of the H_{8} doublets at 8.13 ppm (Figure 6).

1-Alkyl-2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitriles and

1-Alkyl-2-
cholesteryloxycarbonyl-1,2-dihydroisoquinaldonitriles. To a solution of the Reissert
compound 1:1 (S)-8:(R)-8 or $(S)-\mathbf{1 1}(2.7 \mathrm{mmol})$ and alkyl halide (2.7 mmol) in 10 mL of DMF at $-40^{\circ} \mathrm{C}$ under N_{2} was added $0.5 \mathrm{~g}(3 \mathrm{mmol})$ of $80 \% \mathrm{NaH}$. After 3 h the mixture was quenched with water and extracted 3 x with ether. The ether solution was washed with water 6 x , dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to yield the crude product, which was analyzed by HPLC on a Pirkle phenylglycine column (See Table S1 and Figures S11-S13 below). No attempt was made to isolate and purify these compounds.

1-Deuterio-2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitrile $\quad[(S)-8-d:(R)-8-d]$. To a stirred solution of $1.0 \mathrm{~g}(2.7 \mathrm{mmol})$ of 1:1 $(S)-\mathbf{8}:(R)-\mathbf{8}$ and $2.0 \mathrm{~mL}(32 \mathrm{mmol})$ of CS_{2} in 30 mL of DMF at ambient temperature under N_{2} was added $90 \mathrm{mg}(\approx 3.0 \mathrm{mmol})$ of $\approx 80 \% \mathrm{NaH}$ in mineral oil. The red-orange mixture was stirred for 2 h and quenched by addition of 25 mL of $\mathrm{D}_{2} \mathrm{O}$. The solid was filtered, washed with water and dried. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated that the peaks for H_{1} at $6.23,6.28$ and 6.43 ppm were diminished to $\sim 20 \%$ of the integrations for signals assigned to H_{3} and H_{4} (Figure S14). A control experiment was carried out in the same manner except quenching was accomplished by addition of $\mathrm{H}_{2} \mathrm{O}$; this resulted in complete recovery of the starting Reissert compound with $1: 1$ diastereomeric ratio as determined by the ${ }^{1} \mathrm{H}$ NMR spectrum.

Quenching of the Anion from 2-cholesteryloxycarbonyl-1,2-dihydroisoquinaldonitrile [(S)-
11]. This transformation was carried out with $\mathrm{NaH}, \mathrm{CS}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ as described for deuteration of $(S)-\mathbf{8} /(R)-\mathbf{8}$ above. A mixture of $(S)-11 /(R)-\mathbf{1 1}$ resulted. See Figure S2.

6,7-Dimethoxy-3,4-dihydroisoquinoline (17). This compound was made following known procedures for the syntheses of 3,4-dihydroisoquinolines. ${ }^{\text {S9 }}$ Anhyd. formic acid (7.00 g, 152 mmol) was refluxed with 3,4-dimethoxyphenethylamine ($10.00 \mathrm{~g}, 55.2 \mathrm{mmol}$) for 3 h , protected by a Drierite tube. The solution was allowed to cool to room temperature, whereupon it
solidified. Toluene (50 mL) was added. Phosphorous oxychloride ($30 \mathrm{~mL}, 0.20 \mathrm{~mol}$) was added cautiously through the condenser. The Drierite tube was reattached and the homogeneous solution was refluxed for 1 h , cooled to room temperature and diluted with petroleum ether (bp $40-60{ }^{\circ} \mathrm{C}$). The solvent was decanted from a brown viscous oil, which was dissolved in hot ethanol. The alcohol solution was poured into 350 mL of dilute HCl . The aq. solution was extracted with benzene. The aq. acidic medium was made basic with 50% aq. NaOH with cooling by the addition of ice. The basic aq. solution was extracted with benzene ($3 \times 50 \mathrm{~mL}$). The collected organic phase was dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then filtered. The benzene was removed using a rotoevaporator to give 9.60 g (90% yield) of an orange oil, which was used in Reissert compound syntheses: (lit. bp 152-158 ${ }^{\circ} \mathrm{C} / 0.8-0.9$ torr, ${ }^{\text {S9a }}$ bp $120^{\circ} \mathrm{C} / 0.01$ torr ${ }^{\text {S10 }}$); IR 3003, $1630 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 2.63(\mathrm{t}, J=8,2 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.63$ $(\mathrm{s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.6,47.1,55.9,56.0,110.5,110.6$, 121.4, 129.7, 147.8, 151.3, 159.4.

1-Methyl-6,7-dimethoxy-3,4-dihydroisoquinoline. This compound was synthesized in a manner analogous to that above from 3,4-dimethoxyphenethylamine and acetic acid in 68% yield as a yellowish-white solid, $\mathrm{mp} 107.0-107.9^{\circ} \mathrm{C}$ (hexane-ethyl acetate) (lit. $\mathrm{mp} 108^{\circ} \mathrm{C},{ }^{\text {Sla }} 106$ $\left.107^{\circ} \mathrm{C},{ }^{\mathrm{S} 11 \mathrm{~b}} 106^{\circ} \mathrm{C},{ }^{\text {S11c }} 102-104^{\circ} \mathrm{C},{ }^{\text {S } 11 \mathrm{~d}} 105-106^{\circ} \mathrm{C}^{\text {S11e }}\right)$. IR $~ \vee 2964,2941,2924,3077,1626,1603$, $1571 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{t}, J=8,2 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 6.67(\mathrm{~s}, 1$ H), $6.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.1,25.6,46.8,55.8,56.2,109.4,110.4,122.4,131.1,147.5$, 150.9, 163.3.

1-Benzyl-6,7-dimethoxy-3,4-dihydroisoquinoline. This compound was synthesized in a manner analogous to that above from 3,4-dimethoxyphenethylamine and phenylacetyl chloride in 47\% yield as a whitish solid, $\mathrm{mp} 86.5-90.7^{\circ} \mathrm{C}$ (lit. $\sim 80^{\circ} \mathrm{C},{ }^{\text {S12a }} 84-85^{\circ} \mathrm{C},{ }^{\text {S12b }} 81.8-85.9^{\circ} \mathrm{C}{ }^{\mathrm{S} 12 \mathrm{c}} 87^{\circ} \mathrm{C}$ S12d),
which was not further purified: IR $v 3027,1623,1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.64(\mathrm{t}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3$ H), $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, J=8,2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 25.7,43.4,47.1,55.1,55.9,110.0,110.4,121.6,121.9,126.3,128.4,131.7,138.2$, 147.3, 150.7, 165.2.

1-i-Propyl-6,7-dimethoxy-3,4-dihydroisoquinoline. This compound was made analogously from 3,4-dimethoxyphenethylamine and 2-methylpropionic acid in 80% yield as an orange oil (lit. bp 126-129 ${ }^{\circ} \mathrm{C} / 0.5 \mathrm{~mm},{ }^{\text {S13a }} 128-129^{\circ} \mathrm{C} / 1.2 \mathrm{~mm},{ }^{\mathrm{S} 13 \mathrm{~b}}$). IR $v 2969,1624,1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $1.12(\mathrm{~d}, J=7,6 \mathrm{H}), 2.49(\mathrm{t}, J=8,2 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=8,2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.3,25.2,31.0,46.0,55.0,55.6,62.8,108.5$, $110.0,120.9,131.3,146.9,150.1,170.1$.
(\boldsymbol{S})- α-Methylbutyryl chloride. Thionyl chloride $(5.98 \mathrm{~g}, 50.2 \mathrm{mmol}$) was added to ($(\mathrm{S})-\alpha$ methylbutyric acid, $98 \%, \alpha_{D}{ }^{25}=+19^{\circ}$ (neat), $(5.13 \mathrm{~g}, 50.2 \mathrm{mmol})$ in a reflux apparatus connected to a drying tube. The solution was warmed at $30-40^{\circ} \mathrm{C}$ with stirring for 23 h and placed under aspirator pressure to remove excess thionyl chloride. The compound was distilled under aspirator pressure, affording a colorless oil; IR: $1793 \mathrm{~cm}^{-1}$. Alternatively, the crude compound was used without distillation.

8-Phenyl-l-menthyl chloroformate. 8-Phenyl-l-menthol, $98 \%,[\alpha]_{\mathrm{D}}{ }^{25}=-26\left(\mathrm{c}=2.0, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ $(0.90 \mathrm{~g}, 3.9 \mathrm{mmol})$ was stirred under argon with pyridine $(0.31 \mathrm{~g}, 3.9 \mathrm{mmol})$ in benzene $(4 \mathrm{~mL})$. Triphosgene ($0.38 \mathrm{~g}, 1.3 \mathrm{mmol}$) in benzene (5 mL) was added dropwise. After the 2 d of stirring, the mixture was filtered. The benzene was removed in vacuo to give $0.85 \mathrm{~g}(75 \%)$ of colorless oil: IR (neat): v $1770 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{~m}, 5 \mathrm{H}), 1.14(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.63(\mathrm{~m} 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 21.5, 26.5, $26.8,27.0,31.4,24.2,39.9,41.0,50.7,83.9,88.7,125.5,128.2,149.8$. This was used without
further purification.
Reaction of the anion of 1-Cyano-2-(l-menthoxycarbonyl)-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (\boldsymbol{S})-19 with water. To a stirred solution of $(S) \mathbf{- 1 9}(0.50 \mathrm{~g}, 1.3 \mathrm{mmol})$ in DMF (25 mL) at $1^{\circ} \mathrm{C}$ was added NaH as a 60% dispersion in mineral oil ($0.05 \mathrm{~g}, 1 \mathrm{mmol}$). The yellow mixture was stirred at $1^{\circ} \mathrm{C}$ for 15 min and the anion was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The yellow color disappeared immediately. Stirring was continued for 3.2 h and the mixture was poured into 250 mL of ice water and filtered to give 0.5 g of yellowish white solid. Two peaks were obtained in the HPLC characteristic of the two diastereomers of 19 (Figure S18).

Use of Butyllithium in the Methylation of 2-(l-Menthoxycarbonyl)-1-cyano-6,7-dimethoxy$\mathbf{1 , 2 , 3}, 4$-tetrahydroisoquinoline $\mathbf{(S)} \mathbf{~ - 1 9 .}$. To a stirred solution of (S) - $\mathbf{1 9}(1.00 \mathrm{~g}, 2.50 \mathrm{mmol})$ in THF (15 mL) at $-78^{\circ} \mathrm{C}$ under argon was added n-butyllithium (2.62 mmol). The mixture was stirred for 20 min , during which time it turned yellow. Iodomethane ($0.39 \mathrm{~g}, 2.8 \mathrm{mmol}$) was added via syringe. The mixture was warmed with an ice bath. Stirring was continued for 4 h . The color of the mixture faded to colorless in 20 min . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to the mixture followed by $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phase was washed with brine and dried using anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give $1.13 \mathrm{~g}(100 \%)$ of an oil, which crystallized upon standing. The ${ }^{1} \mathrm{H}$ NMR spectrum of the unpurified material was essentially identical to that of $\mathbf{2 5 a}$ described in the text; the ratio of the two 1 -methyl signals at 1.89 and 1.86 ppm in toluene- d_{8} was 51:49. $[\alpha]_{\mathrm{D}}{ }^{25}=$ $-44.8\left(\mathrm{c}=2.11, \mathrm{CHCl}_{3}\right)$.

To a stirred solution of $(S)-19(0.40 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added n-butyllithium (1.05 mmol). The mixture was stirred for 20 min , during which time it turned yellow in color. The reaction temperature was lowed to $-100^{\circ} \mathrm{C}$. Iodomethane $(0.16 \mathrm{~g}$,
1.1 mmol) was added via syringe. Stirring was continued for 5 h at $-100^{\circ} \mathrm{C}$. The yellow color of the anion disappeared after 1.5 h of stirring. Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to the mixture followed by $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic phase was washed with brine and dried using anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the unpurified material was essentially identical to that of 25a given above; the ratio of the two 1-methyl signals at 1.90 and 1.87 ppm in toluene- d_{8} was 54:46. $[\alpha]_{\mathrm{D}}{ }^{25}=-39.6(\mathrm{c}=$ $\left.0.450, \mathrm{CHCl}_{3}\right)$.

1-i-Propyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

(25b) from (S)-19 using LDA as the base. To freshly distilled diisopropylamine ($0.11 \mathrm{~g}, 1.1$ mmol) in THF (10 mL) n-butyllithium (1.13 mmol) was added under argon at $-20^{\circ} \mathrm{C}$. The temperature was raised to rt and stirring continued for 15 min . The resulting diisopropylamide in THF was cooled to $-78^{\circ} \mathrm{C} .(S)-\mathbf{1 9}(0.41 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added dropwise. The mixture turned yellow. Stirring was continued for 10 min . 2-Iodopropane ($0.19 \mathrm{~g}, 1.1 \mathrm{mmol}$) was added to the mixture via syringe. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The yellow color had faded slightly. The mixture was allowed to come to rt and stirred for an additional 12 h, by which time the color had changed to a light red. Aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}(20$ mL) were added to the mixture. The aq. solution was reduced in volume in vacuo until an oil in $\mathrm{H}_{2} \mathrm{O}$ appeared. The aq. solution/oil was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15-20 \mathrm{~mL})$. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give 0.44 g (98% yield) of a dark yellow oil. The crude compound was crystallized once from a mixture of ethanol and hexane and twice from a mixture of ethyl acetate and hexane: mp $128-131^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}=-53.1\left(\mathrm{c}=0.700, \mathrm{CHCl}_{3}\right) ;$ IR $v 2243,1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.61(\mathrm{~m}, 3$ H), $0.78(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=7,2 \mathrm{H}), 1.88(\mathrm{~m}, 1$
H), $2.10(\mathrm{t}, J=7,1 \mathrm{H}), 2.61(\mathrm{~d}, J=7,1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3$ H), $4.23(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 16.0,16.4,18.9$, 20.7, 21.9, 23.6, 26.6, 29.0, 31.4, 34.2, 36.6, 41.2, 41.4, 41.8, 47.3, 47.4, 55.9, 56.1, 63.2, 63.4, 111.0, 112.3, 119.8, 121.9, 128.4, 147.1, 148.9, 154.9. The IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum were identical to those obtained for $\mathbf{2 5 b}$ using $\mathrm{NaH} / \mathrm{DMF}$.

Cyanoacylation of 1-Substituted 3,4-Dihydroisoquinolines: General Procedure.

To a stirred solution of 0.50 g of the substituted 3,4-dihydroisoquinoline, 1.1 equivalent of TMSCN, and 0.10 equivalent of anhyd. AlCl_{3} in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1.1 equivalent of acid chloride. After 3-6 days of stirring at room temperature (monitored by TLC), 1 mL of $\mathrm{H}_{2} \mathrm{O}$ was added and stirring was continued for 1 day. The organic phase was washed 3 x each with $\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{NaOH}$, and $\mathrm{H}_{2} \mathrm{O}$ and then once with brine. The organic phase was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give the crude product.

1-Methyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

(25a) by cyanoacylation. After 6 days, an orange oil in 100% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum obtained in toluene- d_{8} the ratio of the integrations of the 1-methyl signals at 1.89 and 1.86 ppm was $44: 56$, respectively. Use of other reaction temperatures (0 and $-26^{\circ} \mathrm{C}$) yielded the same diastereomeric ratio.

1-Methyl-2-(l-menthoxycarbonyl)-1-hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

(29). When the cycanoacylation reaction to form 25a above was terminated by quenching with water after 3 days, the crude product (72%) was shown to be a mixture of 4 compounds by TLC; trituration with ether yielded (14\%) the material with the lowest R_{f} and it was purified by column chromatography $\left(\mathrm{SiO}_{2}, \quad 10 \% \quad i-\mathrm{PrOH} /\right.$ hexane $)$ and recrystallization

(ethanol, then hexane-ethyl acetate) as silky colorless needles of $\mathbf{2 9}, \mathrm{mp} 125-126^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v$ $3375,1678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.75(\mathrm{~d}, J=7,3 \mathrm{H}), 0.87(\mathrm{~m}, 7 \mathrm{H}), 1.00(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H})$, $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7,2 \mathrm{H}), 3.44$ $(\mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $16.6,20.7,22.0,23.8,26.4,29.2,31.3,34.2,34.4,41.6,42.4,47.4,56.0,56.3,113.7,114.7$, $129.8,134.5,147.0,152.0,156.5,199.8$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{5}: \mathrm{C}, 68.12 ; \mathrm{H}, 8.70 ; \mathrm{N}$, 3.45; Found: C, 67.60; H, 8.48, N, 3.54.

1-Benzyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

(25c) by cyanoacylation. Crude yield: 86% of a brown viscous oil, purified by flash chromatography to give a colorless oil, which solidified under vacuum. The solid was recrystallized from a mixture of hexane and ethyl acetate: $\mathrm{mp} 106-109^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-22.3(\mathrm{c}=$ $0.713, \mathrm{CHCl}_{3}$). The IR, ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were identical to the compound made by benzylation of dihydro-Reissert compound 19, but the melting point was $2-3^{\circ} \mathrm{C}$ lower and the optical rotation was 20° lower. The diastereomers could not be separated by chromatography or recrystallization.

1-Methyl-(8'-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroiso-

quinoline (26a) by cyanoacylation. 90% yield of a golden yellow amorphous solid whose IR and NMR spectra were essentially identical to the product prepared by methylation of $\mathbf{2 0} .[\alpha]_{D}{ }^{25}$ $=-50.4\left(\mathrm{c}=0.630, \mathrm{CHCl}_{3}\right)$. The integration ratio of the 1-methyl signals at 1.90 and 1.87 ppm in toluene- d_{8} was 62:38, respectively.

Transformations of Chiral Dihydro Reissert Compounds and Alkylated Derivatives

With a view toward ultimate production of isoquinoline alkaloids, several transformations of alkylated chiral dihydro Reissert compounds were explored. Attempted
reductions of 1-methyl-2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (25a) and 1-benzyl-(l-menthoxycarbonyl)-1-cyano-2-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (25c) to N -formyl derivatives (as precursors to N -methyl analogs) using sodium borohydride, sodium borohydride in diglyme, sodium borohydride in diglyme with aluminium chloride, diisobutylaluminium hydride and lithium aluminium hydride all at various temperatures resulted in recovery of only starting material.

Treatment of (S) - $\mathbf{1 9}$ with hydrogen peroxide under basic conditions in DMSO led to quantitative conversion of the cyano moiety to the amide (30).

2-(l-menthoxycarbonyl)-1-carboxamido-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

 by hydrolysis of [(S)-19] with hydrogen peroxide andbase. A solution of $(S)-19(0.76 \mathrm{~g}, 1.9 \mathrm{mmol})$ in DMSO $(15 \mathrm{~mL})$ with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{~g}, 1.6 \mathrm{mmol})$ was cooled to 0
 ${ }^{\circ} \mathrm{C}$ using an ice $\mathrm{H}_{2} \mathrm{O}$ bath. Aq. hydrogen peroxide ($30 \%, 0.35 \mathrm{~mL}$) was added to the mixture, which was warmed to room temperature and stirred for $12 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the resultant mixture was poured into $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL})$. The precipitate was filtered to give 1.16 g (100%) of a white solid, which was recrystallized once from ethanol, twice from a mixture of hexane and ethyl acetate and once from toluene, affording pure 30: mp $167-168^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-60.0$ $\left(\mathrm{c}=0.160, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}): v 3364,3174,1695,1657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 0.75(\mathrm{~d}, J=7,3 \mathrm{H})$, $0.95(\mathrm{~m}, 9 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=7,2 \mathrm{H}), 1.87(\mathrm{br}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{br}, 2 \mathrm{H})$, $3.58(\mathrm{br}, 1 \mathrm{H}), 3.85(\mathrm{br} \mathrm{s}, 7 \mathrm{H}), 4.64(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{br} \mathrm{m}, 1.5 \mathrm{H}), 6.73(\mathrm{br} \mathrm{m}$, 2.5 H); the ${ }^{1} \mathrm{H}$ NMR spectrum showed traces of ethyl acetate; ${ }^{13} \mathrm{C}$ NMR $\delta 16.6,22.7,22.0,23.7$, $26.6,28.1,31.5,34.3,40.6,41.4,41.6,47.4,56.0,56.1,58.1,111.5,127.1,127.6,140.8,141.3$, 147.9, 148.8, 173.4. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \bullet 0.50\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right): \mathrm{C}, 64.91 ; \mathrm{H}, 8.27 ; \mathrm{N}$,
6.06; Found: C, 64.61; H, 8.07; N, 6.53.

Table S1
Reactions of Diastereomeric Isoquinoline Reissert Compounds ${ }^{\text {a }}$

Reissert Compound	Electrophile	Product	Yield (\%)	Diastereomeric Product Ratio
$\begin{aligned} & 1: 1(S)- \\ & \mathbf{8}:(R)-\mathbf{8} \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\begin{gathered} \mathrm{5}, \mathrm{R}=d \text {-menthyl, } \\ \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \end{gathered}$	95	$55: 45^{\text {b }}$
$\begin{aligned} & 1: 1(S)- \\ & \mathbf{8}:(R)-\mathbf{8} \end{aligned}$	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$\begin{aligned} & \hline \mathbf{5}, \mathrm{R}=d \text {-menthyl, } \\ & \mathrm{R}^{\prime}=o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	100	$66: 34^{\text {b,c }}$
$\begin{aligned} & 1: 1(S)- \\ & \mathbf{8}:(R)-\mathbf{8} \end{aligned}$	$o-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$\begin{aligned} & \text { 5, } \mathrm{R}=d \text {-menthyl, } \\ & \mathrm{R}^{\prime}=o-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \end{aligned}$	100	$62: 38{ }^{\text {b,d }}$
$\begin{aligned} & 1: 1(S)- \\ & \mathbf{8}:(R)-\mathbf{8} \end{aligned}$	3,4-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHO}$	$\begin{gathered} \mathbf{5}, \mathrm{R}=d \text {-menthyl, } \\ \mathrm{R}^{\prime}=3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \end{gathered}$	61	51:49 ${ }^{\text {b }}$
$\begin{aligned} & 1: 1(S)- \\ & \mathbf{8}:(R)-\mathbf{8} \end{aligned}$	$\mathrm{D}_{2} \mathrm{O}$	(S)-8:(R)-8	100	$1: 1^{\text {b,e }}$
(S)-11	$\mathrm{H}_{2} \mathrm{O}$	(S)-11:(R)-11	100	51:49 ${ }^{\text {b,f }}$

In DMF at $-40^{\circ} \mathrm{C}$ using NaH as base.
b By HPLC with a Pirkle phenylglycine column (99:1 hexane:isopropanol, $1 \mathrm{~mL} / \mathrm{min}$); listed in order of elution.
c See Figure S6.
d See Figure S7.
e See Figure S14.
${ }^{\mathrm{f}} \quad$ See Figure S2.

Figure S1. Partial $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of chromatographic fractions of 2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitrile $[(S)-\mathbf{8} /(R)-\mathbf{8}]$ in CDCl_{3} : a, top) fractions $1,3,5,7,9$ and 11 (top to bottom) at $23^{\circ} \mathrm{C}$ and \mathbf{b}, bottom) fraction 1 at $-20^{\circ} \mathrm{C}$.

Figure S2. HPLC traces ($4.6 \times 250 \mathrm{~mm}$ Pirkle covalent phenylglycine column, 99:1 hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 2-cholesteryloxycarbonyl-1,2-dihydroisoquinaldonitriles (11), from bottom up: mixture as isolated, pure R-diastereomer, pure S-diastereomer (see Figure S3 for X-ray crystal structure of the S-diastereomer) and 51:49 mixture after quenching the anion of $(S)-\mathbf{1 1}$ with $\mathrm{H}_{2} \mathrm{O}$.

Figure S3. X-ray crystal structure of diastereomerically pure S-2-cholesteryloxycarbonyl-1,2dihydroisoquinaldonitrile $[(S)-\mathbf{1 1}]$: stick (top) and space filling (bottom) representations.

Figure S4. HPLC traces (4.6 x 250 mm Pirkle covalent phenylglycine column, 99:1 hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1-isoquinolyl tert-butyl carbinyl l-menthyl carbonate (12) derived from 1:1 (S)-8:(R)-8 and pivaldehyde. a, top) as made mixture of R - and S-diastereomers and b, bottom) pure S-diastereomer after a single recrystallization (see Figure S 5 for the X-ray crystal structure).

Figure S5. X-ray crystal structure of diastereomerically pure 1-isoquinolyl tert-butyl carbinyl l-menthyl carbonate $[(S)-\mathbf{1 2}]$: stick (top) and space filling (bottom) representations.

Figure S6. HPLC trace (4.6 x 250 mm Pirkle covalent phenylglycine column, $99: 1$ hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1-isoquinolyl o-tolyl carbinyl l-menthyl carbonate (5, $\mathrm{R}=d$-menthyl, $\left.\mathrm{R}^{\prime}=o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ derived from 1:1 $(S)-\mathbf{8}:(R)-\mathbf{8}$ and o-tolualdehyde. The ratio of diastereomers is $66: 34$. The ${ }^{1} \mathrm{H}$ NMR spectrum indicates that there is no residual starting material; furthermore, there are two doublets for H_{8} (8.54 and 8.58 ppm) in a ratio of $62: 38$, respectively, as well as two $o-\mathrm{CH}_{3}$ signals (2.53 ppm) in a ratio of 68:32.

Figure S7. HPLC trace ($4.6 \times 250 \mathrm{~mm}$ Pirkle covalent phenylglycine column, 99:1 hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1 -isoquinolyl o-anisyl carbinyl l-menthyl carbonate (5, R $=d$-menthyl, $\left.\mathrm{R}^{\prime}=o-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$ derived from 1:1 $(S)-\mathbf{8}:(R)-\mathbf{8}$ and o-anisaldehyde. The ratio of diastereomers is $62: 38$. The ${ }^{1} \mathrm{H}$ NMR spectrum indicates that there is no residual starting material; furthermore, there are two doublets for H_{8} (8.51 and 8.56 ppm) in a ratio of $62: 38$, respectively, as well as two OCH_{3} signals (3.90 and 4.00 ppm) in a ratio of 71:28.

Figure S8. HPLC trace (4.6 x 250 mm Pirkle covalent phenylglycine column, 99:1 hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1 -isoquinolyl tert-butyl carbinyl cholesteryl carbonate (15) derived from diastereomerically pure (S)-11 and pivaldehyde. The ratio of diastereomers is $52: 48$. The peak at 15.5 min is due to an impurity.

Figure S9. $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of a) bottom, racemic 1-isoquinolyl tert-butyl carbinol (16) and b) top, 16 and quinine (1.0:3.6 molar ratio) after exchange with $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ in CDCl_{3}. The peak at 1.7 ppm in (a) is due to $\mathrm{H}_{2} \mathrm{O}$. The peaks at ca. 7.2 ppm in (a) and (b) are due to CHCl_{3}.

Figure 10. $270 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of S-(-)-1-isoquinolyl tert-butyl carbinol [(S)-16] and quinine (1:3 molar ratio) after exchange with $\mathrm{D}_{2} \mathrm{O}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$. Integration of the singlets at 5.21 and 5.28 indicates a purity of 99%.

Figure S11. HPLC trace ($4.6 \times 250 \mathrm{~mm}$ Pirkle covalent phenylglycine column, $99: 1$ hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1-methyl-2-l-menthoxycarbonyl-1,2dihydroisoquinaldonitrile (22a) derived from 1:1 (S)-8:(R)-8 and methyl iodide. The ratio of diastereomers is $\sim 50: 50$. The small signal at higher elution time is starting material.

Figure S12. HPLC trace ($4.6 \times 250 \mathrm{~mm}$ Pirkle covalent phenylglycine column, $99: 1$ hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1-n-butyl-2-l-menthyloxycarbonyl-1,2dihydroisoquinaldonitrile (22b) derived from 1:1 (S)-8:(R)-8 and n-butyl bromide. The ratio of diastereomers is $36: 64$. The small peak at $\sim 11 \mathrm{~min}$ is residual starting material.

Figure S13. HPLC trace ($4.6 \times 250 \mathrm{~mm}$ Pirkle covalent phenylglycine column, 99:1 hexane: ethyl acetate, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ detection) for 1-methyl-2-cholesteryloxycarbonyl-1,2dihydroisoquinaldonitrile (23a) derived from diastereomerically pure (S)-11 and methyl iodide. The ratio of diastereomers is $55: 45$. The large peak at ~ 750 seconds is residual $(S)-\mathbf{1 1}$; conversion 15%.

Figure S14. Partial 270 MHz 1 H NMR spectrum of a sample of 2-l-menthoxycarbonyl-1,2dihydroisoquinaldonitrile $[(S)-\mathbf{8} /(R)-8]$ prepared by quenching the anion with $\mathrm{D}_{2} \mathrm{O}$. The signals for H_{1} at $6.18,6.22$ and 6.38 ppm have been greatly diminished, c.f., Figure 1b.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of 2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (18) ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) a, top) at ambient temperature, b, bottom) at $50^{\circ} \mathrm{C}$. The peak at 7.3 ppm is due to CHCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra of 2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (18) (200 MHz, toluene- $\left.d_{8}\right)$ a, top) at ambient temperature. b , bottom) at $70^{\circ} \mathrm{C}$. The signals at 2.1 and 7.0 ppm are due to the solvent.

Figure 17. X-ray crystal structure of mixed diastereomers of 2-(S - α-methylbutyryl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (18).

Figure S18. HPLC traces for 2-(l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (19). Top trace, compound (S)-19. Middle trace, compound (R)-19. Bottom trace, a mixture of compounds (S)-19 and (R)-19. $4.6 \times 250 \mathrm{~mm}$ normal phase silica gel column, 10% ethyl acetate in hexane, 2 mL per min. The higher melting S-form exhibited a retention time of 9.60 min while the lower melting R-diastereomer exhibited a retention time of 10.2 min .

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (1S)-2-(l-menthoxycarbonyl)-l-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline $[(S)-19]$ at ambient temperature.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (1S)-2-(l-menthoxycarbonyl)-l-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline $[(S)-19]$ at $45^{\circ} \mathrm{C}$.

Figure 21. X-ray crystal structure of diastereomerically pure S-2-l-menthoxycarbonyl-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline [(S)-19]: ORTEP drawing (top) and stick (bottom) representations.

Figure S22. HPLC trace for 2-(8'-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (20): $4.6 \times 250 \mathrm{~mm}$ normal phase silica gel column, 15% ethyl acetate in hexane, 1 mL per min, 254 nm uv detection. The area ratio of peaks with retention times of 11.7 vs. 12.5 min was $20: 80$, respectively. The peak at 9.4 min is an unknown impurity.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2-(8'-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (20) at ambient temperature; inset: deuterated $\mathbf{2 0}$ to identify H_{1} signals.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-methyl-2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (24a) at ambient temperature.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1-methyl-2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (24a) at $50^{\circ} \mathrm{C}$. The peak at 1.49 ppm is due to water.

Figure 26. X-ray crystal structure of mixed diastereomers of 1-methyl-2-[(S)- α-methylbutyryl]-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (24a).

Figure S27. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(200 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right)$ of 1-methyl-2-($l-$ menthoxycarbonyl)-l-cyano-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (25a) at $45^{\circ} \mathrm{C}$.

Figure S28. X-ray crystal structure of $1: 1$ mixture of diastereomers of 1-isopropyl-2-l-menthoxycarbonyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquino-line (25b): ORTEP drawing (top) and stick (bottom) representations.

Figure S29. Partial ${ }^{1} \mathrm{H}$ NMR spectrum (200 MHz , toluene- d_{8}) of 1-methyl-2-(8'-phenyl- l -menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (26a) at $45^{\circ} \mathrm{C}$.

Figure S30. Electron impact mass spectrum of 1-methyl-2-(8'-phenyl-l-menthoxycarbonyl)-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (26a). The inset is the high resolution spectrum; the peak at $\mathrm{m} / \mathrm{z} 492.9697$ is a calibration signal. The $\mathrm{m} / \mathrm{z} 394.2$ peak is due to loss of the menthyl moiety $\left(\mathrm{C}_{7} \mathrm{H}_{12}\right)$, apparently via a rearrangement process with migration of the cumyl moiety; the same fragmentation $(-\mathrm{m} / \mathrm{z} 96)$ is observed in the precursor Reissert compound.

Figure S31. Minimized structures of the E-rotamers of (R) - and (S)-2-menthoxyacetyl-1,2dihydroisoquinaldonitrile (10). The acidic proton H_{1} is close to the menthoxy oxygen atom and the C-H-O angles are consistent with a hydrogen bonding interaction. ${ }^{\text {S14 }}$ The calculated energies of the Z-rotamers are lower than those of the E-rotamers, but molecular mechanics does not take into account possible H -bonding interactions such as those possible here.

Figure S32. All of the carbanions in this study were benzylic, so most likely they are planar. ${ }^{\text {S15 }}$ Examination of CPK models and the minimized structures above indicate the possible origins of the modest stereoselectivites observed. These structures were minimized (MM2) as the corresponding ketenes and the N atom was then inserted in place of the O atom of the ketene. Both E - and Z-urethane isomers are shown. On the left are the planar structures for the anion from 8; in both E - and Z-forms the menthyl group hinders approach from the top face. Approach of pivaldehyde from the bottom face with the tert-butyl group away from the menthyl moiety will lead to the S-diastereomer of 12, experimentally observed as the predominant (82\%) product. On the right are the planar structures for the anion from 20. Here, the E - and Z-forms
present quite different degrees of steric hindrance. Because of dipolar repulsion of the negative charge of the anion and the carbonyl oxygen, the E-isomer should predominate; in this case the phenylmenthyl moiety shields the top face quite effectively. Approach of alkyl halides, e. g., $\mathrm{CH}_{3} \mathrm{I}$, from the bottom face will preferentially lead to the S-diastereomers of $\mathbf{2 6}$. Thus, presumably the predominant (e. g., 67% for 26a) diastereomer in products of alkylation reactions of $\mathbf{2 0}$ is the S-derivative. The less than perfect stereo-control may be attributed to the presence of some of the Z-isomer, in which both faces are accessible.

In the case of 2-cholesteryloxycarbonyl-1-,2-dihydroisoquinaldonitrile (11) the lack of diastereoselectivity in forming $\mathbf{1 5}$ may be attributed to the lack of steric constraint at the reactive site by the rigid cholesteryl moiety, which as seen in its X-ray structure (Figure S3) is extended away from the isoquinoline portion of the molecule.

These arguments are based on substrate-controlled kinetics, of course. However, molecular mechanics (MM2 and MM3) calculations on the products $(R) \mathbf{- 1 2}$ and $(S) \mathbf{- 1 2}$ from reaction of $\mathbf{8}$ with pivaldehyde indicated a significant energy difference, $1.1 \mathrm{kcal} / \mathrm{mol}$, favoring the S-isomer on the basis of product-controlled kinetics.

As shown below MM2 calculations indicated differences in energies of the diastereomeric dihydro-Reissert compounds as well as their methylated products. The predominance of S-diastereomers in the Reissert compounds is consistent with these results. The predicted selective formation of S-diastereomers in the methylated products is also consistent with the predictions from the above minimized structure of $\mathbf{2 0}$.

MM2 Calculated Energy Differences and Predicted Fractional Compositions of Dihydro-Reissert Compounds and Methylated Derivatives

Compound	$\mathbf{E}_{\boldsymbol{R}}-\mathbf{E}_{\boldsymbol{S}}(\mathrm{kcal} / \mathrm{mol})$	Predicted Ratio $\boldsymbol{S}: \boldsymbol{R} @ \mathbf{2 5}^{\mathbf{0} \mathbf{C}}$
$\mathbf{1 8}$	0.11	$55: 45$
$\mathbf{1 9}$	0.06	$52: 48$
$\mathbf{2 0}$	3.33	$99.6: 0.4$
$\mathbf{2 4 a}$	0.15	$56: 44$
$\mathbf{2 5 a}$	0.74	$78: 22$
$\mathbf{2 6 a}$	1.40	$91: 9$

REFERENCES

S1. Eliel, E. L. Stereochemistry of Organic Compounds, McGraw-Hill, New York, 1962, p. 8.
S2. Leffler, M. T.; Calkins, A. E. Org. Syn., Coll. Vol. 3, a) p 544; b) p. 547.
S3. A. Joncyzk, Bull. Acad. Pol. Sci. 1974, 22, 849-853.
S4. Walters, L. R.; Lyer, N. T.; McEwen, W. E. J. Am. Chem. Soc. 1958, 80, 1177-1181.
S5. Popp F. D.; Wefer, J. M. Chem. Commun. 1966, 207-208.
S6. Popp F. D.; Soto, A. J. Chem. Soc. 1963, 1760-1763.
S7. Chan, T. H.; Peng, Q. J.; Wang D.; Guo, J. A. J. Chem. Soc. Chem. Commun. 1987, 325-326.
S8. Rosini, C.; Uccello-Barretta, G.; Pini, D.; Abete C.; Salvadori, P. J. Org. Chem. 1988, 53, 4579-4581.

S9. a) Haworth, R. D. J. Chem. Soc. 1927, 2281-2284. b) Whaley, W. M.; Meadow, M. J. Chem. Soc. 1953, 1067-1070. c) Popp, F. D.; McEwen, W. E. J. Am. Chem. Soc. 1957,

79, 3773-3777. d) Whaley, W. M.; Govindachari, T. R. Org. React. 1969, 6, 74-150. e) Warrener, R. N.; Liu, L.; Russell, R. A. Tetrahedron 1998, 54, 7485-74960.

S10. Openshaw, H. T.; Whittaker, N. J. Chem. Soc. 1963, 1461-1471.
S11. a) Kaufmann, A.; Radosevic, R. Ber. Deusch. Chem. Ges. 1916, 49, 675-683. b) Spath, E.; Polgar, N. Monatsh. Chem. 1929, 51, 190-204. c) Barbier, A. M.; Rumpf, P. Bull. Soc. Chim. Fr. 1953, 293-296. d) Walker, G. N. J. Am. Chem. Soc. 1954, 76, 3999-4003. e) Lora-Tamayo, M.; Madronero, R.; Munoz, G. G.; Marzal, J. M.; Stud, M. Chem. Ber. 1961, 94, 199-207.

S12. a) Tsatsas, G. Ann. Pharm. Fr. 1952, 10, 61-71. b) Merchant, J. R. J. Sci. Ind. Res. 1957, 16B, 512-514. c) Yamada, S.; Omar, A.-M. M. E. Chem. Pharm. Bull. 1964, 12, 249-52. d) Kametani, T.; Wakisaka, K.; Fukumoto, K. Yakugaku Zasshi 1965, 85, 956-9.

S13. a) Craig, P. N.; Nabenhauer, F. P.; Williams, P. M.; Macko, E.; Toner, J. J. Am. Chem. Soc. 1952, 74, 1316-1317. b) Djerassi, C.; Beereboom, J. J.; Marfey, S. P.; Figdor, S. K. J. Am. Chem. Soc. 1955, 77, 484-5.

S14. Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, UK, 1997, pp. 85-97.

S15. a) Brooks, J. J.; Stucky, G. D. J. Am. Chem. Soc. 1972, 94, 7333-7338. b) Peoples, P. R.; Grutzner, J. B. J. Am. Chem. Soc. 1980, 102, 4709-4715. c) Jernigan, M. T.; Eliel, E. L. J. Am. Chem. Soc. 1995, 117, 9638-9644. d) Enders, D.; Kirchoff, J.; Gerdes, P.; Mannes, D.; Raabe, G.; Runsink, J.; Boche, G.; Marsch, M.; Ahlbrecht, H.; Sommer, H. Eur. J. Org. Chem. 1998, 63-72. e) Binev, Y. I.; Petrova, R. R.; Tsenov, J. A.; Binev, I. G. J. Mol. Structure 2000, 516, 23-29.

