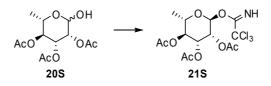
Supporting Information

Intramolecular 1,8- versus 1,6-Hydrogen Atom Transfer between Pyranose Units in a

 $(1\rightarrow 4)$ -Disaccharide Model Promoted by Alkoxyl Radicals. Conformational and


Stereochemical Requirements

Angeles Martín, Inés Pérez-Martín, Luis M. Quintanal, Ernesto Suárez*

Instituto de Productos Naturales y Agrobiología del C.S.I.C., Carretera de La Esperanza 3, 38206 La Laguna, Tenerife, Spain

General Methods		S2
Spectroscopic data and synthetic procedures for:	Compound 21S	
	Compound 238	
	Compound 24S	S4
	Compound 25 S	
	Compound 3	S6
Oxidative HAT of compound 3		S7
Spectroscopic data and synthetic procedures for:	Compound 6	
Reductive HAT of compound 6		S10
Spectroscopic data and synthetic procedures for:	Compound 26S	S13
	Compound 11	S14
Oxidative HAT of compound 11		S15
Spectroscopic data and synthetic procedures for:	Compound 13	S16
Reductive HAT of compound 13		S17
Spectra (¹ H NMR and ¹³ C NMR) for new compounds		S22-S59

General Methods. Melting points were determined with a hot-stage apparatus. Optical rotations were measured at the sodium line at ambient temperature in CHCl₃ solutions. IR spectra were recorded in film unless otherwise stated. NMR spectra were determined at 500 MHz for ¹H and 125.7 MHz for ¹³C in CDCl₃ unless otherwise stated, in the presence of TMS as internal standard. Mass spectra were determined at 70 eV. Merck silica gel 60 PF (0.063 – 0.2 mm) was used for column chromatography. Circular layers of 1 mm of Merck silica gel 60 PF₂₅₄ were used on a Chromatotron for centrifugally assisted chromatography. Commercially available reagents and solvents were analytical grade or were purified by standard procedures prior to use. All reactions involving air-or moisture-sensitive materials were carried out under a nitrogen atmosphere. The spray reagents for TLC analysis were conducted with 0.5% vanillin in H₂SO₄ – EtOH (4:1) and further heating until development of color.

2,3,4-Tri-*O*-acetyl-1-*O*-(2,2,2-trichloroethanimidoyl)- α -L-rhamnopyranose (21S).^{1,2} To a solution of 20S³ (532 mg, 1.834 mmol) in dry CH₂Cl₂ (10.2 mL) were added

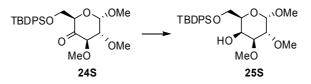
trichloroacetonitrile (919 µL, 9.172 mmol) and NaH (17.5 mg, 2.384 mmol) under nitrogen and the mixture stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure and the residue purified by column chromatography (hexanes–EtOAc, 25:75) to give trichloroacetimidate **21S** (580 mg, 1.339 mmol, 73%) as a colorless oil: $[\alpha]_D$ –43.8 (*c*, 0.42); IR 3324, 2988, 1748, 1681, 1372, 1222, 1049 cm⁻¹; ¹H NMR δ_H 1.26 (3H, d, *J* = 6.2 Hz), 1.99 (3H, s), 2.06 (3H, s), 2.18 (3H, s), 4.08 (1H, dddd, *J* = 9.9, 6.2, 6.2, 6.2, Hz), 5.16 (1H, dd, *J* = 10.0, 10.0 Hz),

⁽¹⁾ Numbers ending in S refer to products only cited in the Supporting Information.

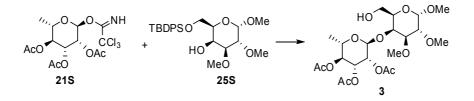
⁽²⁾ Wang, J.; Li, J.; Tuttle, D.; Takemoto, J. Y.; Chang, C.-W. T. Org. Lett. 2002, 4, 3997-4000.

⁽³⁾ Gurjar, M. K.; Mainkar, A. S. Tetrahedron 1992, 48, 6729-6738.

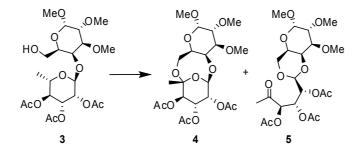
5.35 (1H, dd, J = 10.2, 3.5 Hz), 5.44 (1H, dd, J = 3.4, 2.0 Hz), 6.19 (1H, d, J = 1.9 Hz), 8.72 (1H, s); ¹³C NMR δ_{C} 17.4 (CH₃), 20.6 (CH₃), 20.7 (2 × CH₃), 68.1 (CH), 68.8 (CH), 69.3 (CH), 70.3 (CH), 90.6 (C), 94.7 (CH), 159.9 (C), 169.7 (C), 169.8 (2 × C); MS m/z (rel intensity) 273 (M⁺ – C₂HCl₃NO, 34), 230 (22), 157 (48), 111 (100); HRMS calcd for C₁₂H₁₇O₇ 273.0974, found 273.0974. Anal. Calcd for C₁₄H₁₈Cl₃NO₈: C, 38.69; H, 4.17; N, 3.22. Found: C, 38.56; H, 4.07; N, 3.55.


Methyl 6-*O*-[*tert*-Butyl(diphenyl)silyl]-2,3-di-*O*-methyl-α-D-glucopyranoside (23S). To a solution of diol 22S⁴ (714 mg, 3.22 mmol) in dry DMF (12.5 mL) were added imidazole (657 mg, 9.66 mmol) and TBDPSCl (0.9 mL, 3.54 mmol) under nitrogen at 0 °C and the mixture stirred at room temperature for 2 h. The reaction mixture was concentrated under reduced pressure and the residue poured into ice-water and extracted with Et₂O. The extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes–EtOAc, 80:20) to give the alcohol 23S (1.47 g, 3.19 mmol, 98%) as an oil: $[\alpha]_D$ +143 (*c*, 0.348); IR 3349, 2932, 1468, 1428, 1143, 1059 cm⁻¹; ¹H NMR δ_H 1.06 (9H, s), 2.68 (1H, br s) 3.39 (3H, s), 3.21 (1H, dd, *J* = 9.4, 3.6 Hz), 3.47 (1H, dd, *J* = 9.3, 9.3 Hz), 3.51 (3H, s), 3.56 (1H, dd, *J* = 9.3, 9.3 Hz), 3.64 (3H, s), 3.64 (1H, ddd, *J* = 9.2, 4.5, 4.5 Hz), 3.86 (1H, dd, *J* = 10.8, 4.6 Hz), 3.88 (1H, dd, *J* = 10.8, 4.4 Hz), 4.82 (1H, d, *J* = 3.5 Hz), 7.37 – 7.45 (6H, m), 7.68 – 7.72 (4H, m); ¹³C NMR δ_C 19.2 (C), 26.7 (3 × CH₃), 55.0 (CH₃), 58.5 (CH₃), 61.2 (CH₃), 64.4 (CH₂), 70.6 (CH), 71.7 (CH), 81.7 (CH), 82.8 (CH), 97.3 (CH), 127.7 (4 × CH), 129.7 (2 × CH), 133.1 (2 × C), 135.6 (4 × CH); MS *m/z* (rel

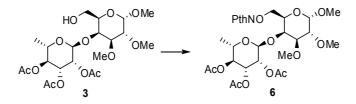
⁽⁴⁾ Weiler, L.; Nicoll-Griffith, D. *Tetrahedron* **1991**, *47*, 2733–2750. Trimnell, D.; Doane, W. M.; Russell, C. R.; Rist, C. E. *Carbohydr. Res.* **1969**, *11*, 497–507.


intensity) 371 ($M^+ - C_5H_{13}O$, 5), 339 (6), 293 (2), 241 (18), 199 (100); HRMS calcd for $C_{20}H_{23}O_5Si$ 371.1314, found 371.1318. Anal. Calcd for $C_{25}H_{36}O_6Si$: C, 65.19; H, 7.88. Found: C, 65.18; H, 7.99.

Methyl 6-O-[tert-Butyl(diphenyl)silyl]-2,3-di-O-methyl-a-D-xylo-hexopyranosid-4ulose (24S). To a solution of alcohol 23S (1 g, 2.17 mmol) in dry Et₂O (24 mL) containing DMSO (1.1 mL, 15.2 mmol), pyridine (175 µL, 2.17 mmol), and DCC (2.23 g, 10.8 mmol) was added TFA (167 µL, 2.17 mmol) under nitrogen at 0 °C. The reaction mixture was stirred at room temperature for 2 h. Alter this time oxalic acid (390 mg, 4.34 mmol) was added at 0 °C and the stirring continued at room temperature for 0.5 h. The reaction mixture was filtered over Celite poured into brine and extracted with Et₂O. The organic extracts were dried over Na₂SO₄ anhydro and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes-EtOAc, 70:30) to give ketone 24S (784 mg, 1.69 mmol, 79%) as a colorless oil: [α]_D +52.8 (c, 0.718); IR 3049, 2931, 2857, 1735, 1428, 1112, 1053 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.04 (9H, s), 3.52 (1H, dd, J = 9.9, 3.4 Hz), 3.54 (3H, s), 3.56 (3H, s), 3.58 (3H, s), 3.89 (1H, dd, J = 11.3, 6.5 Hz), 4.08 (1H, d, J = 9.9 Hz), 4.08 (1H, dd, J = 13.0, 3.1)Hz), 4.19 (1H, dd, J = 6.5, 3.2 Hz), 5.03 (1H, d, J = 3.4 Hz), 7.36 - 7.45 (6H, m), 7.68 -7.69 (4H, m); 13 C NMR δ_{C} 19.2 (C), 26.7 (3 × CH₃), 55.8 (CH₃), 59.6 (CH₃), 60.2 (CH₃), 61.9 (CH₂), 74.1 (CH), 82.5 (CH), 84.4 (CH), 97.5 (CH), 127.6 (4 × CH), 129.7 (2 × CH), 133.2 (C), 133.3 (C), 135.6 (2 × CH), 135.6 (2 × CH), 202.1 (C); MS *m*/*z* (rel intensity) 427 (M⁺ – CH₃O, <1), 369 (54), 255 (55), 199 (54), 101 (100); HRMS calcd for C₂₄H₃₁O₅Si 427.1941, found 427.1941. Anal. Calcd for C₂₅H₃₄O₆Si: C, 65.47; H, 7.47. Found: C, 65.52; H, 7.45.

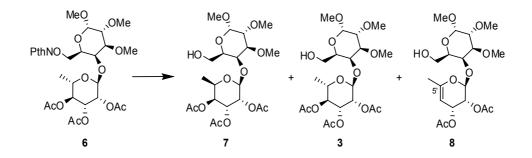


6-O-[tert-Butyl(diphenyl)silyl]-2,3-di-O-methyl-α-D-galactopyranoside Methyl (25S). To a solution of ketone 24S (837 mg, 1.827 mmol) in EtOH/H₂O (6.8 mL, 9/1), was added NaBH₄ (125 mg, 3.289 mmol) and the mixture stirred at room temperature for 1 h. After this time the mixture was cooled to 0 °C, solid NH₄Cl was added and the stirring was continued for 1 h. The mixture was then filtered over Celite and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes-EtOAc, 85:15) to give the alcohol 25S (575 mg, 1.25 mmol, 68%) and the alcohol 23S (297 mg, 0.646 mmol, 35%) described previously. Compound **25S**: $[\alpha]_{D}$ +80.6 (*c*, 0.32); IR 3478, 3071, 2932, 1428, 1104, 1050 cm¹; ¹H NMR (400 MHz) δ_H 1.07 (9H, s), 2.54 (1H, br s) 3.38 (3H, s), 3.50 (3H, s), 3.51 (3H, s), 3.51 (1H, dd, J = 9.5, 3.2 Hz), 3.59 (1H, dd, J = 9.8, 3.7 Hz), 3.76 (1H, ddd, J = 5.8, 3.7 Hz)5.8, 0.8 Hz), 3.86 (1H dd, J = 10.3, 5.6 Hz), 3.94 (1H, dd, J = 10.6, 6.1 Hz), 4.17 (1H, dd, *J* = 3.2, 1.1 Hz), 4.87 (1H, d, *J* = 3.4 Hz), 7.36 – 7.45 (6H, m), 7.68 – 7.71 (4H, m); ¹³C NMR $\delta_{\rm C}$ 19.2 (C), 26.8 (3 × CH₃), 55.1 (CH₃), 57.7 (CH₃), 58.9 (CH₃), 63.4 (CH₂), 66.6 (CH), 69.7 (CH), 77.5 (CH), 79.3 (CH), 97.7 (CH), 127.7 (6 × CH), 129.7 (2 × CH), 133.2 (C), 133.3 (C), 135.6 (2 × CH); MS m/z (rel intensity) 371 (M⁺ – C₅H₁₃O, 4), 339 (14), 311 (12), 255 (13), 237 (100); HRMS calcd for C₂₀H₂₃O₅Si 371.1315, found 371.1318. Anal. Calcd for C₂₅H₃₆O₆Si: C, 65.19; H, 7.88. Found: C, 65.12; H, 7.86.

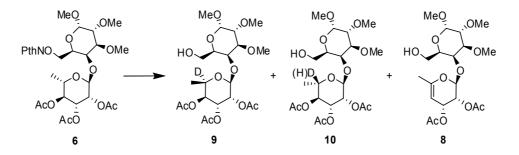


Methyl 2,3,4-Tri-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2,3-di-O-methyl-α-Dgalactopyranoside (3). To a solution of trichloroacetimidate 21S (450 mg, 1.083 mmol) and alcohol 25S (217 mg, 0.472 mmol) in dry CH₂Cl₂ (9 mL) containing molecular sieves 3Å (217 mg) was added a solution of TMSOTf (4.3 µL, 0.024 mmol) in dry CH₂Cl₂ (215 µL) under nitrogen at 0 °C and the mixture stirred at this temperature for 1.5 h. The reaction mixture was poured into a saturated solution of NaHCO₃ and extracted with CH₂Cl₂. The organic extracts were dried over Na₂SO₄ anhydrous and concentrated under reduced pressure. To the residue in dry THF (12.2 mL) was added a 1M solution of Bu₄NF/THF (1.2 mL, 1.18 mmol) under nitrogen and the mixture stirred at room temperature for 19 h. After this time the solvent was evaporated under reduced pressure and the residue purified by column chromatography (hexanes-EtOAc, 30:70) to give the disaccharide 3 (209 mg, 0.423 mmol, 90%.) as a crystalline solid: mp 154.5–156.2 °C (from *n*-hexane–acetone); $[\alpha]_D$ +27.0 (c, 0.315); IR 3486, 2937, 2840, 1748, 1372, 1224, 1046 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.23 (3H, d, J = 6.3Hz), 1.99 (3H, s), 2.05 (3H, s), 2.14 (3H, s), 3.42 (3H, s), 3.47 (3H, s), 3.53 (3H, s), 3.56 (1H, dd, J = 10.1, 2.9 Hz), 3.64 (1H, dd, J = 10.1, 3.5 Hz), 3.66 (1H, m), 3.80 - 3.86(2H, m), 3.98 (1H, dddd, J = 9.7, 6.2, 6.2, 6.2 Hz), 4.11 (1H, dd, J = 2.6, 0 Hz), 4.87 (1H, d, J = 3.5 Hz), 5.05 (1H, d, J = 1.9 Hz), 5.07 (1H, dd, J = 9.9, 9.9 Hz), 5.31 (1H, dd, J = 10.0, 3.3 Hz), 5.47 (1H, dd, J = 3.3, 2.0 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.5 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 20.9 (CH₃), 55.4 (CH₃), 58.7 (CH₃), 59.2 (CH₃), 62.0 (CH₂), 67.5 (CH), 69.0 (CH), 69.8 (CH), 69.9 (CH), 70.9 (CH), 75.1 (CH), 78.0 (CH), 79.8 (CH), 98.1 (CH), 99.7 (CH), 169.8 (C), 169.9 (C), 170.0 (C); MS (FAB) m/z 517

 $(M^+ + Na, 4)$, 495 (3), 273 (100); HRMS calcd for $C_{21}H_{34}O_{13}Na$ 517.1897, found 517.1905. Anal. Calcd for $C_{21}H_{34}O_{13}$: C, 51.01; H, 6.93. Found: C, 51.19; H, 6.95.



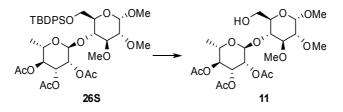
Oxidative of 2,3,4-Tri-O-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 4)-2,3-di-O-HAT methyl-α-D-galactopyranoside (3). A solution of alcohol 3 (29 mg, 0.059 mmol) in dry CH₂Cl₂ (2.3 mL) containing DIB (32 mg, 0.1 mmol) and iodine (15 mg, 0.059 mmol) under nitrogen in the dark was heated at reflux temperature for 1.5 h. The reaction mixture was then poured into 10% aqueous Na₂S₂O₃ and extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated. Chromatotron chromatography of the residue (hexanes-EtOAc, 25:75) gave methyl 5',6-anhydro-(2',3',4'-tri-O-acetyl-6'-deoxy-α-L-lyxo-hexos-5'ulopyranosyl)- $(1\rightarrow 4)$ -2,3-di-O-methyl- α -D-galactopyranoside (4) (25.5 mg, 0.052 mmol, 88%), and methyl (1S)-4,6-O-(2',3',4'-tri-O-acetyl-6'-deoxy-α-L-lyxo-hexos-5'ulosylidene)-2,3-di-O-methyl- α -D-galactopyranoside (5) (3 mg, 0.006 mmol, 10%). Compound 4: crystalline solid, mp 216.5–217.4 °C (from *n*-hexane–acetone); $[\alpha]_D$ +98.1 (c, 0.27); IR 2933, 2838, 1755, 1372, 1224, 1049 cm⁻¹; ¹H NMR (400 MHz) $\delta_{\rm H}$ 1.37 (3H, s), 1.95 (3H, s), 2.08 (3H, s), 2.15 (3H, s), 3.39 (3H, s), 3.43 (3H, s), 3.48 (1H, dd, J = 10.1, 3.2 Hz), 3.52 (3H, s), 3.54 (1H, m), 3.67 (1H, dd, J = 10.1, 3.7 Hz),3.91 (1H, dd, J = 13.2, 2.1 Hz), 4.08 (1H, dd, J = 13.2, 1.6 Hz), 4.17 (1H, br d, J = 3.2Hz), 4.85 (1H, d, J = 1.6 Hz), 4.95 (1H, d, J = 3.7 Hz), 5.36 (1H, d, J = 10.6 Hz), 5.58 (1H, dd, J = 3.2, 1.6 Hz), 5.63 (1H, dd, J = 10.6, 3.2 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 20.6 (2 × CH₃), 20.8 (CH₃), 21.9 (CH₃), 55.4 (CH₃), 58.1 (CH₃), 59.1 (CH₃), 63.6 (CH₂), 66.3 (CH), 66.7 (CH), 69.6 (CH), 70.7 (CH), 73.8 (CH), 77.1 (CH), 78.4 (CH), 98.0 (CH), 98.1 (CH), 100.4 (C), 169.6 (C), 169.8 (C), 170.5 (C); MS (FAB) m/z (rel intensity) 515 (M^+ + Na, 8, 493 (8), 491 (7), 461 (40), 154 (100); HRMS calcd for C₂₁H₃₂O₁₃Na 515.1741, found 515.1755. Anal. Calcd for C₂₁H₃₂O₁₃: C, 51.22; H, 6.55. Found: C, 51.44; H, 6.33. Compound 5: [a]_D +54.2 (c, 0.31); IR 2923, 2836, 1748, 1372, 1218, 1049 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.04 (3H, s), 2.07 (3H, s), 2.17 (3H, s), 2.22 (3H, s), 3.41 (3H, s), 3.43 (3H, s), 3.52 (3H, s), 3.54 (1H, m), 3.59 (1H, dd, J = 10.0, 3.1 Hz), 3.62 (1H, dd, J = 10.0, 3.1 Hz), 3.81 (1H, dd, J = 12.5, 1.7 Hz), 4.10 (1H, dd, J = 3.1)1.1 Hz), 4.12 (1H, dd, J = 12.5, 1.5 Hz), 4.73 (1H, d, J = 4.2 Hz), 4.91 (1H, d, J = 3.1 Hz), 5.26 (1H, dd, J = 7.5, 4.2 Hz), 5.43 (1H, d, J = 1.9 Hz), 5.90 (1H, dd, J = 7.5, 1.9 Hz). ¹³C NMR $\delta_{\rm C}$ 20.5 (CH₃), 20.6 (CH₃), 20.7 (CH₃), 26.5 (CH₃), 55.6 (CH₃), 57.0 (CH₃), 59.0 (CH₃), 62.3 (CH), 68.0 (CH), 69.0 (CH₂), 69.8 (CH), 73.0 (CH), 76.3 (CH), 76.7 (CH), 77.0 (CH), 98.4 (CH), 99.0 (CH), 169.3 (C), 169.7 (C), 170.1 (C), 201.7 (C). MS *m/z* (rel intensity) 492 (M⁺, 1), 449 (>1), 363 (7), 233 (12), 75 (100); HRMS calcd for C₂₁H₃₂O₁₃ 492.1843, found 492.1859. Anal. Calcd for C₂₁H₃₂O₁₃: C, 51.22; H, 6.55. Found: C, 51.14; H, 6.78.


Methyl 2,3,4-Tri-*O*-acetyl-α-L-rhamnopyranosyl- $(1\rightarrow 4)$ -2,3-di-*O*-methyl-6-*O*phthalimido-α-D-galactopyranoside (6). DEAD (278 µL, 1.77 mmol) was added dropwise to a stirred solution of the alcohol **3** (350 mg, 0.708 mmol), *N*hydroxyphthalimide (388 mg, 1.77 mmol) and PPh₃ (464 mg, 1.77 mmol) in dry THF

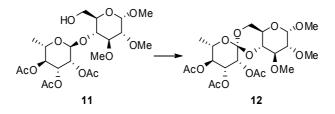
(7.7 mL) under nitrogen at 0 °C and the resulting solution was stirred at this temperature for 1.5 h. The reaction was guenched with water and extracted with CHCl₃. The combined extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue obtained was purified by column chromatography (hexanes-EtOAc, 80:20) to give *N*-phthalimide **6** (380 mg, 0.595 mmol, 84%) as an amorphous solid: $[\alpha]_D$ +17.5 (c, 0.245); IR 2939, 2835, 1791, 1735, 1372, 1225, 1044 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.15 (3H, d, *J* = 6.3 Hz), 1.97 (3H, s), 2.04 (3H, s), 2.12 (3H, s), 3.44 (3H, s), 3.48 (3H, s), 3.52 (3H, s), 3.52 (3H, s), 3.52 (3H, s), 3.52 (3H, s), 3.53 (3H, s), 3.54 (3H, s), 3.55 (3H, s), 3 s), 3.59 (1H, dd, J = 10.1, 2.7 Hz), 3.66 (1H, dd, J = 10.1, 3.5 Hz), 3.95 (1H, dddd, J =9.9, 6.3, 6.3, 6.3 Hz), 4.13 (1H, ddd, J = 6.1, 6.1, 0 Hz), 4.33 (1H, dd, J = 11.1, 5.9 Hz), 4.36 (1H, dd, *J* = 11.1, 6.2 Hz), 4.40 (1H, dd, *J* = 1.1, 0 Hz), 4.87 (1H, d, *J* = 3.5 Hz), 5.05 (1H, dd, J = 9.9, 9.9 Hz), 5.07 (1H, d, J = 1.5 Hz), 5.29 (1H, dd, J = 10.1, 3.3 Hz), 5.50 (1H, dd, J = 3.0, 2.1 Hz), 7.76 (2H, m), 7.84 (2H, m); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.3 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 20.9 (CH₃), 55.8 (CH₃), 58.6 (CH₃), 59.3 (CH₃), 67.3 (CH), 67.6 (CH), 69.1 (CH), 69.9 (CH), 70.8 (CH), 75.0 (CH), 77.4 (CH₂), 77.6 (CH), 79.6 (CH), 98.4 (CH), 99.3 (CH), 123.6 (2 × CH), 128.8 (2 × C), 134.6 (2 × CH), 163.5 (2 × C), 169.8 (C), 169.9 (C), 170.0 (C); MS (FAB) m/z (rel intensity) 663 (M⁺ + H + Na, 3), 662 (9), 273 (28), 55 (100); HRMS calcd for $C_{29}H_{38}NNaO_{15}$ 663.2139, found 663.2166. Anal. Calcd for C₂₉H₃₇NO₁₅: C, 54.46; H, 5.83; N, 2.19. Found: C, 54.10; H, 5.78; N, 2.38.


Reductive HAT of Methyl 2,3,4-Tri-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2,3-di-O-methyl-6-O-phthalimido-α-D-galactopyranoside (6). Method A: Using *n*-Bu₃SnH and AIBN. A solution of phthalimide 6 (95 mg, 0.149 mmol) in dry benzene (11.2 mL) containing n-Bu₃SnH (40 µL, 0.149 mmol) and AIBN (2.4 mg, 0.015 mmol) was heated at reflux temperature for 1.5 h. After cooling to room temperature the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₃CN, washed with *n*-hexane and the combined more polar extracts were concentrated under reduced pressure. The residue was purified by column chromatography (hexanes-EtOAc, 50:50 \rightarrow 30:70) to give methyl 2,3-di-O-acetyl-4,6-dideoxy- β -D-erythro-hex-4-enopyranosyl- $(1\rightarrow 4)$ -2,3-di-O-methyl- α -D-galactopyranoside (8) (3.5 mg, 0.008 mmol, 5%), the alcohol 3 (16.5 mg, 0.033 mmol, 22%), previously described, and methyl 2,3,4-tri-Oacetyl-6-deoxy- β -D-gulopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-methyl- α -D-galactopyranoside (7) (38.2 mg, 0.077 mmol, 52%) as colorless oils. Compound 8: $[\alpha]_D$ –33.8 (c, 0.29); IR 3468, 2935, 2834, 1747, 1682, 1372, 1247, 1049 cm $^{-1};~^{1}\mathrm{H}$ NMR (400 MHz) δ_{H} 1.83 (3H, s), 2.05 (3H, s), 2.10 (3H, s), 2.21 (1H, dd, *J* = 9.8, 7.5 Hz), 3.41 (3H, s), 3.50 (3H, s), 3.51 (3H, s), 3.57 - 3.58 (2H, m), 3.60 - 3.75 (2H, m), 3.82 (1H, ddd, J = 6.6, 6.6, 6.6)1.3 Hz), 4.24 (1H, dd, J = 1.1, 1.1 Hz), 4.66 (1H, br d, J = 3.7 Hz), 4.85 (1H, d, J = 1.6Hz), 5.25 (1H, dd, *J* = 5.0, 5.0 Hz), 5.30 (1H, d, *J* = 5.3 Hz), 5.51 (1H, ddd, *J* = 5.3, 3.7, 1.6 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 19.5 (CH₃), 20.8 (CH₃), 20.9 (CH₃), 55.4 (CH₃),

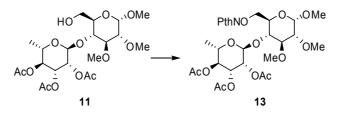
58.7 (CH₃), 59.1 (CH₃), 61.4 (CH₂), 64.1 (CH), 66.0 (CH), 69.6 (CH), 73.4 (CH), 78.0 (CH), 79.6 (CH), 95.1 (CH), 97.9 (CH), 98.4 (CH), 151.1 (C), 169.9 (C), 170.2 (C); MS m/z (rel intensity) 435 (M⁺ + H, <1), 402 (<1), 374 (1), 212 (11), 88 (100); HRMS calcd for C₁₉H₃₁O₁₁ 435.1866, found 435.1877. Anal. Calcd for C₁₉H₃₀O₁₁: C, 52.53; H, 6.96. Found: C, 52.23; H, 6.90. Compound 7: crystalline solid, mp 153.2–154.9 °C (from *n*hexane-acetone); $[\alpha]_{D}$ +60.0 (c, 0.53); IR 3506, 2940, 2840, 1748, 1372, 1222, 1045 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.19 (3H, d, J = 6.4 Hz), 2.03 (3H, s), 2.13 (3H, s), 2.17 (3H, s), 3.23 (1H, m, 3.39 (3H, s), 3.47 (1H, dd, J = 10.1, 3.5 Hz), 3.48 (3H, s), 3.49 (3H, s), 3.57(1H, dd, J = 10.1, 3.0 Hz), 3.63 (1H, m), 3.77 - 3.83 (2H, m), 4.15 (1H, dddd, J = 6.5, m)6.5, 6.5, 1.3 Hz), 4.19 (1H, br d, J = 3.1 Hz), 4.81 (1H, d, J = 3.5 Hz), 4.83 (1H, dd, J = 3.7, 1.4 Hz), 4.94 (1H, d, J = 8.3 Hz), 5.04 (1H, dd, J = 8.3, 3.5 Hz), 5.34 (1H, dd, J = 3.6, 3.6 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 15.715 (CH₃), 20.6 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 55.4 (CH₃), 58.4 (CH₃), 59.1 (CH₃), 60.2 (CH₂), 67.9 (CH), 68.4 (CH), 68.8 (CH), 69.0 (CH), 70.100 (CH), 73.3 (CH), 78.0 (CH), 79.2 (CH), 97.9 (CH), 99.8 (CH), 168.9 (C), 169.5 (C), 169.8 (C); MS (FAB) m/z (rel intensity) 518 (M⁺ + H + Na, 6), 517 (21), 391 (32), 273 (63), 73 (100); HRMS calcd for C₂₁H₃₅NaO₁₃ 518.1975, found 518.1984. Anal. Calcd for C₂₁H₃₄O₁₃: C, 51.01; H, 6.93. Found: C, 51.15; H, 6.89.


Method B: Using *n***-Bu₃SnD and AIBN.** A solution of phthalimide **6** (90 mg, 0.141 mmol) in dry benzene (10.6 mL) containing *n*-Bu₃SnD (38 μ L, 0.141 mmol) and AIBN (2.3 mg, 0.014 mmol) was heated at reflux temperature for 1 h. After this time another

portion of n-Bu₃SnD (38 µL, 0.141 mmol) and AIBN (2.3 mg, 0.014 mmol) were added and heating at reflux was continued for an additional 1 h. After cooling to room temperature the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₃CN, washed with *n*-hexane and the combined more polar extracts were concentrated under reduced pressure. The residue was purified by column chromatography (hexanes-EtOAc, $50:50 \rightarrow 30:70$) to give the olefin 8 (9 mg, 0.021) mmol, previously described, 2,3,4-tri-O-acetyl-α-L-[5-15%). methyl 2 H₁]rhamnopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-methyl- α -D-galactopyranoside (10) (12.6 mg, 0.025 mmol, 18%, ${}^{1}\text{H}/{}^{2}\text{H}$ ratio, 7:3), and methyl 2,3,4-tri-O-acetyl-6-deoxy- β -D-(5- 2 H₁)gulopyranosyl-(1 \rightarrow 4)-2,3-di-O-methyl- α -D-galactopyranoside (9) (31.2 mg, 0.063) mmol, 45%) as colorless oils. Compound 10: ¹H NMR $\delta_{\rm H}$ 1.22 (3H, s), 1.23 (3H, d, J =6.6 Hz), 1.99 (3H, s), 2.05 (3H, s), 2.14 (3H, s), 3.42 (3H, s), 3.47 (3H, s), 3.54 (3H, s), 3.56 (1H, dd, J = 10.1, 2.9 Hz), 3.64 (1H, dd, J = 10.1, 3.5 Hz), 3.66 (1H, m), 3.80 -3.86 (2H, m), 3.98 (1H, dddd, J = 10.0, 6.3, 6.3, 6.3, Hz), 4.12 (1H, dd, J = 2.7, 0 Hz), 4.88 (1H, d, J = 3.5 Hz), 5.05 (1H, d, J = 2.1 Hz), 5.071 (1H, dd, J = 10.0 Hz), 5.073 (1H, dd, J = 9.8, 9.8 Hz), 5.31 (1H, dd, J = 10.0, 3.3 Hz), 5.47 (1H, dd, J = 3.3, 2.1 Hz);¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.350 (CH₃), 17.489 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 20.9 (CH₃), 55.4 (CH₃), 58.8 (CH₃), 59.3 (CH₃), 62.0 (CH₂), 67.5 (CH), 69.0 (CH), 69.8 (CH), 69.9 (CH), 70.869 (CH), 70.932 (CH), 75.1 (CH), 78.0 (CH), 79.8 (CH), 98.1 (CH), 99.7 (CH), 169.8 (C), 170.0 (C), 170.0 (C); MS (FAB) *m/z* (rel intensity) 519 (M⁺ + Na + H, 7), 518 (26), 517 (5), 274 (46), 273 (27), 73 (100); HRMS calcd for C₂₁H₃₄²H₁NaO₁₃ 519.2038, found 519.2042. Compound **9**: ¹H NMR $\delta_{\rm H}$ 1.18 (3H, s), 2.02 (3H, s), 2.12 (3H, s), 2.16 (3H, s), 3.24 (1H, m, 3.38 (3H, s), 3.46 (1H, dd, J =10.1, 3.5 Hz), 3.47 (3H, s), 3.48 (3H, s), 3.56 (1H, dd, J = 10.1, 3.0 Hz), 3.63 (1H, m), 3.76 - 3.82 (2H, m), 4.19 (1H, dd, J = 3.0, 0 Hz), 4.80 (1H, d, J = 3.5 Hz), 4.81 (1H, d, J = 3.7 Hz), 4.94 (1H, d, J = 8.3 Hz), 5.03 (1H, dd, J = 8.3, 3.5 Hz), 5.33 (1H, dd, J = 3.6, 3.6 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 15.576 (CH₃), 20.6 (CH₃), 20.7 (CH₃), 20.7 (CH₃), 55.4 (CH₃), 58.4 (CH₃), 59.0 (CH₃), 60.2 (CH₂), 67.9 (CH), 68.4 (CH), 69.0 (CH), 70.036 (CH), 73.3 (CH), 78.0 (CH), 79.2 (CH), 97.9 (CH), 99.8 (CH), 168.8 (C), 169.5 (C), 169.8 (C); MS (FAB) *m*/*z* (rel intensity) 519 (M⁺ + H + Na, 2), 518 (7), 355 (10), 274 (27), 73 (100); HRMS calcd for C₂₁H₃₄²H₁NaO₁₃ 519.2038, found 519.2014.

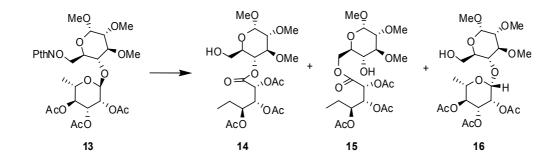

Methyl 2,3,4-Tri-O-acetyl-α-L-rhamnopyranosyl-(1→4)-6-O-[tertbutyl(diphenyl)silyl]-2,3-di-O-methyl-α-D-glucopyranoside (26S). To a solution of trichloroacetimidate 21S (425 mg, 0.981 mmol) and methyl 6-O-[tertbutyl(diphenyl)silyl]-2,3-di-O-methyl-α-D-glucopyranoside (23S) (205 mg, 0.446 mmol) in dry CH₂Cl₂ (8.5 mL) containing molecular sieves 3Å (205 mg) was added a solution of TMSOTf (0.89 µL, 0.0049 mmol) in dry CH₂Cl₂ (45 µL) under nitrogen at 0 ^oC and the mixture stirred at this temperature for 2 h. After this time another portion of TMSOTf (0.89 µL, 0.0049 mmol) in dry CH₂Cl₂ (45 µL) was added, and the stirring continued for an additional 1 h. The reaction mixture was poured into a saturated solution of NaHCO₃ and extracted with CH₂Cl₂. The organic extracts were dried over Na₂SO₄ anhydrous and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes-EtOAc, 85:15) to give the disaccharide 26S (324 mg, 0.443 mmol, 99%) as a colorless oil: $[\alpha]_D$ +23.5 (c, 0.31); IR 2936, 2858, 1748, 1372, 1224, 1047 cm⁻¹; ¹H NMR (400 MHz) $\delta_{\rm H}$ 1.03 (9H, s), 1.23 (3H, d, J = 6.1 Hz), 1.98 (3H, s), 2.05 (3H, s), 2.06 (3H, s), 3.24 (1H, dd, J = 9.5, 3.7 Hz), 3.32 (3H, s), 3.52

(1H, dd, J = 9.3, 9.3 Hz), 3.52 (3H, s), 3.57 (1H, m), 3.61 (3H, s), 3.82 (1H, dd, J = 11.9, 1.6 Hz), 3.86 (1H, dd, J = 9.5, 9.5 Hz), 3.88 (1H, dd, J = 11.9, 2.9 Hz), 4.20 (1H, dddd, J = 9.8, 6.1, 6.1, 6.1 Hz), 4.77 (1H, d, J = 3.7 Hz), 5.06 (1H, d, J = 1.6 Hz), 5.08 (1H, dd, J = 9.9, 9.9 Hz), 5.22 (1H, dd, J = 3.4, 1.9 Hz), 5.26 (1H, dd, J = 9.8, 3.4 Hz), 7.32 – 7.42 (6H, m), 7.62 – 7.65 (2H, m), 7.69 – 7.72 (2H, m); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.1 (CH₃), 19.3 (C), 20.6 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 26.7 (3 × CH₃), 54.9 (CH₃), 58.5 (CH₃), 60.6 (CH₃), 62.7 (CH₂), 66.5 (CH), 69.3 (CH), 70.0 (CH), 70.9 (CH), 71.0 (CH), 74.9 (CH), 81.1 (CH), 82.6 (CH), 96.9 (CH), 97.6 (CH), 127.3 (2 × CH), 127.5 (2 × CH), 129.4 (CH), 129.5 (CH), 133.3 (C), 133.5 (C), 135.5 (2 × CH), 135.9 (2 × CH), 169.8 (C), 169.9 (C), 170.0 (C); MS *m/z* (rel intensity) 675 (M⁺ – C₄H₉, 7), 555 (1), 273 (100), 153 (82); HRMS calcd for C₃₃H₄₃O₁₃Si 675.2473, found 675.2469. Anal. Calcd for C₃₇H₅₂O₁₃Si: C, 60.64; H, 7.15. Found: C, 60.81; H, 7.01.



Methyl 2,3,4-Tri-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-methyl- α -Dglucopyranoside (11). To a solution of compound 26S (470 mg, 0.642 mmol) in dry THF (16.4 mL) was added a solution 1M of Bu₄NF/THF (1.6 mL, 1.6 mmol), and the mixture stirred at room temperature for 19 h. The reaction mixture was concentrated under reduced pressure and the residue purified by column chromatography (hexanes–EtOAc, 50:50 \rightarrow 25:75) to give the alcohol 11 (217 mg, 0.439 mmol, 68%) as an amorphous solid: [α]_D +44.7 (*c*, 0.235); IR 3502, 2917, 2848, 1748, 1372, 1225, 1046 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.21 (3H, d, *J* = 6.3 Hz), 1.88 (1H, br s) 1.99 (3H, s), 2.04 (3H, s), 2.13 (3H, s), 3.23 (1H, dd, *J* = 9.5, 3.7 Hz), 3.41 (3H, s), 3.50 (3H, s), 3.51 (1H, dd, *J*

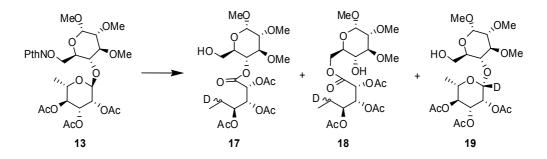
= 9.0, 9.0 Hz), 3.59 (3H, s), 3.63 (1H, ddd, J = 9.8, 2.4, 2.4 Hz), 3.67 (1H, dd, J = 10.0, 8.7 Hz), 3.79 (1H, dd, J = 12.2, 2.6 Hz), 3.84 (1H, dd, J = 12.2, 1.9 Hz), 4.13 (1H, dddd, J = 9.8, 6.3, 6.3, 6.3 Hz), 4.82 (1H, d, J = 3.7 Hz), 4.96 (1H, d, J = 1.6 Hz), 5.08 (1H, dd, J = 10.0, 10.0 Hz), 5.16 (1H, dd, J = 3.4, 1.8 Hz), 5.24 (1H, dd, J = 10.0, 3.4 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.1 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 20.9 (CH₃), 55.2 (CH₃), 58.7 (CH₃), 60.7 (CH₃), 61.0 (CH₂), 66.8 (CH), 69.2 (CH), 70.2 (CH), 70.5 (CH), 70.9 (CH), 75.4 (CH), 81.2 (CH), 82.6 (CH), 97.4 (CH), 98.0 (CH), 170.0 (C), 170.2 (C), 170.5 (C); MS *m*/*z* (rel intensity) 434 (M⁺ – C₂H₄O₂, 3), 374 (1), 359 (1), 273 (50), 88 (100); HRMS calcd for C₁₉H₃₀O₁₁ 434.1788, found 434.1794. Anal. Calcd for C₂₁H₃₄O₁₃: C, 51.01; H, 6.93. Found: C, 51.16; H, 6.84.



Oxidative HAT of Methyl 2,3,4-Tri-*O*-acetyl-α-L-rhamnopyranosyl-(1→4)-2,3-di-*O*-methyl-α-D-glucopyranoside (11). A solution of alcohol 11 (28 mg, 0.057 mmol) in dry CH₂Cl₂ (2.3 mL) containing DIB (46.6 mg, 0.145 mmol) and iodine (14.5 mg, 0.057 mmol) under nitrogen was irradiated with two 80 W tungsten–filament lamps at room temperature for 4 h. The reaction mixture was then poured into 10% aqueous Na₂S₂O₃ and extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated. Chromatotron chromatography of the reaction residue (hexanes–EtOAc, 60:40) gave methyl (1*R*)-4,6-*O*-(2,3,4-tri-*O*-acetyl-D-rhamnopyranosylidene)-2,3-di-*O*-methyl-α-D- glucopyranoside (12) (22.1 mg, 0.045 mmol, 79%) as a crystalline solid: mp 194.2–195.6 °C (from *n*-hexane– EtOAc); [α]_D +40.6 (*c*, 0.315); IR 2916, 2839, 1754, 1373, 1222, 1092, 1044 cm⁻¹; ¹H NMR δ_H 1.28 (3H, d, *J* = 6.3 Hz), 1.95 (3H, s), 2.04 (3H, s), 2.16 (3H, s), 3.23 (1H, dd, J = 8.9, 3.7 Hz), 3.40 (3H, s), 3.53 (3H, s), 3.55 (1H, dd, J = 9.3, 9.3 Hz), 3.58 (1H, dd, J = 9.3, 9.3 Hz), 3.64 (3H, s), 3.74 – 3.79 (2H, m), 3.88 (1H, dd, J = 9.9, 5.1 Hz), 3.98 (1H, dd, J = 10.4, 10.4 Hz), 4.80 (1H, d, J = 3.7 Hz), 5.09 (1H, dd, J = 9.9, 9.9 Hz), 5.27 (1H, dd, J = 10.1, 3.5 Hz), 5.37 (1H, d, J = 3.5 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.5 (CH₃), 20.6 (CH₃), 20.76 (CH₃), 20.79 (CH₃), 55.3 (CH₃), 59.6 (CH₃), 61.2 (CH₃), 61.6 (CH), 62.9 (CH₂), 68.4 (CH), 69.6 (CH), 70.0 (CH), 70.6 (CH), 73.5 (CH), 79.5 (CH), 81.4 (CH), 98.6 (CH), 108.1 (C), 169.7 (C), 169.89 (C), 169.94 (C); MS *m*/*z* (rel intensity) 492 (M⁺, 1), 461 (3), 304 (44), 262 (27), 88 (100); HRMS calcd for C₂₁H₃₂O₁₃ 492.1843, found 492.1827. Anal. Calcd for C₂₁H₃₂O₁₃: C, 51.22; H, 6.55. Found: C, 51.23; H, 6.39.

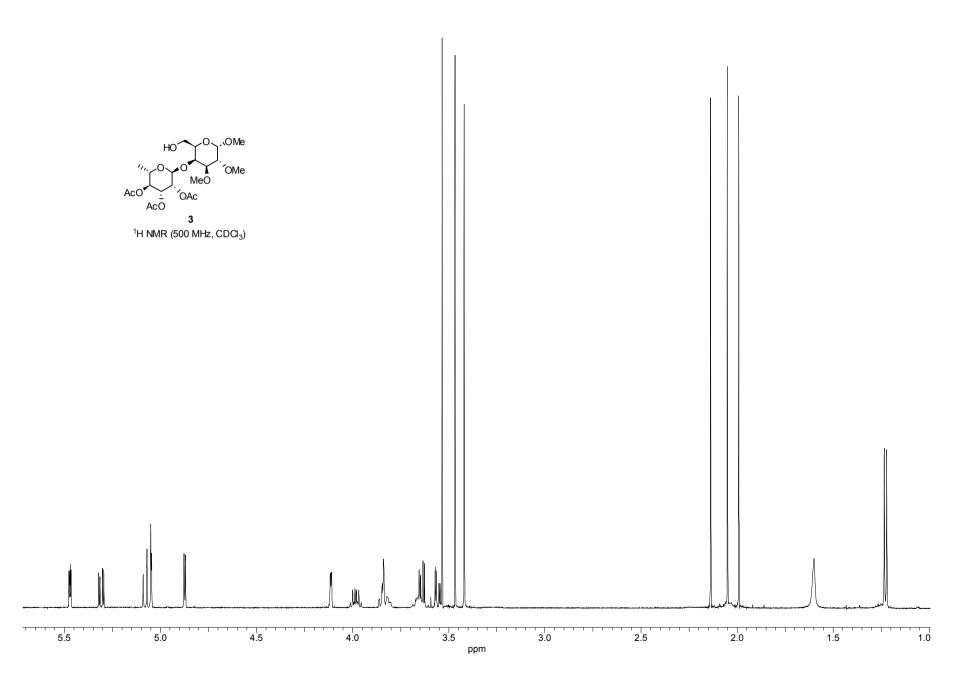
Methyl 2,3,4-Tri-*O*-acetyl-α-L-rhamnopyranosyl-(1→4)-2,3-di-*O*-methyl-6-*O*phthalimido-α-D-glucopyranoside (13). DEAD (131 µL, 0.835 mmol) was added dropwise to a stirred solution of the alcohol 11 (165 mg, 0.334 mmol), *N*hydroxyphthalimide (136 mg, 0.835 mmol) and PPh₃ (219 mg, 0.835 mmol) in dry THF (3.6 mL) under nitrogen at 0 °C and the resulting solution was stirred at this temperature for 1 h. The reaction was quenched with water and extracted with CHCl₃. The combined extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue obtained was purified by column chromatography (hexanes–EtOAc, 70:30) to give *N*phthalimide 13 (200 mg, 0.313 mmol, 94%) as a colorless oil: $[\alpha]_D$ +48.1 (*c*, 0.21); IR 2938, 1738, 1372, 1226, 1084, 1046 cm⁻¹; ¹H NMR δ_H 1.24 (3H, d, *J* = 6.3 Hz), 1.96 (3H, s), 2.05 (3H, s), 2.17 (3H, s), 3.34 (1H, dd, *J* = 9.6, 3.5 Hz), 3.44 (3H, s), 3.50 (3H,

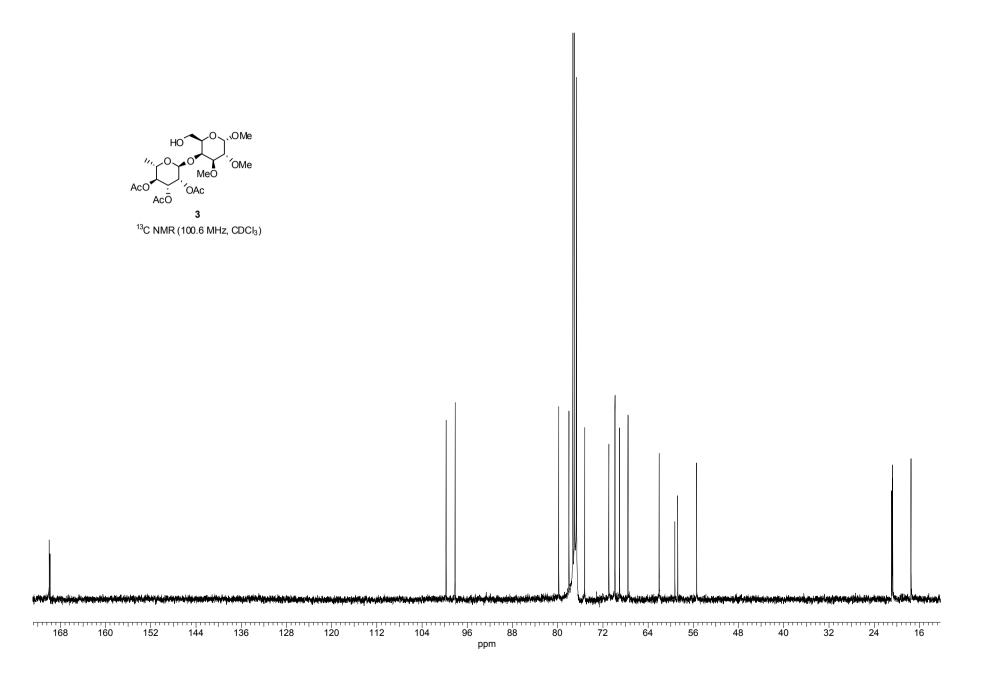
s), 3.54 (1H, dd, J = 9.4, 9.4 Hz), 3.60 (3H, s), 3.82 (1H, ddd, J = 10.1, 2.0, 2.0 Hz), 4.01 (1H, dd, J = 9.8, 9.8 Hz), 4.17 (1H, dddd, J = 10.0, 6.3, 6.3, 6.3 Hz), 4.34 (1H, dd, J = 10.3, 2.4 Hz), 4.46 (1H, dd, J = 10.3, 2.1 Hz), 4.87 (1H, d, J = 3.5 Hz), 5.12 (1H, dd, J = 9.7, 9.7 Hz), 5.24 (1H, d, J = 3.5 Hz), 5.25 (1H, dd, J = 9.1, 3.5 Hz), 5.40 (1H, s), 7.73 (2H, m), 7.77 (2H, m); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.1 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 20.9 (CH₃), 55.5 (CH₃), 58.6 (CH₃), 60.3 (CH₃), 66.7 (CH), 68.9 (CH), 69.3 (CH), 69.9 (CH), 71.0 (CH), 75.1 (CH), 75.3 (CH₂), 80.8 (CH), 81.9 (CH), 97.3 (CH), 98.1 (CH), 123.4 (2 × CH), 128.8 (2 × C), 134.4 (2 × CH), 163.0 (2 × C), 170.0 (C), 170.1 (C), 170.5 (C); MS (FAB) *m*/*z* (rel intensity) 662 (M⁺ + Na, 4), 661 (16), 286 (16), 273 (100); HRMS calcd for C₂₉H₃₆NO₁₅Na 661.1983, found 661.1957. Anal. Calcd for C₂₉H₃₇NO₁₅: C, 54.46; H, 5.83; N, 2.19. Found: C, 54.58; H, 5.52; N, 2.03.

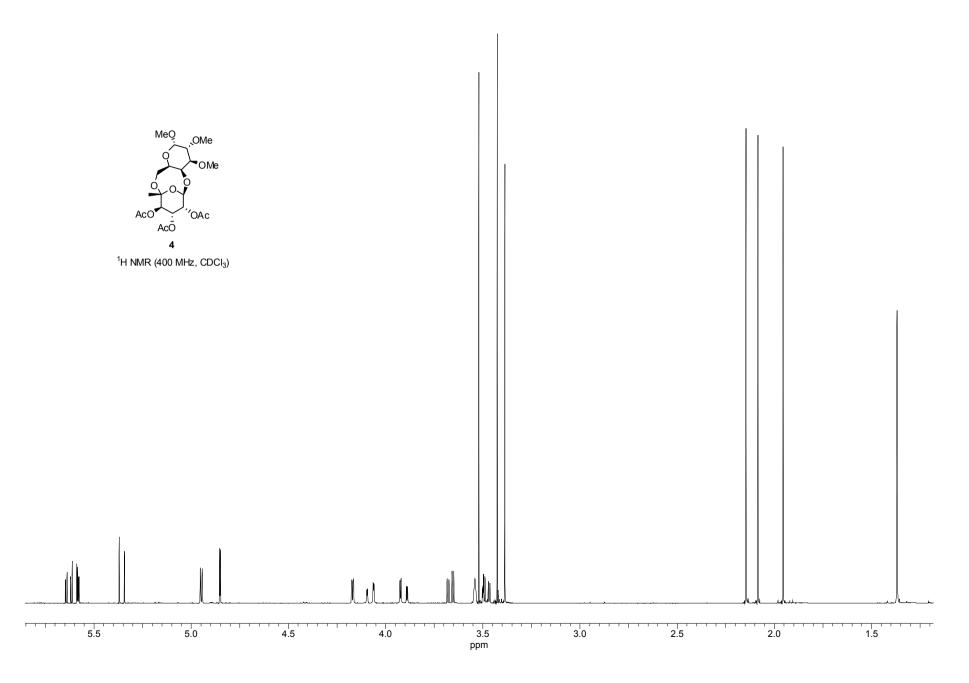


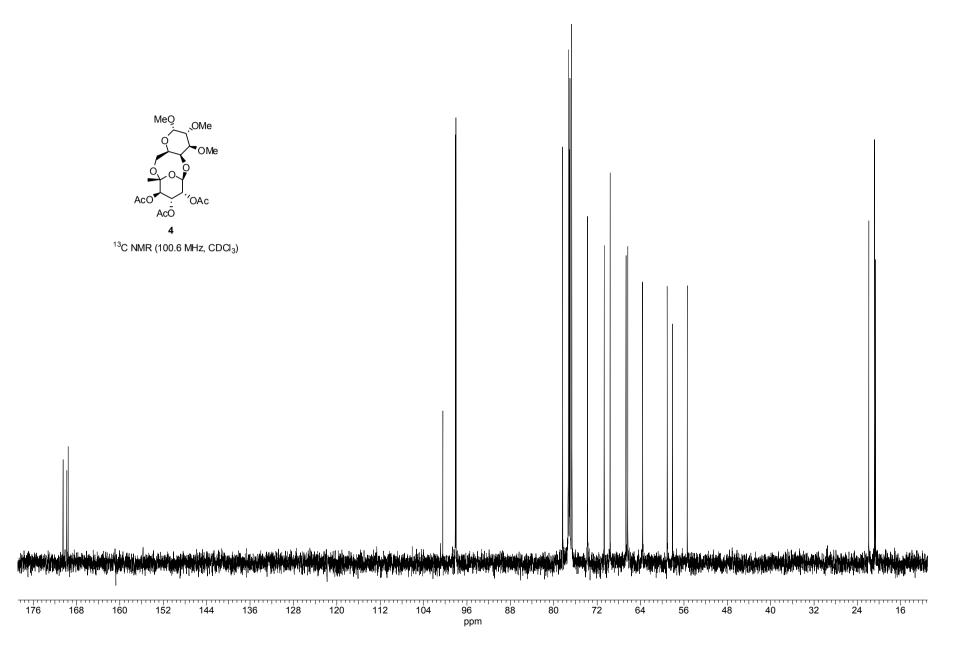
Reductive HAT of Methyl 2,3,4-Tri-O-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 4)$ -2,3-di-O-methyl-6-O-phthalimido- α -D-glucopyranoside (13). Method A: Using *n*-Bu₃SnH and AIBN. A solution of phthalimide 13 (110 mg, 0.172 mmol) in dry benzene (12.9 mL) containing *n*-Bu₃SnH (46 μ L, 0.172 mmol) and AIBN (3 mg, 0.017 mmol) was heated at reflux temperature for 1 h. After this time another portion of *n*-Bu₃SnH (46 μ L, 0.172 mmol) and AIBN (3 mg, 0.017 mmol) were added, and heating at reflux was continued for an additional 1 h. After cooling to room temperature the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₃CN, washed

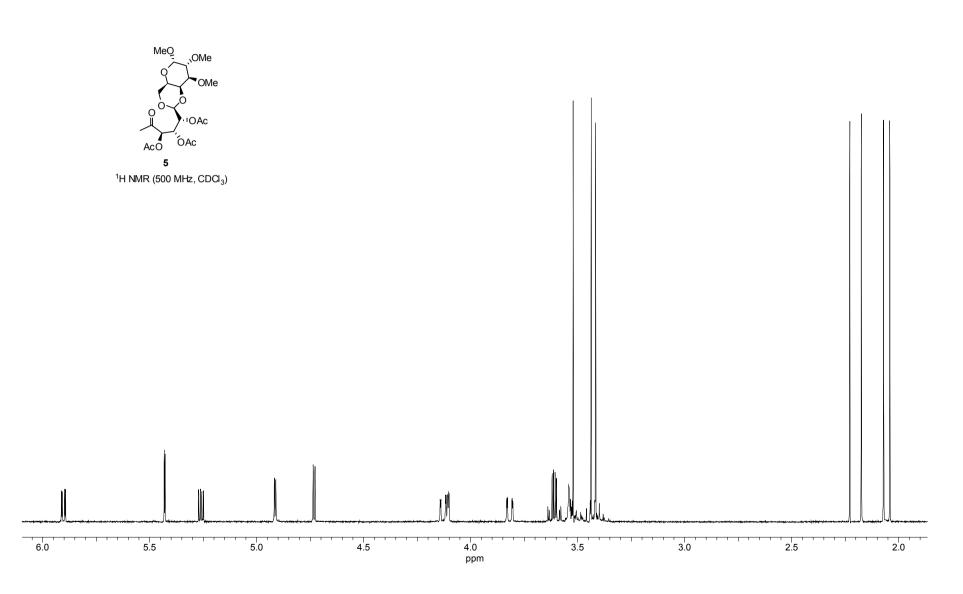
with *n*-hexane and the combined more polar extracts were concentrated under reduced pressure. The residue was purified by column chromatography (hexanes–EtOAc, 60:40 \rightarrow 50:50) to give methyl 6-*O*-(2,3,4-tri-*O*-acetyl-5,6-dideoxy-L-*lyxo*-hexonoyl)-2,3-di-*O*-methyl- α -D-glucopyranoside **15** (3.7 mg, 0.007 mmol, 4%), methyl 4-*O*-(2,3,4-tri-*O*acetyl-5,6-dideoxy-L-*lyxo*-hexonoyl)-2,3-di-*O*-methyl- α -D-glucopyranoside **14** (41.2 mg, 0.083 mmol, 48%), starting alcohol **11** (6.5 mg, 0.013 mmol, 8%) and methyl 2,3,4tri-*O*-acetyl-6-deoxy- β -L-mannopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-methyl- α -D-

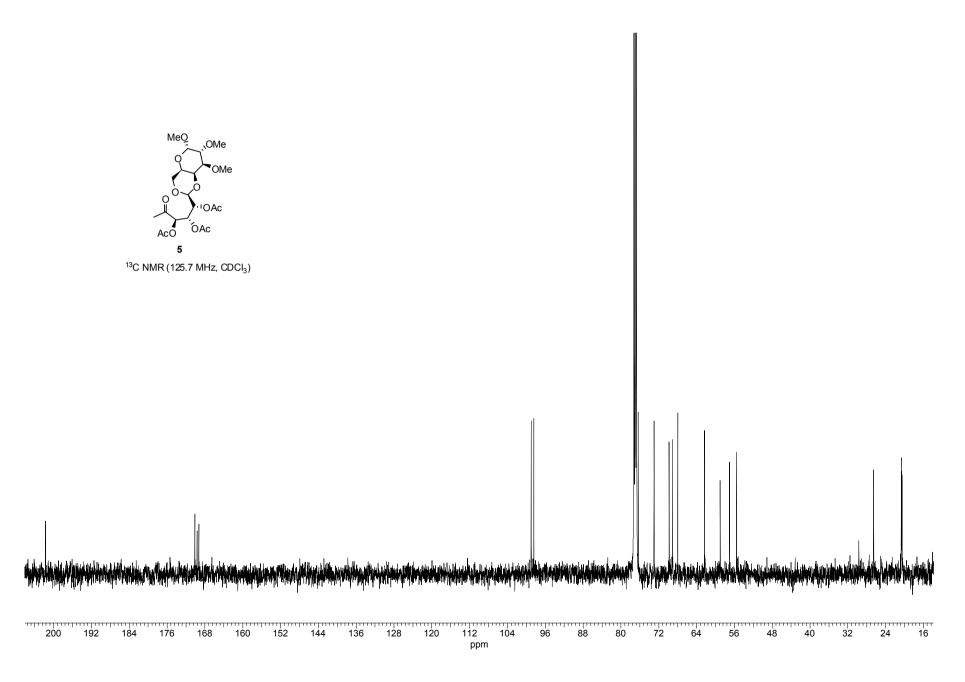

glucopyranoside 16 (7.8 mg, 0.016 mmol, 9%) as colorless oils. Compound 15: $[\alpha]_D$ +40.7 (c, 0.29); IR 3488, 2938, 1748, 1373, 1220, 1063 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 0.91 (3H, t, J = 7.2 Hz), 1.58 – 1.64 (2H, m), 2.08 (3H, s), 2.11 (3H, s), 2.13 (3H, s), 3.00 (1H, br s) 3.21 (1H, dd, J = 9.2, 3.4 Hz), 3.43 (3H, s), 3.44 – 3.47 (2H, m), 3.51 (3H, s), 3.64 (3H, s), 3.75 (1H, ddd, J = 7.6, 3.8, 1.9 Hz), 4.20 (1H, dd, J = 11.8, 1.9 Hz), 4.54 (1H, dd, J = 1.18, 1.9 Hz), 4.5411.8, 4.2 Hz), 4.82 (1H, d, J = 3.4 Hz), 5.14 (1H, d, J = 6.9 Hz), 5.23 (1H, ddd, J = 7.6, 6.1, 3.8 Hz), 5.40 (1H, dd, J = 7.2, 3.8 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 9.5 (CH₃), 20.4 (CH₃), 20.6 (CH₃), 20.8 (CH₃), 23.7 (CH₂), 55.3 (CH₃), 58.7 (CH₃), 61.3 (CH₃), 64.5 (CH₂), 69.0 (CH), 69.7 (CH), 69.8 (CH), 71.1 (CH), 72.0 (CH), 81.7 (CH), 82.5 (CH), 97.6 (CH), 167.6 (C), 169.6 (C), 170.1 (C), 170.5 (C); MS m/z (rel intensity) 463 (M⁺ – C₂H₇, 1), 431 (2), 403 (1), 365 (16), 231 (34), 101 (22), 88 (100); HRMS calcd for C₁₉H₂₇O₁₃ 463.1452, found 463.1444. Anal. Calcd for C₂₁H₃₄O₁₃: C, 51.01; H, 6.93. Found: C, 51.22; H, 6.83. Compound 14: [a]_D+54.8 (c, 0.155); IR 3500, 2938, 1748, 1373, 1220, 1048 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 0.91 (3H, t, J = 7.4 Hz), 1.61 (2H, q, J = 7.4 Hz), 2.06 (3H, s), 2.11 (3H, s), 2.13 (3H, s), 3.32 (1H, dd, *J* = 9.6, 3.6 Hz), 3.43 (3H, s), 3.49 (3H, s), 3.51 (3H, s), 3.59 - 3.70 (3H, m), 3.63 (1H, dd, J = 9.6, 9.6 Hz), 4.87 (1H, d, J)= 3.6 Hz), 4.91 (1H, dd, J = 9.6, 9.6 Hz), 5.15 (1H, d, J = 6.5 Hz), 5.20 (1H, ddd, J =6.4, 6.4, 4.4 Hz), 5.42 (1H, dd, J = 6.5, 4.2 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 9.435 (CH₃),

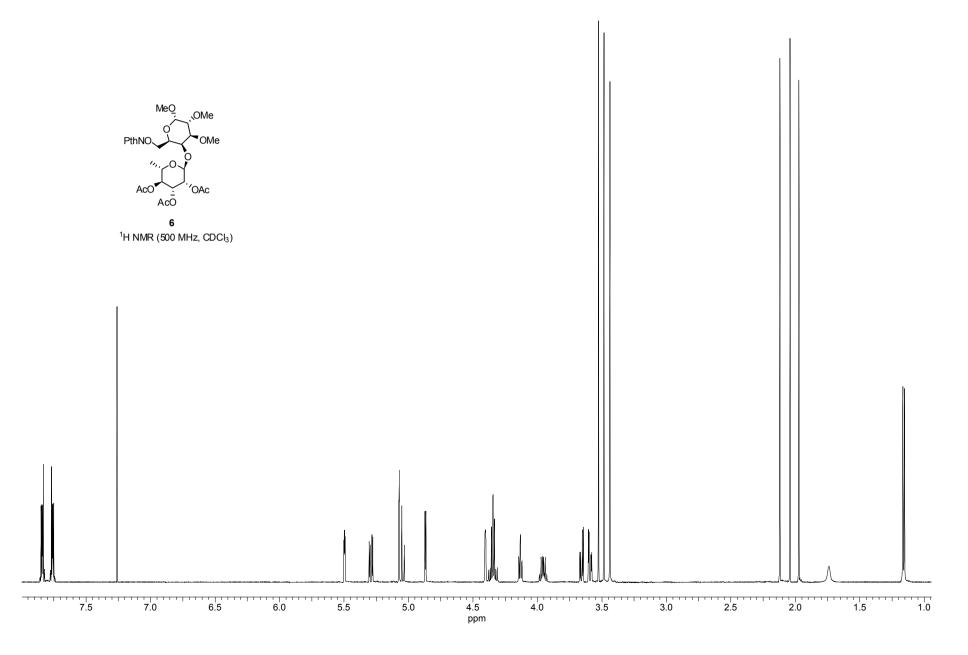

20.4 (CH₃), 20.6 (CH₃), 20.7 (CH₃), 23.6 (CH₂), 55.4 (CH₃), 58.9 (CH₃), 60.1 (CH₃), 60.8 (CH₂), 69.4 (CH), 70.3 (CH), 71.0 (CH), 71.3 (CH), 72.034 (CH), 79.6 (CH), 81.5 (CH), 97.4 (CH), 167.4 (C), 169.6 (C), 170.1 (C), 170.2 (C); MS *m/z* (rel intensity) 463 (M⁺ – C₂H₇, <1), 434 (1), 403 (1), 231 (23), 101 (11), 88 (100); HRMS calcd for C₁₉H₂₇O₁₃ 463.1452, found 463.1455. Anal. Calcd for C₂₁H₃₄O₁₃: C, 51.01; H, 6.93. Found: C, 51.12; H, 6.96. Compound **16**: ¹H NMR analysis revealed that the product was contaminated with small amounts of alcohols **11** and **14**. ¹H NMR $\delta_{\rm H}$ 1.28 (3H, d, *J* = 6.5 Hz), 1.99 (3H, s), 2.05 (3H, s), 2.15 (3H, s), 3.19 (1H, dd, *J* = 9.5, 3.8 Hz), 3.39 (3H, s), 3.50 (3H, s), 3.51 – 3.58 (2H, m), 3.59 (3H, s), 3.64 – 3.72 (3H, m), 3.81 – 3.89 (1H, m), 4.80 (1H, d, *J* = 3.4 Hz), 4.98 (1H, d, *J* = 0.8 Hz), 5.01 (1H, dd, *J* = 10.3, 2.7 Hz), 5.03 (1H, dd, *J* = 10.3, 10.3 Hz), 5.46 (1H, dd, *J* = 2.7, 0.8 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.2 (CH₃), 20.6 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 55.2 (CH₃), 59.0 (CH₃), 61.3 (CH₃), 61.9 (CH₂), 69.0 (CH), 69.9 (CH), 70.4 (CH), 70.602 (CH), 70.9 (CH), 75.9 (CH), 82.3 (CH), 82.7 (CH), 97.6 (CH), 98.8 (CH), 169.8 (C), 170.0 (C), 170.1 (C).

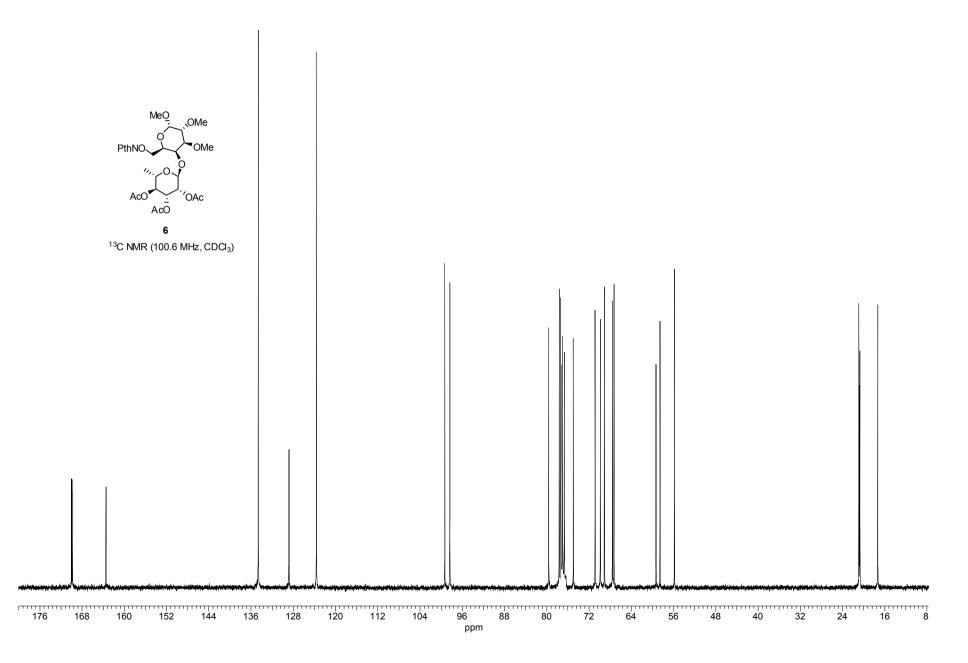


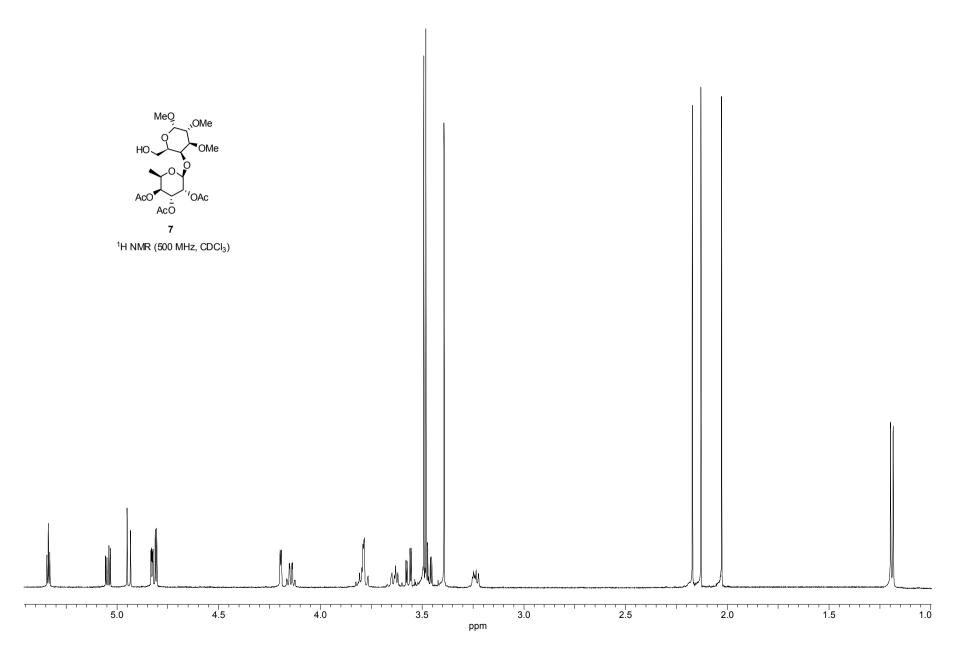

Method B: Using *n*-Bu₃SnD and AIBN. A solution of phthalimide 13 (106 mg, 0.166 mmol) in dry benzene (12.4 mL) containing *n*-Bu₃SnD (45 μ L, 0.166 mmol) and AIBN (2.7 mg, 0.017 mmol) was heated at reflux temperature for 2 h. After this time another portion of *n*-Bu₃SnD (45 μ L, 0.166 mmol) and AIBN (2.7 mg, 0.017 mmol) were added, and heating at reflux was continued for an additional 1 h. After cooling to room temperature the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₃CN, washed with *n*-hexane and the combined more polar extracts

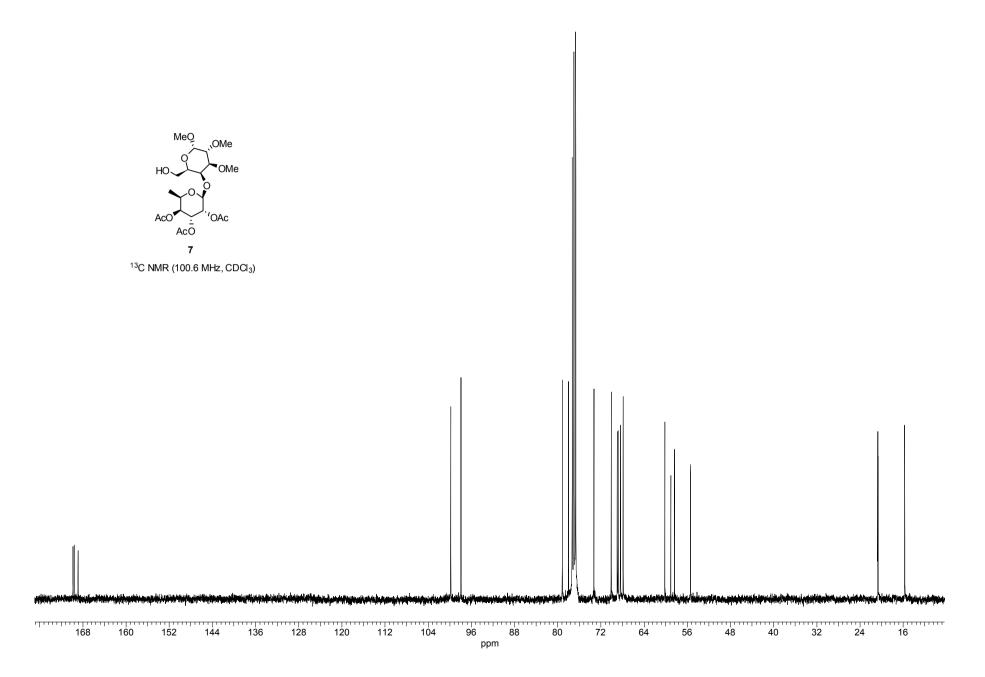

were concentrated under reduced pressure. The residue was purified by column chromatography (hexanes-EtOAc, $60:40 \rightarrow 50:50$) to give methyl 6-O-(2,3,4-tri-Oacetyl-5,6-dideoxy-L- $(5^{-2}H_1)$ lyxo-hexonoyl)-2,3-di-O-methyl- α -D-glucopyranoside (18) (29.7 mg, 0.06 mmol, 36%), methyl 4-O-(2,3,4-tri-O-acetyl-5,6-dideoxy-L-(5-²H₁)lyxohexonoyl)-2,3-di-O-methyl-α-D-glucopyranoside 17 (23.1 mg, 0.047 mmol, 28%), compound 11 (5.9 mg, 0.012 mmol, 7%), and methyl 2,3,4-tri-O-acetyl-6-deoxy-β-L-(1- 2 H₁)mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-methyl- α -D-glucopyranoside (19) (5.9 mg, 0.012) mmol, 7%) as colorless oils. Compound 18: ¹H NMR $\delta_{\rm H}$ 0.89 (3H, d, J = 7.3 Hz), 1.59 (1H, dddd, *J* = 8.0, 8.0, 8.0, 8.0 Hz), 2.07 (3H, s), 2.10 (3H, s), 2.12 (3H, s), 3.04 (1H, br s) 3.20 (1H, dd, J = 9.5, 3.4 Hz), 3.42 (3H, s), 3.43 – 3.46 (2H, m), 3.50 (3H, s), 3.63 (3H, s), 3.74 (1H, ddd, J = 7.5, 3.9, 2.0 Hz), 4.19 (1H, dd, J = 12.0, 2.0 Hz), 4.53 (1H, dd, J = 12.0, 4.2 Hz), 4.81 (1H, d, J = 3.5 Hz), 5.13 (1H, d, J = 7.1 Hz), 5.21 (1H, dd, J = 8.2, 3.7 Hz), 5.39 (1H, dd, J = 7.2, 3.7 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 9.3 (CH₃), 20.4 (CH₃), 20.6 (CH₃), 20.8 (CH₃), 23.3 (CH, t, $J_{CD} = 20.0$ Hz), 55.3 (CH₃), 58.6 (CH₃), 61.3 (CH₃), 64.5 (CH₂), 69.0 (CH), 69.7 (CH), 69.8 (CH), 71.1 (CH), 71.9 (CH), 81.7 (CH), 82.5 (CH), 97.6 (CH), 167.6 (C), 169.6 (C), 170.1 (C), 170.5 (C); MS m/z (rel intensity) 464 (M^+ – C₂H₅D, <1), 432 (1), 403 (1), 366 (10), 232 (17), 101 (35), 88 (100); HRMS calcd for $C_{19}H_{28}O_{13}$, 464.1530, found 464.1510. Compound 17: ¹H NMR $\delta_{\rm H}$ 0.90 (3H, d, J = 7.6 Hz), 1.59 (1H, m), 2.07 (3H, s), 2.12 (3H, s), 2.14 (3H, s), 2.41 (1H, br s) 3.32 (1H, dd, J = 9.5, 3.4 Hz), 3.44 (3H, s), 3.50 (3H, s), 3.51 (3H, s), 3.59 -3.69 (3H, m), 3.64 (1H, dd, J = 9.5, 9.5 Hz), 4.88 (1H, d, J = 3.4 Hz), 4.91 (1H, dd, J = 9.5, 9.5 Hz), 5.16 (1H, d, J = 6.5 Hz), 5.20 (1H, dd, J = 8.4, 4.2 Hz), 5.42 (1H, dd, J =6.5, 4.2 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 9.360 (CH₃), 20.4 (CH₃), 20.6 (CH₃), 20.8 (CH₃), 23.4 (CH, t, $J_{CD} = 19.0$ Hz), 55.4 (CH₃), 58.9 (CH₃), 60.2 (CH₃), 60.9 (CH₂), 69.4 (CH), 70.3 (CH), 71.0 (CH), 71.4 (CH), 72.044 (CH), 79.7 (CH), 81.6 (CH), 97.5 (CH), 167.5 (C), 169.6 (C), 170.1 (C), 170.3 (C); MS *m*/*z* (rel intensity) 464 (M⁺ – C₂H₅D, <1), 435 (2), 404 (1), 232 (25), 101 (17), 88 (100); HRMS calcd for C₁₉H₂₈O₁₃ 464.1530, found 464.1544. Compound **19**: ¹H NMR analysis revealed that the product was contaminated with small amounts of alcohols **11** and **17**. ¹H NMR $\delta_{\rm H}$ 1.28 (3H, d, *J* = 6.1 Hz), 1.99 (3H, s), 2.05 (3H, s), 2.16 (3H, s), 3.19 (1H, dd, *J* = 9.5, 3.4 Hz), 3.40 (3H, s), 3.50 (3H, s), 3.51 – 3.58 (2H, m), 3.59 (3H, s), 3.64 – 3.72 (3H, m), 3.80 – 3.89 (1H, m), 4.80 (1H, d, *J* = 3.4 Hz), 5.01 (1H, dd, *J* = 10.3, 3.0 Hz), 5.03 (1H, dd, *J* = 10.3, 10.3 Hz), 5.46 (1H, d, *J* = 2.7 Hz); ¹³C NMR (100.6 MHz) $\delta_{\rm C}$ 17.2 (CH₃), 20.6 (CH₃), 20.7 (CH₃), 20.8 (CH₃), 55.2 (CH₃), 58.9 (CH₃), 61.3 (CH₃), 62.0 (CH₂), 68.9 (CH), 69.9 (CH), 70.4 (CH), 70.570 (CH), 70.9 (CH), 75.9 (CH), 82.3 (CH), 82.7 (CH), 97.7 (CH), 169.8 (C), 170.0 (C), 170.1 (C).

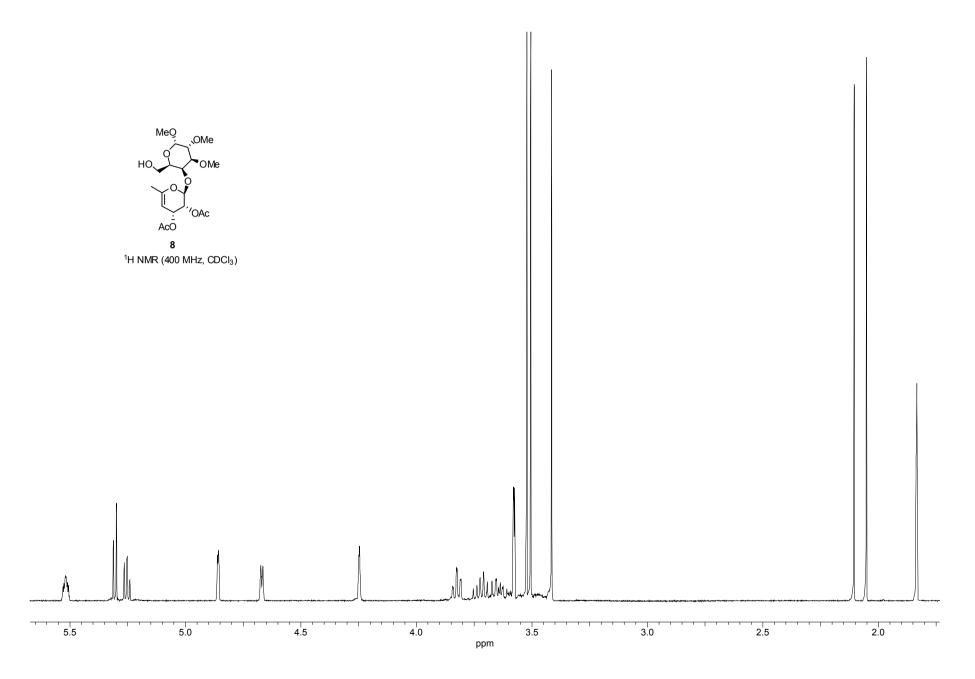


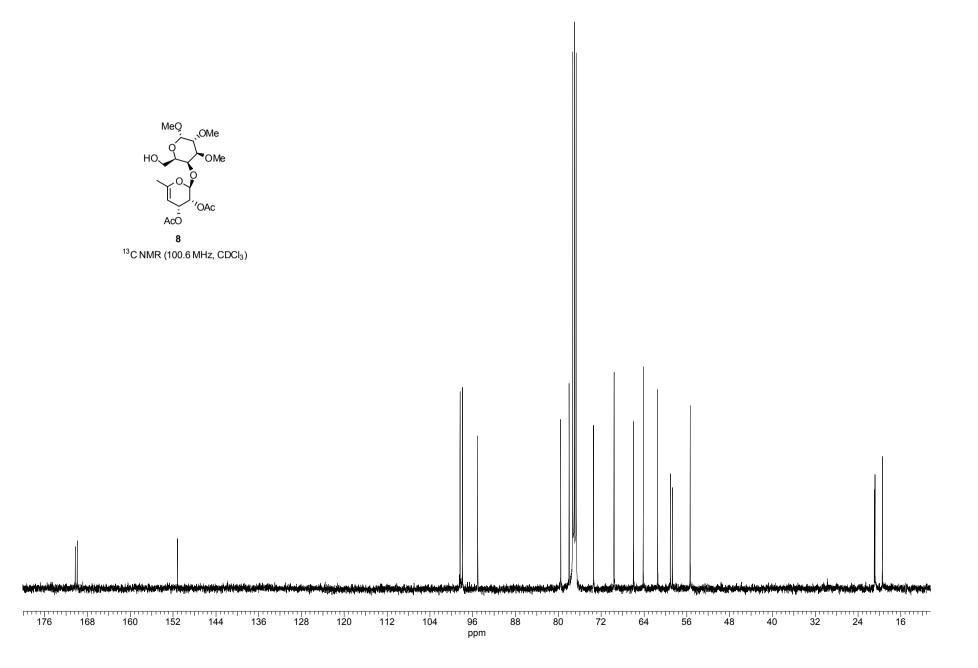


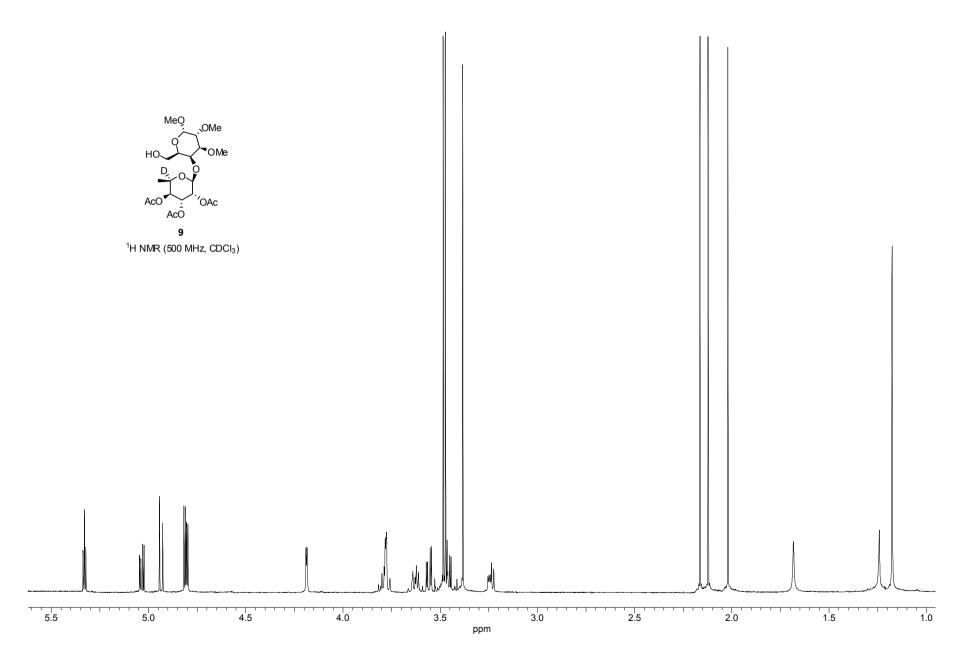


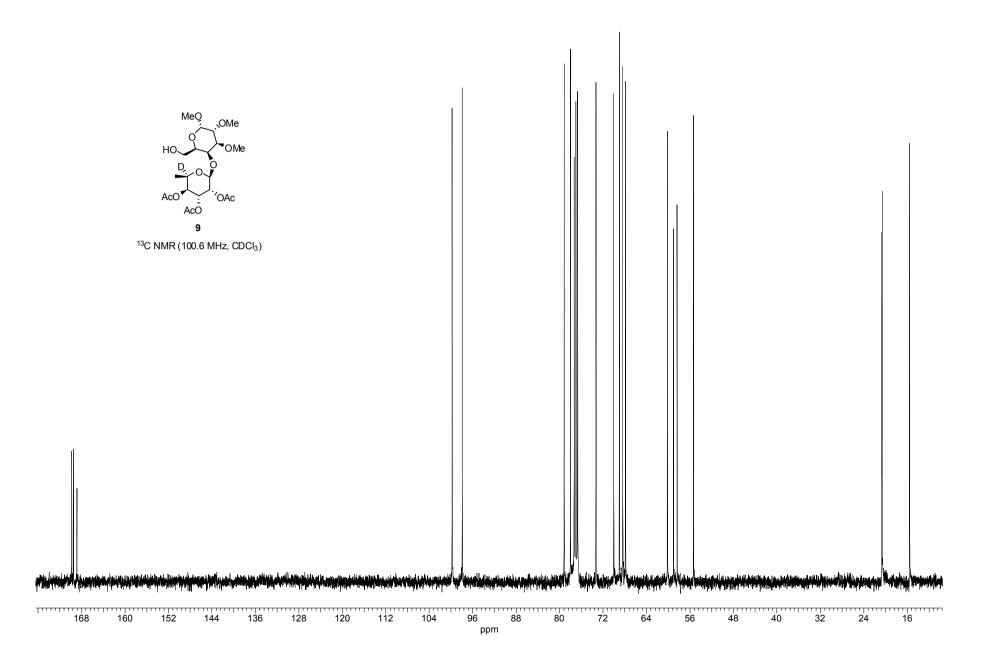












S31

