Molecular Characteristics of the Surfactants Considered

Ionic surfactants are described using the following molecular characteristics:

Ionic Surfactant	$n_{ m t}$	$a_{\rm h}$ [Å ²]	$l_{\rm h}$ [Å]	d_z [Å]	$z_{\rm A}$	z_{C}	$r_{\rm C}$ [Å]
$C_i TAB$	i-1	32.0	5.76	2.5	+1	-1	2.10
$\rm NaC_{10}S$	9	25.0	6.27	3.7	-1	+1	2.18

where $n_{\rm t}$ is the number of carbon atoms in the hydrophobic portion of the tail, $a_{\rm h}$ is the cross-sectional area of the head, $l_{\rm h}$ is the length of the ionic surfactant head, d_z is the distance from the tail (as measured from the first hydrophobic carbon atom) to the location of the charge in the head, $z_{\rm A}$ is the valence of the head, $z_{\rm C}$ is the valence of the counterion, and $r_{\rm C}$ is the hydrated radius of the counterion.

Two molecular characteristics are required to describe nonionic surfactants, n_t and a_h . For $C_i E_j$ surfactants, n_t is (i-1) and a_h is estimated using the following temperature-dependent equation:

$$a_{\rm h}(j,T) = a_{\rm h0} \left[1 - H \left(T - T_0 \right) \right] \left(\frac{j}{6} \right)^z \tag{1}$$

where j denotes the number of ethylene oxide units, T is the temperature in K, T_0 is 273 K, $a_{h0} = 49.4$ Å² denotes the cross-sectional area of a hexa(ethylene oxide) head (j = 6) at T_0 , H = 0.0057 K⁻¹ models the temperature dependence of the head area due to hydration effects, and z = 0.8models the scaling of the head cross-sectional area with j.