Supporting Information ### A. General expression for electric field induced fluorescence quench Q_F Equation (6) in the text defines the magnitude of electric field induced fluorescence quench as follows $$Q_F = \frac{\phi_0 - \phi(F)}{\phi_0} \tag{A1}$$ Derivation of this equation follows from the standard definition of fluorescence intensity $(I(\tilde{v}) = \varepsilon(\tilde{v}) \cdot C \cdot l \cdot k \cdot \phi_f)$ as described in the text. When experimental conditions are chosen such that the electric field effect on $\mathcal{E}(\tilde{v})$ is negligible, such as when exciting at a zero-crossing of the electroabsorption spectrum, any changes to $I(\tilde{v})$ are derived from electric field effects on the radiative (k_r) and nonradiative (k_{nr}) excited relaxation The state rates. following definitions were used: $\phi_F = \frac{k_r(F)}{k_r(F) + k_r(F)}$, $\phi_0 = \frac{k_r}{k_r + k_r}$, and $k_r(F)$ is the radiative relaxation rate in the electric field and $k_{nr}(F)$ is the corresponding nonradiative relaxation rate. As described in the text, field effects on the radiative relaxation rate have been found negligible; therefore, $k_r(F) = k_r$. # B. Fluorescence quench as a function photophysical parameters Fluorescence quench can be parameterized with the radiative and nonradiative rate constants by substituting the definitions of ϕ_F and ϕ_0 into Q_F . $$Q_{F} = \frac{\left(\frac{k_{r}}{k_{r} + k_{nr}}\right) - \left(\frac{k_{r}}{k_{r} + k_{nr}(F)}\right)}{\left(\frac{k_{r}}{k_{r} + k_{nr}}\right)}$$ (B1) This expression can be simplified by writing $$Q_F = 1 - \left(\frac{k_r + k_{nr}}{k_r + k_{nr}(F)}\right)$$ (B2) and then $$Q_F = \frac{k_{nr}(F) - k_{nr}}{k_r + k_{nr}(F)}$$ (B3) To allow for substitution of the analytical expressions for intersystem crossing (k_{isc}) or internal conversion (k_{ic}) into Q_F , k_{nr} is factored out and the resulting expression simplified to give, $$Q_{F} = \frac{k_{nr}}{k_{nr}} \times \left(\frac{k_{nr}(F)/k_{nr} - 1}{k_{r}/k_{nr} + k_{nr}(F)/k_{nr}} \right)$$ (B4) $$Q_{F} = \frac{\left(\frac{k_{nr}(F)}{k_{nr}} - 1\right)}{\left(A + \frac{k_{nr}(F)}{k_{nr}}\right)}$$ (B5) Where A is a fit parameter defined as k_r/k_{nr} . Following the prescription in the text, the analytical expressions for k_{isc} or k_{ic} (eqns. 9 and 11) can now be introduced to yield eqns. (10) and (13). # C. Fluorescence quench as a function of k_{isc} Substitution of eq. (9) into Q_F is straightforward. The general expression relating k_{isc} to $S_1 \rightarrow T_n$ energy gap is $$k_{isc} \propto C \cdot \exp\left[-\frac{(E_{ST} + \lambda)^2}{4\lambda RT}\right]$$ (C1) The singlet-triplet energy gap, E_{ST} , is sensitive to the Stark shift of S_1 defined in the text by eq. (8). When the electric field is applied, E_{ST} shifts by $\Delta\Delta\tilde{\nu}$ to give $E_{ST} - \Delta\Delta\tilde{\nu}$. The negative sign indicates the Stark shift is always to lower energy as defined by eq. (8). Substituting this expression for E_{ST} into k_{isc} the following expression for the field effect on k_{isc} is derived, $$k_{isc}(F) \propto C \cdot \exp\left[-\frac{\left(E_{ST} - \Delta \tilde{v} + \lambda\right)^2}{4\lambda RT}\right]$$ (C2) Equation (10) is expressed by substituting the expressions for k_{isc} and $k_{isc}(F)$ into the general expression for fluorescence quench, Q_F , and simplifying, $$Q_{ISC} = \frac{\left(\exp\left[\frac{1}{4} \cdot \Delta \tilde{v} \cdot \frac{(2 \cdot E_{ST} - \Delta \Delta \tilde{v} - 2 \cdot \lambda)}{\lambda \cdot R \cdot T}\right] - 1\right)}{\left(A + \exp\left[\frac{1}{4} \cdot \Delta \tilde{v} \cdot \frac{(2 \cdot E_{ST} - \Delta \Delta \tilde{v} - 2 \cdot \lambda)}{\lambda \cdot R \cdot T}\right]\right)}$$ (C3) #### D. Fluorescence quench as a function k_{ic} Following a similar prescription, Q_{IC} can be derived by substituting eq. (11), $$k_{ic} = C \cdot \exp\left(-\frac{\gamma}{\hbar \omega_m} \cdot E_g\right) \tag{D1}$$ into the general expression for fluorescence quench and by modifying the argument of the exponent in k_{isc} from E_g to $E_g - \Delta\Delta\tilde{v}$ to express internal conversion as a function of Stark shift, $k_{isc}(F)$. Equation (13) directly follows, $$Q_{IC} = \frac{\left(\exp\left[\frac{\gamma}{\hbar\omega_{M}} \cdot \Delta\Delta\tilde{v}\right] - 1\right)}{\left(A + \exp\left[\frac{\gamma}{\hbar\omega_{M}} \cdot \Delta\Delta\tilde{v}\right]\right)}$$ (D2) ### E. Modification to analytical expression for γ . The original expression for γ as taken from Ref. 104 is $$\gamma = \ln \left(\frac{2\Delta E}{n\hbar \omega_{\rm m} \Delta Q^2} \right) - 1 \tag{E1}$$ where ΔE is the energy gap, n is the vibrational quantum number, ω_m is the frequency of the dominant normal vibrational mode, and ΔQ^2 is the displacement between the minima of the ground and excited state potential energy surfaces. ΔQ is related to the reorganization energy λ by $$\lambda = n\hbar \omega_m S$$, where $S = \frac{\Delta Q^2}{2}$ Substituting the expression for S and solving for ΔQ yields $$\Delta Q = \frac{2\lambda}{n\hbar \omega_m} \tag{E2}$$ Equation 13 then follows.