Supporting Information

The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C

Qiren Liang,[†] Jiyong Zhang,[†]Weiguo Quan,[†] Yongquan Sun,[†] Xuegong She^{*, †, ‡} and Xinfu Pan^{*, †,}

Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

shexg@lzu.edu.cn

Table of Contents

1. Experimental Procedures and Spectroscopic Data

General Methods	
Synthesis of Compound 9	
Synthesis of Compound 10	S6
Synthesis of Compound 11	S7

Synthesis of Compound 12a, 12b.	S7-S9
Synthesis of Compound 14a, 14b	S9-S10
Synthesis of Compound 15a , 15b	S11-S12
Synthesis of Compound 16a, 16b	
Synthesis of Compound 18a, 18b	S13-S14

2. Copies of NMR and CD Spectra

¹ HNMR Spectra of methyl 3,5-dimethoxyphenylaceta te	S15
¹³ CNMR Spectra of methyl 3,5-dimethoxyphenylaceta te	S16
¹ HNMR Spectra of Compound 9	S17
¹³ CNMR Spectra of Compound 9	S18
¹ HNMR Spectra of Compound 8	
¹³ CNMR Spectra of Compound 8	S20
¹ HNMR Spectra of Compound 10	
¹³ CNMR Spectra of Compound 10	S22
¹ HNMR Spectra of Compound 11	S23
¹³ CNMR Spectra of Compound 11	S24
¹ HNMR Spectra of 2-(methylthio)acetic acid	S25
¹³ CNMR Spectra of 2-(methylthio)acetic acid	S26
¹ HNMR Spectra of Compound 12a	
¹³ CNMR Spectra of Compound 12a	S28
¹ HNMR Spectra of Compound 12b	S29
¹³ CNMR Spectra of Compound 12b	S30
¹ HNMR Spectra of Compound 13a	S31
¹³ CNMR Spectra of Compound 13a	S32

DEPT Spectra of Compound 13a	
¹ HNMR Spectra of Compound 13b	
¹³ CNMR Spectra of Compound 13b	
DEPT Spectra of Compound 13b	S36
¹ HNMR Spectra of Compound 14b	
¹³ CNMR Spectra of Compound 14b	S38
¹ HNMR Spectra of Compound 14a	
¹³ CNMR Spectra of Compound 14a	
¹ HNMR Spectra of Compound 15a	S41
¹³ CNMR Spectra of Compound 15a	
¹ HNMR Spectra of Compound 15b	
¹³ CNMR Spectra of Compound 15b	S44
¹ HNMR Spectra of Compound 16a	
¹³ CNMR Spectra of Compound 16a	
¹ HNMR Spectra of Compound 16b	S47
¹³ CNMR Spectra of Compound 16b	S48
¹ HNMR Spectra of Compound 17a	S49
¹³ CNMR Spectra of Compound 17a	
DEPT Spectra of Compound 17a	
¹ HNMR Spectra of Compound 17b	
¹³ CNMR Spectra of Compound 17b	
DEPT Spectra of Compound 17b	
¹ HNMR Spectra of Compound 18a	S55
¹³ CNMR Spectra of Compound 18a	

¹ HNMR Spectra of Compound 18b	S57
¹³ CNMR Spectra of Compound 18b	
¹ HNMR Spectra of xestodecalactone B	S59
¹³ CNMR Spectra of xestodecalactone B	S60
CD Spectra of xestodecalactone B	
¹ HNMR Spectra of xestodecalactone C	
¹³ CNMR Spectra of xestodecalactone C	
DEPT Spectra of xestodecalactone C	
CD Spectra of xestodecalactone C	
Comparison of the NMR data of the natural products xestod	ecalactones B and C from
isolation with the synthetic compounds	

1. Experimental procedure and spectroscopic data

General Methods: Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere. Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Column chromatography was performed on silica gel (200-300 mesh). Optical rotations were measured on a precision automated polarimeter. Infrared spectra were recorded on a FT-IR spectrometer. ¹HNMR and ¹³CNMR spectra were recorded on a 300 MHz and a 400 MHz spectrometers. Chemical shifts are reported as δ values relative to internal chloroform (δ 7.26 for ¹H and 77.0 for ¹³C).

Methyl 3, 5-dimethoxyphenylacetate. Anhydrous potassium carbonate (62 g, 0.45 mol) was added to the solution of 3, 5-dihydroxyphenylacetate acid (15.2 g, 90 mmol) in acetone (300 mL) at rt, then dimethyl sulphate (32.7 mL, 0.36 mol) was added. The solution was refluxed for 12h, cooled to rt, filtered. The organic layers were concentrated *in vacuo*. The residue was purified by column chromatography (hexanes / EtOAc, 10:1) to afford methyl 3, 5-dimethoxyphenylacetate (17.108 g, 90%) as a pale yellow oil. ¹HNMR (300 MHz, CDCl₃) δ 6.43 (d, *J* = 2.4 Hz, 2H), 6.36 (t, *J* = 2.4 Hz, 1H), 3.77 (d, *J* = 2.1 Hz, 6H), 3.68 (d, *J* = 2.1 Hz, 3H), 3.55 (s, 2H); ¹³CNMR (75 MHz, CDCl₃) δ 171.7, 160.7, 135.9, 107.2, 99.0, 52.0, 41.3; IR (KBr) 3387, 2926, 1716, 1603, 1423, 1203, 1155, 1063 cm⁻¹.

3,5-dimethoxyphenyl acetic acid (9). The solution of methyl 3,5dimethoxyphenylacetate (17.0 g, 81 mmol) in 2 M KOH (81 mL) was refluxed for 0.5h, and then cooled to room temperature. The solution was acidified with 2 M HCl to PH 1 and extracted with EtOAc (3 × 80 mL), the combined organic solutions were washed with brine, dried (Na₂SO₄) and concentrated in *vacuo*. The residue gave the 3,5dimethoxyphenyl acetic acid **9** (14.92 g, 94%) as a white solid: mp 98-102 °C; ¹HNMR (300 MHz, CDCl₃) δ 11.77 (br, s, 1H), 6.46 (t, J = 2.4 Hz, 2H), 6.41 (t, J = 2.4 Hz 1H), 3.78 (s, 6H), 3.59 (s, 2H); ¹³CNMR (75 MHz, CDCl₃) δ 177.8, 160.7, 135.2, 107.4, 99.3, 55.2, 41.2; IR (KBr) 3388, 2923, 1702, 1605, 1205, 1154, 1064 cm⁻¹.

(**R**)-1-(1,3-dithian-2-yl) propan-2-yl 2-(3,5-dimethoxyphenyl) acetate (10). To a solution of (*R*)-DHP **8** (12.0 g, 67.3 mmol) and acid **9** (14.5 g, 74 mmol) in 100 mL of anhydrous Et₂O at rt was added DCC (15.244 g, 74 mmol) and DMAP (0.41 g, 3.4 mmol), after stirring for 3h at rt, the mixture was filtered, washed with brine, dried (Na₂SO₄) and concentrated in *vacuo*. The residue was purified by column chromatography (hexanes / EtOAc, 10:1) to afford the title compound **10** (23.24 g, 97%) as a colorless oil: $[\alpha]_D^{25}$ -25 (c 2.04, CHCl₃); ¹HNMR (300 MHz, CDCl₃) δ 6.45 (t, *J* = 2.4 Hz, 2H), 6.36 (dd, *J* = 4.2 Hz, 2.4 Hz, 1H), 5.09-5.16 (m, 1H), 3.80-3.86 (m, 1H), 3.76 (dd, *J* = 6.6 Hz, 2.1 Hz, 6H), 3.52 (d, *J* = 2.1 Hz, 2H), 2.73-2.78 (m, 2H), 2.58-2.71 (m, 2H), 1.98-2.07 (m, 2H), 1.77-1.87 (m, 2H), 1.24 (td, *J* = 6.6 Hz, 2.1 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 170.5, 160.7, 136.3, 107.1, 99.1, 68.1, 55.2, 43.4, 42.1, 41.3, 30.2, 29.7, 25.7, 20.1; IR (KBr) 3387, 2926, 1733, 1599, 1461, 1155, 1063 cm⁻¹; HRMS *m/z* calcd for C₁₇H₂₄O₄S₂ [M+H]⁺ 357.1194; Found 357.1187.

(R)-1-formylpropan-2-yl 2-(3,5-dimethoxyphenyl)acetate (11). The solution of 1,3dithiane derivative 10 (10.68 g, 30 mmol) in THF (30 mL) was added dropwise to a well stirred suspension of lead dioxide (28.68 g, 120 mmol) in 20% aqueous THF (105 mL), containing boron trifluoride etherate (31 mL, 180 mmol). The reaction was monitored by TLC and stirring of the mixture at room temperature was continued until all the dithiane derivative has disappeared. Ether (100 mL) was added and the precipitate was filtered. The filtrate was concentrated in *vacuo*. The residue was dissolved in 200 mL of ether, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography through a silica gel (hexanes / EtOAc, 10:1) to afford the title compound **11** (6.86 g, 86%) as a colorless oil: $[\alpha]_D^{25}$ -8 (c 1.1, CHCl₃); ¹HNMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 9.69 \text{ (t, } J = 1.5 \text{ Hz}, 1\text{H}), 6.41 \text{ (d, } J = 2.4 \text{ Hz}, 2\text{H}), 6.37 \text{ (d, } J = 2.4 \text{ Hz}, 2\text{H})$ 1H), 5.38 (dd, J = 12.3 Hz, 6.0 Hz, 1H), 3.79 (d, J = 6.0 Hz, 6H), 3.52 (s, 2H), 2.73 (ddd, J = 13.5 Hz, 6.0 Hz, 2.4 Hz, 1H), 2.58 (ddd, J = 13.5 Hz, 6.0 Hz, 2.4 Hz, 1H), 1.32 (d, J = 6.0 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 199.3, 170.6, 160.7, 135.8, 107.1, 99.1, 66.4, 55.3, 49.4, 41.6, 20.0; IR (KBr) 2940, 2840, 1730, 1597, 1464, 1205, 1157, 1065, 974, 838 cm⁻¹; HRMS m/z calcd for C₁₄H₁₈O₅ [M+H]⁺ 267.1232; Found 267.1228.

2-(methylthio)acetic acid. 2M NaOH (200 mL) was added to a suspension of 2mercaptoacetic acid (9.2 g, 100 mmol) in 40 mL of EtOH at 0 °C, after stirring for 15min, MeI (7.5 mL, 120 mmol) was added, the stirring was continued for 1h at 0 °C, then EtOH was removed under reduced pressure. The solution was acidified with 2M HCl and extract with EtOAc (3×150 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The residue was distilled at 5 mmHg (76-78 °C) to afford 2-(methylthio)acetic acid (9.5g, 89%) as a colorless oil: ¹HNMR (300 MHz, CDCl₃) δ 12.04 (s, 1H), 3.17 (t, *J* = 3.0 Hz, 2H), 2.18 (t, *J* = 4.2 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 176.9, 35.3, 16.1; IR (KBr) 3170, 1710, 1426, 1295, 1142 cm⁻¹.

(R)-4-benzyl-3-(2-(methylthio)acetyl)oxazolidin-2-one 12a and (S)-12b. In a round bottom flask with a reflux condenser was placed 2-(methylthio)acetic acid (9.0 g, 84.9 mmol) and oxayl chloride (18.5 mL, 0.212 mol) in 50 mL of benzene. After once starting, the reaction proceeded spontaneously for 30min. The mixture was refluxed for 2h. The reaction mixture was then distilled under atmospheric pressure till the excess of oxalyl chloride and benzene were collected and then generally under diminished pressure (20 mmHg) to obtain 2-(methylthio)acetic acid chloride (9.5 g, 90%) as a colorless oil. To a solution of the (R)-oxazolidinone (3.54 g, 20 mmol) in anhydrous THF (60 mL) at -78 °C under Ar was added 8.06 mL (20 mmol) of n-BuLi (2.48 M in hexanes). After 15min, the freshly distilled 2-(methylthio)acetic acid chloride (2.74 g, 22 mmol) was added. The mixture was stirred at -78 °C for 30min and at 0 °C for 15min. The reaction was quenched with excess saturated aqueous ammonium chloride, and the resultant slurry was concentrated in vacuo. The residue was diluted with ether (100 mL) and washed successively with saturated aqueous sodium bicarbonate and brine. The organic layer was dried over Na_2SO_4 , filtered and concentrated in *vacuo*. The product was purified by flash chromatography on silica gel to afford the desired (R)-oxazolidone 12a (4.91 g, 92%) as a colorless oil. $[\alpha]_D^{25}$ +51 (c 1.34, CHCl₃); ¹HNMR (300 MHz, CDCl₃) δ 7.25-7.34 (m, 3H), 7.21 (d, J = 6.9 Hz, 2H), 4.68 (td, J = 9.3 Hz, 3.9 Hz, 1H), 4.14-4.24 (m, 2H), 3.81 (dd, J = 27.6 Hz, 13.5 Hz, 2H), 3.28 (dd, J = 13.5 Hz, 3.3 Hz, 1H), 2.79 (dd, J = 13.5 Hz, 9.3 Hz, 1H), 2.19 (s, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 168.6, 153.0, 134.9, 129.3, 128.8, 127.2, 66.1, 55.0, 37.5, 36.4, 15.7; IR (KBr) 2920, 1780, 1692, 1317, 1211, 1105, 1000, 743, 705 cm⁻¹; HRMS *m/z* calcd for C₁₃H₁₅NO₃S [M+H]⁺ 266.0851; Found 266.0847; (*S*)-oxazolidone **12b** (4.85 g, 91%) was obtained from (*S*)- oxazolidinone (3.54 g, 20 mmol) and 2-(methylthio)acetic acid chloride (2.74 g, 22 mmol) by the same operation as the synthesis of **12a**. [α]_D²⁵ -63 (c 2.0, CHCl₃); ¹HNMR (400 MHz, CDCl₃) δ 7.19-7.32 (m, 5H), 4.64-4.68 (m, 1H), 4.13-4.22 (m, 2H), 3.78 (ddd, J = 36.0 Hz, 14.4 Hz, 1.2 Hz, 2H), 3.26 (dd, J = 13.6 Hz, 3.2 Hz, 1H), 2.78 (dd, J = 13.6 Hz, 9.6 Hz, 1H), 2.17 (d, J = 2.4 Hz, 3H), 1.17 (dd, J = 4.4 Hz, 2.4 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 168.6, 153.0, 134.9, 129.2, 128.7, 127.1, 66.0, 54.9, 37.4, 36.4, 15.7; IR (KBr) 2920, 1780, 1693, 1356, 1317, 1211, 1105, 1000, 742, 704 cm⁻¹; HRMS *m/z* calcd for C₁₃H₁₅NO₃S [M+H]⁺ 266.0851; Found 266.0855.

Compounds 14a and 14b. 1 mL of pyridine was added to the solution of **13a** (5.31 g, 10 mmol) in 15 mL of Ac₂O. After stirring at rt for 5h, the mixture was slowly added to the saturate aqueous NaHCO₃, extracted with ether (4×50 mL). The organic layer was washed with 20 mL NaHCO₃, 20 mL 1 M HCl, 20 mL brine, dried over Na₂SO₄, and

concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexanes / EtOAc, 4:1) to afford the title compound 14a (5.50 g, 96%) and it's diastereomer (229 mg) produced from the aodol reaction as colorless oil. The diastereoselectivity of the aldol addition was 96 : 4. $\left[\alpha\right]_{D}^{25}$ +36 (c 2.17, CHCl₃); ¹HNMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.22-7.36 \text{ (m, 5H)}, 6.40 \text{ (d, } J = 2.1 \text{ Hz}, 2\text{H}), 6.34 \text{ (d, } J = 2.4 \text{ Hz}, 1\text{H}),$ 5.47 (td, J = 7.8 Hz, 3.6 Hz, 1H), 4.91-4.97 (m, 1H), 4.64-4.70 (m, 1H), 4.10-4.21 (m, 2H), 3.75 (s, 6H), 3.50 (s, 2H), 3.23 (dd, J = 13.5 Hz, 3.6 Hz,1H), 2.76 (dd, J = 13.5 Hz, 9.9 Hz, 1H), 2.11 (s, 3H), 2.10 (s, 3H), 1.96-2.03 (m, 2H), 1.87-1.93 (m, 1H), 1.26 (dd, J = 9.9 Hz, 6.3 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 170.7, 170.2, 167.9, 160.7, 152.9,136.0, 134.9, 129.4, 128.9, 127.3, 107.3, 99.0, 68.4, 67.2, 66.0, 55.2, 55.0, 47.6, 41.5, 38.3, 37.7, 20.9, 18.9, 12.7; IR (KBr) 3397, 2923, 1777, 1738, 1685, 1598, 1366, 1206, 1155, 1063 cm⁻¹; HRMS m/z calcd for C₂₉H₃₅NO₉S [M+Na]⁺ 596.1930; Found 596.1925; Protected 13b (5.31 g, 10 mmol) with 15 mL Ac₂O and 1 mL pyridine affording 14b (5.58 g, 97%) and it's diastereomer (173 mg). The diastereoselectivity of the aldol addition was 97 : 3. $\left[\alpha\right]_{D}^{25}$ -37 (c 2.45, CHCl₃); ¹HNMR (300 MHz, CDCl₃) δ 7.22-7.34 (m, 5H), 6.44 (d, J = 2.1 Hz, 2H), 6.34 (d, J = 2.4 Hz, 1H), 5.44-5.50 (m, 1H), 4.94-4.98 (m, 1H), 4.84 (dd, J = 7.2 Hz, 2.4 Hz, 1H), 4.71 (br, t, J = 7.2 Hz, 1H), 4.12-4.22 (m, 2H), 3.73 (dd, J = 6.6 Hz, 3.6 Hz, 6H), 3.54 (s, 2H), 3.25 (d, J = 13.5 Hz, 1H), 2.76 (dd, J = 13.5 Hz, 9.9 Hz, 1H), 2.12 (d, J = 3.6 Hz, 3H), 2.07 (t, J = 3.6 Hz, 3H), 1.82-1.94 (m, 2H), 1.21 (dd, J = 6.6 Hz, 2.4 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 170.8, 169.9, 168.0, 152.7, 136.0, 134.8, 129.3, 128.8, 127.2, 107.2, 99.1, 67.0, 66.4, 65.9, 55.1, 54.9, 48.3, 41.4, 38.5, 37.4, 20.6, 20.1, 13.0; IR (KBr) 3366, 2929, 1777, 1740, 1689, 1599, 1459, 1365, 1231, 1206, 1153, 1100 cm⁻¹; HRMS *m/z* calcd for C₂₉H₃₅NO₉S [M+Na]⁺ 596.1930; Found 596.1928.

Compounds 15a and 15b. n-Bu₃SnH (9.4 mL, 34.9 mmol, 4eq) and AIBN (148 mg, 0.9 mmol, 0.1eq) were added to the solution of 14a (5.0 g, 8.73 mmol) in anhydrous benzene (80 mL) under Ar. The solution was warmed to 80 °C and stirred for 45min. The mixture was allowed to cool to rt, and the solvent was evaporated in *vacuo*. Flash chromatography on silica gel (hexanes / EtOAc, 4:1) afforded 15a (4.374 g, 95%) as a colorless oil. $[\alpha]_D^{25}$ +56 (c 2.0, CHCl₃); ¹HNMR (300 MHz, CDCl₃) δ 7.21-7.36 (m, 3H), 7.19 (d, J = 6.6 Hz, 2H), 6.43 (d, J = 2.4 Hz, 2H), 6.34 (t, J = 2.4 Hz, 1H), 5.35 (td, J =8.4 Hz, 3.9 Hz, 1H), 5.00-5.04 (m, 1H), 4.57-4.63 (m, 1H), 4.13-4.26 (m, 2H), 3.77 (d, J = 1.2 Hz, 6H), 3.55 (s, 2H), 3.21-3.33 (m, 2H), 3.05 (dd, J = 15.6 Hz, 8.1 Hz, 1H), 2.75 (dd, J = 13.2 Hz, 10.2 Hz, 1H), 2.01 (d, J = 1.8 Hz, 3H), 1.93 (dd, J = 9.9 Hz, 4.2 Hz, 1H),1.82 (dd, J = 9.9 Hz, 4.2 Hz, 1H), 1.23 (d, J = 6.6 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 170.9, 170.4, 169.6, 160.6, 153.5, 136.1, 135.1, 129.4, 128.9, 127.3, 107.1, 99.2, 67.3, 66.6, 66.2, 55.2, 55.1, 41.6, 40.9, 40.5, 37.7, 20.9, 20.3; IR (KBr) 3543, 2938, 1783, 1736, 1598, 1460, 1391, 1294, 1236, 1155, 1063 cm⁻¹; HRMS *m/z* calcd for C₂₈H₃₃NO₉ [M+Na]⁺ 550.2053; Found 550.2050; Treatment of 5.3 g (9.25 mmol) 14b with n-Bu₃SnH (9.9 mL, 37.0 mmol, 4eq) and AIBN (148 mg, 0.9 mmol, 0.1eq) as described for the synthesis of 15a afforded 15b (4.69 g, 96%) as a colorless oil. $[\alpha]_D^{25}$ -60 (c 2.0, CHCl₃); ¹HNMR (300 MHz, CDCl₃) δ 7.26-7.35 (m, 3H), 7.20 (d, J = 1.8 Hz, 2H), 6.43 (d, J = 2.1 Hz, 2H), 6.34 (t, J = 2.4 Hz, 1H), 5.32-5.38 (m, 1H), 5.02 (td, J = 6.0 Hz, 3.6 Hz)

Hz, 1H), 4.57-4.63 (m, 1H), 4.22 (t, J = 8.4 Hz, 1H), 4.14 (dd, J = 8.4 Hz, 3.0 Hz, 1H), 3.76 (s, 6H), 3.52 (s, 2H), 3.22-3.29 (m, 2H), 3.05 (dd, J = 8.8 Hz, 6.6 Hz, 1H), 2.76 (dd, J = 13.5 Hz, 8.8 Hz, 1H), 2.00 (s, 3H), 1.91-1.99 (m, 1H), 1.79-1.87 (m, 1H), 1.24 (d, J =6.6 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 170.8, 170.3, 169.5, 160.7, 153.4, 136.1, 135.1, 129.3, 128.8, 127.2, 107.2, 99.3, 67.3, 66.6, 66.2, 55.2, 55.1, 41.6, 40.9, 40.5, 37.7, 20.8, 20.2; IR (KBr) 3394, 2930, 1781, 1736, 1701, 1599, 1459, 1390, 1233, 1204, 1153, 1063 cm⁻¹; HRMS *m/z* calcd for C₂₈H₃₃NO₉ [M+Na]⁺ 550.2053; Found 550.2048.

Compounds 16a and 16b. A solution of 2.16 g (4.08 mmol) **15a** in 45 mL of THF (stabilized with 0.025% BHT) and 12.6 mL of water, stirred at 0 °C under Ar, was treated with 3.7 mL (32.64 mmol, 8.0eq) of 31% H₂O₂ followed by 344 mg (8.16 mmol, 2.0eq) of LiOH. The resulting mixture was stirred at 0 °C for 15min, and treated with a solution of 10.3 g (40.8 mmol, 10eq) of Na₂SO₃ in 40 mL of H₂O followed by 48 mL of 0.5 M NaHCO₃. The THF was evaporated in *vacuo*. The aqueous residue was diluted to 100 mL with H₂O and extracted with four 60 mL portions of CH₂Cl₂. The CH₂Cl₂ extracts were combined, dried (Na₂SO₄) and evaporated in *vacuo* to yield 611 mg of (*R*)-oxazolidinone as a white solid. Recovery of oxazolidinone was 85%. The aqueous phase was acidified to PH 1-2 with 5 M HCl and extracted with four 75 mL portions of EtOAc. The extracts were combined, dried (Na₂SO₄) and evaporated in *vacuo*. The residue was purified by flash chromatography on silica gel (hexanes / EtOAc / AcOH, 40:10:1) to afford (1.367 g,

91%) of **16a** as a colorless oil. $[\alpha]_D^{25}$ -4 (c 2.0, CHCl₃); ¹HNMR (300 MHz, CDCl₃) δ 6.42 (d, J = 1.8 Hz, 2H), 6.35 (d, J = 2.4 Hz, 1H), 5.18-5.27 (m, 1H), 4.94-5.01 (m, 1H), 3.73 (t, J = 11.7 Hz, 6H), 3.54 (s, 2H), 2.57 (ddd, J = 6.9 Hz, 6.0 Hz, 2H), 2.01 (s, 3H), 1.79-1.94 (m, 2H), 1.22 (d, J = 6.0 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 175.3, 171.0, 170.4, 160.7, 136.0, 107.2, 99.2, 67.4, 66,6, 63.5, 55.3, 41.6, 40.1, 39.1, 20.9, 20.3; IR (KBr) 3246, 2938, 1737, 1599, 1463, 1239, 1205, 1155, 1064 cm⁻¹; HRMS *m/z* calcd for $C_{18}H_{24}O_8$ [M+H]⁺ 369.1549; Found 369.1545; 1.258 g (84%) of **16b** was obtained as a colorless oil by treating 15b (2.16 g, 4.08 mmol) with 3.7 mL (32.64 mmol, 8.0eq) of 31% H₂O₂ and 344 mg (8.16 mmol, 2.0eq) of LiOH workup as the synthesis of **16a**. $[\alpha]_D^{25}$ -27 (c 2.0, CHCl₃); ¹HNMR (300MHz, CDCl₃) δ 8.99 (br, s, 1H), 6.41 (d, J = 2.1 Hz, 2H), 6,34 (d, J = 2.1 Hz, 1H), 5.17-5.26 (m, 1H), 5.92-5.01 (m, 1H), 3.77 (dd, J = 6.9 Hz, 1.2 Hz, 6H), 3.52 (s, 2H), 2.57 (ddd, J = 6.9 Hz, 5.7 Hz, 2H), 2.07 (s, 3H), 1.82-1.96 (m, 2H), 1.21 (d, J = 6.3 Hz, 3H); ¹³CNMR (75 MHz, CDCl₃) δ 175.3, 170.9, 170.3, 160.7, 136.0, 107.2, 99.3, 67.3, 66.6, 55.2, 41.6, 40.0, 39.0, 20.8, 20.2; IR (KBr) 3215, 2938, 1739, 1600, 1464, 1432, 1294, 1238, 1205, 1154, 1064 cm⁻¹; HRMS *m/z* calcd for $C_{18}H_{24}O_8 [M+H]^+$ 369.1549; Found 369.1553.

Compounds 18a and 18b. Iodine (1.646 g, 6.48 mmol) was added to a mixture of aluminum (234 mg, 8.68 mmol) in dry benzene. The mixture was refluxed for 1h, cooled

to room temperature, n-Bu₄N⁺I⁻ (10 mg, 0.028 mmol) and 17a (76 mg, 0.216 mmol) in dry benzene (8 mL) were added. The mixture was stirred for 45min at rt and quenched with water. After acidification with 2M HCl the mixture was extracted with EtOAc (3×50 mL). The organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel (hexanes / EtOAc, 1:1) to afford the title compound 18a (66 mg, 95%) as a white solid. mp 156-160 °C; $[\alpha]_D^{25}$ +14 (c 0.5, CH₃OH); ¹HNMR (400 MHz, Me₂CO-d₆) δ 9.03 (br, s, 1H), 8.74 (br, s, 1H), 6.38 (d, J = 2.4 Hz, 1H), 6.28 (d, J = 3.2 Hz, 1H), 5.22-5.29 (m, 1H), 4.91-4.97 (m, 1H), 3.77 (d, J = 22.8 Hz, 1H), 3.47 (dd, J = 22.8 Hz, 4.0 Hz, 1H), 3.59 (d, J = 22.8 Hz, 1H), 3.06 (dd, J = 2.4 Hz, 1.6 Hz, 1H), 2.04-2.14 (m, 1H), 1.98 (s, 1H), 1.98 (s, 2.14 Hz, 1H), 1.98 (s, 2.14 Hz,3H), 1.88-1.95 (m, 1H), 1.23 (dd, J = 8.4 Hz, 1.6 Hz, 3H); ¹³CNMR (100 MHz, Me₂CO d_6) δ 203.2, 170.2, 169.5, 160.0, 157.4, 136.7, 121.6, 111.0, 110.6, 102.2, 69.1, 68.4, 49.3, 40.9, 39.5, 21.1, 19.8; IR (KBr) 3336, 1735, 1611, 1465, 1367, 1259, 1162, 1046, 846 cm⁻¹; HRMS m/z calcd for C₁₆H₁₈O₇ [M+H]⁺ 323.1131; Found 323.1128; **18b** (79 mg, 96%) was obtained as a pale yellow solid from 17b (90 mg) as described for the synthesis of **18a**. mp 163-165 °C; $[\alpha]_D^{25}$ +25 (c 0.65, CH₃OH); ¹HNMR (400 MHz, Me₂CO-d₆) δ 9.11 (s, 1H), 8.83 (s, 1H), 6.48 (d, J = 2.0 Hz, 1H), 6.33 (s, 1H), 5.30 (t, J = 9.6 Hz, 1H), 4.95 (dd, J = 6.0 Hz, 4.0 Hz, 1H), 4.06 (d, J = 15.2 Hz, 1H), 3.43 (dd, J = 15.2 Hz, 11.2 Hz, 1H), 3.04 (d, J = 6.4 Hz, 2H), 2.10-2.12 (m, 1H), 2.06 (s, 3H), 1.94-2.02 (m, 1H), 1.22 (d, J = 6.4 Hz, 3H); ¹³CNMR (75MHz, Me₂CO- d_6) δ 203.6, 170.1, 169.4, 160.4, 157.9, 136.1, 122.6, 110.7, 102.4, 72.3, 71.4, 52.4, 43.8, 40.5, 21.2, 21.0; IR (KBr) 3343, 2933, 1732, 1706, 1591, 1466, 1366, 1244, 1160, 1061, 955, 854 cm⁻¹; HRMS *m/z* calcd for $C_{16}H_{18}O_7 [M+H]^+$ 323.1131; Found 323.1134.

ha.

i.

E

.

4

Ĺ

.

Olis GlobalWorks Data Report

9/28/2006 4:41:20 PM

2-Subtract-Smooth

2-Subtract-Smooth E:\liang-06.9.28\Subtract(2-s).ols 9/28/2006 4:32:48 PM Data name: File name: Created: 120 100 80 millidegrees 60 40 20 0 -20 200 300 400 500 RSM MonoWavelength, nm

Instrument: RSM Collection mode: Scan Number of points: 160 RSM Mono = 500 to 190 nm (2400 lines/mm) Timing mode: Constant Time Integration Time: 0.2 sec. Reduction mode: Circular Dichroism Scan mode: Fixed slitwidth (manual Slit width = _____ mm) Total Elapsed Time = 2:58.6 (min:sec)

OH O OH ΗΟ Ο Ö

xestodecalactone B

M

11/2/2006 10:46:43 AM

Olis GlobalWorks Data Report

2-Subtract-Smooth-Smooth-Smooth

 Data name:
 2-Subtract-Smooth-Smooth

 File name:
 C:\Program Files\OLIS GlobalWorks\test data\liangqr-06.11.1\samp-11-11-11.ols

 Created:
 11/2/2006 10:25:32 AM

Instrument: RSM Collection mode: Scan Number of points: 210 RSM Mono = 400 to 190 nm (2400 lines/mm) Timing mode: Constant Time Integration Time: 0.2 sec. Reduction mode: Circular Dichroism Scan mode: Fixed slitwidth (manual Slit width = _____ mm) Total Elapsed Time = 3:11.7 (min:sec)

xestodecalactone c

	natural xestodecalactone B		synthetic xestodecalactone ${f B}$	
¹ H	δ	$J(\mathrm{Hz})$	δ	$J(\mathrm{Hz})$
2	6.27	d, 2.2	6.27	s
4	6.11	d, 2.2	6.11	s
8α	3.48	bdd, 2.6, 14.5	3.48	t, 14.8
8β	2.60	dd, 9.5, 14.4	2.59	dd, 8.8, 14.8
9	4.02	m	4.02	s
10α	1.73	ddd, 3.2, 6.9, 14.6	1.74	d, 4.4
10β	1.87	ddd, 4.0, 7.3, 14.6	1.86	d, 4.4
11	4.81	ddq, 4.3, 6.4, 6.4	4.81	d, 6.4
13α	3.53	d, 17.3	3.54	d, 14.8
13β	3.63	d, 17.3	3.63	d, 14.8
14	1.15	d, 6.4	1.15	d, 6.8
Ar-OH	~9.8		9.96	s
	~9.8		9.74	s
9 - OH	not detected		4.77	d, 4.8

Table 1: Comparison of the ¹HNMR data of the natural product xestodecalactone **B** from isolation with the synthetic compound (400 M, DMSO-*d*6)

	natural xestodecalactone C		synthetic xestodecalactone C	
¹ H	δ	J (Hz)	δ	J (Hz)
2	6.27	d, 2.1	6.27	d, 1.6
4	6.10	d, 2.1	6.09	s
8α	3.08	dd, 10.4, 15.1	3.08	dd, 10.4, 14.8
8β	2.81	bd, 15.1	2.81	d, 14.8
9	3.95	bt, 10.0	3.95	bs
10α	1.65	ddd, 9.8, 11.4, 14.5	1.64	dd, 11.2, 14.8
10β	1.83	bd, 14.5	1.83	d, 13.6
11	4.70	ddq, 2.5, 11.4, 6.2	4.72	dd, 5.6, 11.2
13α	3.48	d, 18.7	3.48	d, 18.8
13β	3.82	d, 19.0	3.82	d, 18.8
14	1.08	d, 6.2	1.08	d, 6.0
Ar-OH	9.98	S	9.91	s
	9.87	s	9.72	S
9-OH	4.83	d, 2.9	4.76	d, 4.0

 Table 2: Comparison of the ¹HNMR data of the natural product xestodecalactone C from isolation with the synthetic compound (400 M, DMSO-*d*6)

carbon	natural xesto-	synthetic xest-	natural xestod	synthetic xes-
	decalactone B	odecalactone B	ecalactone C	todecalactoneC
1	156.84	156.8	157.08	157.0
2	101.22	101.2	101.26	101.3
3	159.07	159.0	159.11	159.1
4	109.85	109.8	109.25	109.2
5	135.48	135.4	134.43	134.4
6	119.67	119.7	121.15	121.2
7	205.04	205.0	204.60	204.5
8	52.48	52.5	55.29	55.3
9	64.13	64.1	67.82	67.8
10	41.98	42.0	46.03	46.0
11	68.18	68.1	70.60	70.6
12	169.18	169.0	168.85	168.8
13	37.83	30.6	38.66	38.9
14	19.53	19.5	20.77	20.7

 Table 3: Comparison of the ¹³CNMR data of the natural products xestodecalactones B

 and C from isolation with the synthetic compounds (100 M, DMSO-d6)