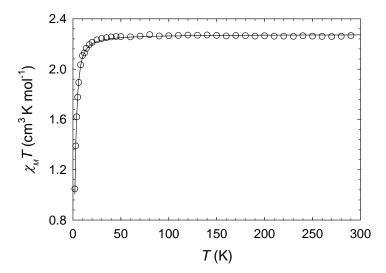
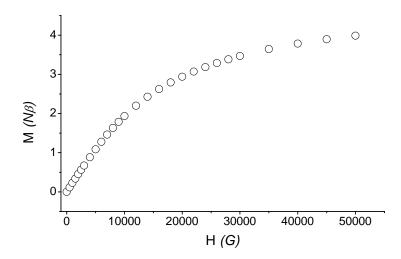

New $[LNi_2]^+$ Complexes Incorporating 2-Formyl or 2,6-Diformyl-4-Methyl Phenol as Inhibitors of the Hydrolysis of the Ligand L^{3-} : Ni···Ni Ferromagnetic Coupling and S=2 Ground States

Alok Ranjan Paital, Wing Tak Wong, Guillem Aromí*, and Debashis Ray, *, *


[‡]Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India, [†]Department of Chemistry, University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, P.R. China, and [§]Departament de Química Inorgànica, Universitat de Barcelona, Diagonal, 647 08028-Barcelona, Spain


Figure S1. Intermolecular anion-water hydrogen bonding in complex **1** gives a 1-D net running along the crystallographic a-axis.

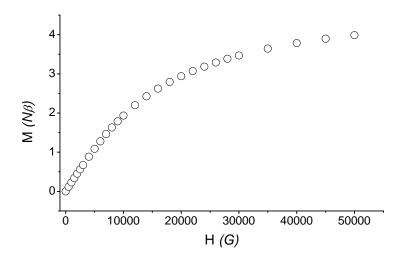

Figure S2. Like cyclopentane one water oxygen (O9W) is 0.701 Å below the water cluster plane in complex **2**.

Figure S3. Plot of $\chi_M T$ vs T per mol of $[Ni(HL1)]_2(NO_3)_2$ (1). The solid line is a fit to the experimental data using a model that includes $Ni^{II} \cdots Ni^{II}$ superexchange and single ion zero field splitting (see text for details).

Figure S4. Plot of isothermal (2K) reduced magnetization vs magnetic field for complex $[Ni_2(L)(fp)(H_2O)]$ (2).

Figure S5. Plot of isothermal (2K) reduced magnetization vs magnetic field for complex $[Ni_2(L)(dfp)]$ (3).