Synthesis of (S,R,R,S,R,S) 4,6,8,10,16,18Hexamethyldocosane from Antitrogus parvulus via Diastereoselective Hydrogenations

Jianguang Zhou, Ye Zhu, and Kevin Burgess*
Texas A \& M University, Chemistry Department, P.O. Box 30012, College Station, Texas 77842, USA

Supporting Information

General procedures S1
Experimental procedures S2
Table S1 comparison of ${ }^{13} \mathrm{C}$ NMR of natural and synthetic $\mathbf{1}$ S10
Note on epimerization of $\mathbf{1 7}$ -S11
References S12
Copies of NMR spectra S13
MS spectrum of $\mathbf{1}$ (EI, 70 ev) S32

General procedures: NMR spectra were recorded on a Varian Unity-500 and VXR-300 spectrometer. Optical rotations were measured on Jasco DIP-360 digital polarimeter. Flash chromatography was performed using silica gel (230-600 mesh). Thin layer chromatography was performed using glass plates coated with silica gel 60 F254 (E. Merck, Darmstadt, Germany). Toluene and THF were distilled over Na/benzophenone. Other solvents and reagents were used as received. General catalytic hydrogenation conditions: the corresponding alkene was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M})$ and the Iridium catalyst (L-2) ($1 \mathrm{~mol} \%$ for small scale, $0.2 \mathrm{~mol} \%$ for gram scale reactions, unless otherwise stated) was then added. The resulting solution was degassed by three cycles of freeze-pump-thaw and then transferred to a Parr Bomb. The bomb was flushed with hydrogen for 1 min without stirring. The mixture was then stirred at 700 rpm at 50 atm . After 4 h , the bomb was vented and the solvent evaporated. The crude product was passed through a silica plug $(E t O A c / h e x a n e s=3: 7)$. The diastereomeric ratio of the crude material was then measured through chiral capillary GC analysis using β - or a γ-CD
column (carrier gas: helium; column pressure: 29.71 Psi; gas flow rate: $2.1 \mathrm{~mL} / \mathrm{min}$; gradient temperature: $5^{\circ} \mathrm{C} / \mathrm{min}$: $90^{\circ} \mathrm{C}$ hold time: $30 \mathrm{~min}, 200{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$). For compound 16, the MS (ESI) data was collected by addition of LiCl solution $(0.1 \mathrm{M}$ in MeOH$)$ to the sample solution.

Experimental Procedures

To a solution of alcohol $\mathbf{1 0}$ ($137 \mathrm{mg}, 0.332 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added $\mathrm{NMO}(47 \mathrm{mg}$, 0.40 mmol), $4 \AA \mathrm{MS}(1.5 \mathrm{~g})$ followed by TPAP (6.0 $\mathrm{mg}, 0.02 \mathrm{mmol})$. The reaction mixture was stirred for 30 min and then filtered through Celite, eluting with hexanes (25 mL). The filtrate was concentrated and the resulting residue was put on a high vacuum pump for 30 min ., the resulting residue was dissolved in toluene (5 mL) at $25^{\circ} \mathrm{C}$ without any further purification. To this solution was added the Wittig reagent 2-(triphenylphosphanylidene)propionic acid methyl ester ($347 \mathrm{mg}, 1.0$ mmol) in one portion. The reaction mixture was then put in an oil bath (preheated to 80 ${ }^{\circ} \mathrm{C}$) and stirred for 12 h . After being cooled to $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with hexanes (15 mL) and filtered through Celite, the filtrate was then concentrated. Purification of the residue by flash chromatography on silica gel, eluting with EtOAc/hexanes (5:95) gave alkene 11 as a colorless oil ($104 \mathrm{mg}, 65 \%$ over 2 steps). $[\alpha]^{23}{ }_{\mathrm{D}}+32.6\left(c 4.20, \mathrm{CHCl}_{3}\right)$; IR (neat) 3066, 2959, 2860, 1717, 1646, 1468, 1424, $1274,1108 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H})$, $6.52(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.07(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.92$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,148.7,135.6,134.0,129.5,127.5,125.5,69.6,51.7,45.1,40.4$, 33.1, 30.7, 27.8, 26.9, 19.9, 19.3, 16.4, 12.5. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$481.3138. Found 481.3140.

12

Hydrogenation of $\mathbf{1 1}(104 \mathrm{mg}, 0.216 \mathrm{mmol})$ was carried out according to the general procedure using L-2 ($1 \mathrm{~mol} \%, 3.6 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. NMR of the crude product showed 100% conversion. GC analysis of the crude material showed anti:syn ratio in the newly formed stereocenter to be 20.0:1.00 $\left(\mathrm{t}_{\mathrm{R}(\text { syn) })}=54.09 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { anti) }}=54.81 \mathrm{~min}\right)$. Without further purification, the reaction mixture was reduced to the more readily separable alcohol (DIBALH, THF, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$) and purification by column chromatography EtOAc/hexanes (2:98) gave alcohol 12 as a colorless oil ($78 \mathrm{mg}, 80 \%$; GC analysis showed anti:syn >120:1.0). $[\alpha]^{23}{ }_{\mathrm{D}}+14.6(c 2.22$, CHCl_{3}); IR (neat) 3386 (br), 2955, 2908, 2852, 1468, 1424, 1377, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 3.51-3.34(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~m}, 9 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,134.1,129.4,127.5,69.4,69.0,46.4$, 41.3, 41.2, 33.1, 27.1, 27.0, 26.8, 19.4, 19.3, 19.2, 16.8, 16.4. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 455.3345$. Found 455.3350.

13

To a solution of alcohol 12 ($777 \mathrm{mg}, 1.71$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ was added NMO ($220 \mathrm{mg}, 1.8 \mathrm{mmol}$), $4 \AA \mathrm{MS}(1.0 \mathrm{~g})$ followed by TPAP ($30 \mathrm{mg}, 0.08 \mathrm{mmol}$). The reaction mixture was stirred for 30 min and then filtered through Celite, eluting with hexanes (45 mL). The filtrate was concentrated and the resulting residue was put on a high vacuum pump for 30 min . Without any further purification, the resulting residue was dissolved in THF (5 mL) and cooled to $-78^{\circ} \mathrm{C}$. In a separate round bottom flask, ethyltriphenylphosphonium bromide ($1.26 \mathrm{~g}, 3.4 \mathrm{mmol}$) suspension in THF (10 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added dropwise KHMDS (0.5 M in toluene, $6.8 \mathrm{~mL}, 3.4 \mathrm{mmol}$). Stirring was continued for 1 h before the crude aldehyde solution was added via a cannula. After 1 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (10 mL) was added and the mixture was stirred and allowed to warm to $25^{\circ} \mathrm{C}$. The layers were then separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined
organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The resulting residue was filtrated through a plug of silica eluting with EtOAc/hexanes (10:90), the filtrate was concentrated to leave a slightly yellow residue. The resulting residue was then dissolved in $\mathrm{THF} / \mathrm{MeOH}(1 / 1,10 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 150 \mathrm{mg})$ was added. The atmosphere above the solution was removed under vacuum and then replaced with hydrogen. Stirring was continued for 7 h and the reaction mixture was filtered through Celite. The filtrate was concentrated, the residue was purified though column chromatography, eluting with EtOAc/hexanes (10:90) gave the two-carbon homologated product 13 ($607 \mathrm{mg}, 76 \%$ over three steps) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+9.76$ (c 1.20, CHCl_{3}); IR (neat) 2960, 2924, 2863, 1456, 1423, 1374, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 3.47(\mathrm{dd}, J=5.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}$, $J=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.07(\mathrm{~m}, 5 \mathrm{H}), 1.05(\mathrm{~s}$, $9 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.6,134.1,129.5,127.6,69.5,46.4,45.5,41.4,40.2,33.2,29.7,27.3,27.2,26.9,20.1$, 19.6, 19.5, 19.4, 19.3, 16.9, 14.4. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$ 467.3709. Found 467.3715.

14

To a solution of compound $\mathbf{1 3}$ ($192 \mathrm{mg}, 0.41 \mathrm{mmol}$) in THF (1 mL) was added dropwise a solution of TBAF (1 M in THF, $0.8 \mathrm{~mL}, 0.8 \mathrm{mmol}$) at $25{ }^{\circ} \mathrm{C}$. Stirring was continued for 1.5 h , then the reaction was diluted with EtOAc (5 mL) followed by $\mathrm{NH}_{4} \mathrm{Cl}$ (2 mL of a saturated, aqueous solution). The organic layer was separated and the aqueous layer was extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography, eluting with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexanes}$ (10:90) gave alcohol 14 (79 mg , 84%) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+23.51\left(c 1.20, \mathrm{CHCl}_{3}\right.$); IR (neat) 3359 (br), 2920, 2880, $2852,2825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.49(\mathrm{dd}, J=5.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, $J=6.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.01(\mathrm{~m}, 9 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.0,46.5,45.5,41.3,40.2$, 33.2, 29.7, 27.3, 27.1, 20.1, 19.6, 19.5, 19.4, 16.4, 14.4. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$229.2531. Found 229.2529.

To a solution of oxalyl chloride ($0.83 \mathrm{~mL}, 9.51 \mathrm{mmol}$) in

7 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ cooled to $-78{ }^{\circ} \mathrm{C}$ was added dropwise DMSO ($1.12 \mathrm{~mL}, 15.7 \mathrm{mmol}$). After 5 min , a $-78{ }^{\circ} \mathrm{C}$ solution of alcohol $6(1.67 \mathrm{~g}, 4.53 \mathrm{mmol})^{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL}, 2 \times 1 \mathrm{~mL}$ for rinsing) was rapidly added via cannula. After $5 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(3.2 \mathrm{~mL}, 22.7$ mmol) was introduced and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added followed by $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$. The layers were separated, the organic layer was washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and brine (3 mL). The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The resulting residue was carried out to the next step without any further purification. In a separate round bottom flask, ${ }^{\text {n }}$ propyltriphenylphosphonium bromide $(2.62 \mathrm{~g}, 6.8 \mathrm{mmol})$ suspension in THF (15 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added dropwise KHMDS (0.5 M in toluene, $13.5 \mathrm{~mL}, 6.75 \mathrm{mmol}$). Stirring was continued for 1 h before the crude aldehyde in THF solution ($1.5 \mathrm{~mL}, 2 \times 0.5$ mL for rinsing) was cannulated. After 1 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (20 mL) was added and the mixture was stirred and allowed to warm to $25^{\circ} \mathrm{C}$. The layers were then separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo Purification by flash column chromatography, eluting with EtOAc/hexanes (10:90) gave Z-alkene 7 (1.49 g , 83% over two steps) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+2.78$ (c 1.05, CHCl_{3}); IR (neat) 3074, 2961, 2860, 1461, 1389, $1108 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.38$ $(\mathrm{m}, 6 \mathrm{H}), 5.30(\mathrm{td}, J=7.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=9.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H})$, $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~m}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,135.5,134.1,130.1,129.4,127.5,69.4,41.2,33.6,29.1$, 26.8, 22.2, 20.8, 19.3, 16.6, 14.6. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$ 395.2770. Found 395.2770.

To a solution of silyl ether $\mathbf{8}(1.96 \mathrm{~g}, 4.95 \mathrm{mmol})$ in THF (25 mL) was added dropwise a solution of TBAF (1 M in THF, 6.4 $\mathrm{mL}, 6.4 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. Stirring was continued for 2 h and then the reaction was diluted with EtOAc (30 mL) followed by $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL}$ of a saturated, aqueous solution). The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography, eluting with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes (10:90) gave a colorless oil, NMR analysis showed considerable amount of silyl impurities. Without further attempts for the purification, this material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and used in the next step. To a separate flask charged with $\mathrm{PPh}_{3}(2.6 \mathrm{~g}$, $9.90 \mathrm{mmol})$, imidazole $(1.0 \mathrm{~g}, 14.6 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{I}_{2}(2.51 \mathrm{~g}$, 9.90 mmol) at $0{ }^{\circ} \mathrm{C}$. After 10 min the previous alcohol solution was transferred via cannula into this mixture and stirring was continued for additional 20 min . After concentration the residue was put on silica gel column and flushed with hexanes to give iodide 9 ($1.14 \mathrm{~g}, 86 \%$ over two steps) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+4.70\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) 2953, 2925, 2866, 1457, 1367, $1194 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.25$ (dd, $J=4.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=6.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~m}$, $11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.0,36.6,31.8,29.9,29.0,22.9,21.3,19.8,18.3$, 14.1. MS (GCMS/CI): calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+}$269.0. Found 269.1.

Sodium hydride (187 mg , 60% suspension in mineral oil, 4.67 mmol) in a round bottom flask under nitrogen atmosphere was washed with dry hexanes $(3 \times 0.5 \mathrm{~mL})$. Then THF (6 mL) was charged into this flask and the mixture was cooled to $0^{\circ} \mathrm{C}$. To this solution was added dropwise dimethyl (2-oxopropyl)-phosphonate $(776 \mathrm{mg}, 4.67 \mathrm{mmol})$. After $30 \mathrm{~min}, n-\mathrm{BuLi}(2.33 \mathrm{~mL}, 2.0 \mathrm{M}$ in cyclohexanes, 4.66 mmol) was introduced dropwise into this white suspension; this gave a yellow solution. After 30 min , iodide $9(1.14 \mathrm{~g}, 4.24 \mathrm{mmol})$ in THF (2 mL) was added dropwise via cannula. Stirring was continued for 1 h and then the reaction mixture was diluted with ether (10 mL) followed by $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL of a saturated, aqueous solution). The organic
layer was separated and the aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography, eluting with EtOAc/hexanes (1:1) gave phosphonate 3 $(1.02 \mathrm{~g}, 79 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}-0.61$ (c 1.31, CHCl_{3}); IR (neat) 2953, 2920, $2860,1714,1456,1392,1271,1180,1043 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 3.74$ (d, $\left.J_{(\mathrm{H}-\mathrm{P})}=11.1 \mathrm{~Hz}, 6 \mathrm{H}\right), 3.05\left(\mathrm{~d}, J_{(\mathrm{H}-\mathrm{P})}=22.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.47-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.11(\mathrm{~m}, 7 \mathrm{H}), 0.99-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.78(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.1,52.9\left(\mathrm{~d}, J_{(\mathrm{C}-\mathrm{P})}=6.8 \mathrm{~Hz}\right), 44.8,42.02,41.7\left(\mathrm{~d}, J_{(\mathrm{C}-\mathrm{P})}=1.4\right.$ $\mathrm{Hz}), 40.3,36.4,29.9,29.8,29.4,29.0,22.9,20.1,19.8,14.1$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 307.3859$. Found 307.3857.

15

To a solution of alcohol 14 ($60.7 \mathrm{mg}, \quad 0.266 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ was added NMO (46 mg, 0.392 mmol), $4 \AA \mathrm{MS}(300 \mathrm{mg})$ followed by TPAP ($5 \mathrm{mg}, 0.013 \mathrm{mmol}$). The reaction mixture was stirred for 30 min and then filtered through a short plug of silica, eluting with ether (5 mL). The filtrate was concentrated and gave a colorless oil. Without further purification, the resulting residue was dissolved in THF (1 mL). To a separate round bottom flask charged with activated $\mathrm{Ba}(\mathrm{OH})_{2}(85 \mathrm{mg}, 0.266 \mathrm{mmol})$ was added a solution of phosphonate 3 ($81 \mathrm{mg}, 0.266 \mathrm{mmol}$) in wet THF (2 mL , THF: $\mathrm{H}_{2} \mathrm{O} 40: 1$) at $25{ }^{\circ} \mathrm{C}$. After 10 min , the previous aldehyde solution was added dropwise into the white suspension via cannula. Stirring was continued for 5 min , and then the reaction mixture was concentrated in vacuo. Purification of the resulting residue by flash column chromatography on silica gel, eluting with EtOAc/hexanes (5:95) gave α, β-unsaturated ketone 15 ($92.5 \mathrm{mg}, 86 \%$ over two steps) as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}-19.8\left(c 1.01, \mathrm{CHCl}_{3}\right)$; IR (neat) 2959, 2927, 2970, 1694, 1676, 1631, 1464, $1379 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.67(\mathrm{dd}, J=7.8,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 2 \mathrm{H})$, $1.68-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.14(\mathrm{~m}, 12 \mathrm{H}), 1.09-0.92(\mathrm{~m}, 10 \mathrm{H}), 0.88-0.72(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.4,152.9,128.1,45.7,45.3,44.9,44.4,40.1,37.8,36.5$,
34.1, 31.0, 29.9, 29.8, 29.6, 29.1, 27.6, 27.2, 23.0, 20.1, 20.0 (two), 19.8, 19.6, 19.5, 19.3, 14.4, 14.1. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{LiO}[\mathrm{M}+\mathrm{Li}]^{+}$413.4335. Found 413.4339.

16

The enone 15 ($81.3 \mathrm{mg}, 0.20$ mmol) was dissolved in THF/MeOH (2 mL, v:v 1:1), palladium on carbon $(10 \%, 21 \mathrm{mg})$ was then added carefully. The atmosphere above the solution was removed under vacuum and the replaced with hydrogen. Stirring was continued for 4 h . After filtration through Celite and concentration of the filtrate, the residue was purified though column chromatography, eluting with EtOAc/hexanes (5:95) to give ketone $16(80.2 \mathrm{mg}, 98 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+11.6\left(c 2.20, \mathrm{CHCl}_{3}\right)$; IR (neat) 2963, 2910, 2875, 1714, 1469, $1383 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.47-2.27$ $(\mathrm{m}, 4 \mathrm{H}), 1.64-1.37(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.08-0.91(\mathrm{~m}, 8 \mathrm{H}), 0.88-0.74(\mathrm{~m}, 24 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.1,46.5,45.5,45.1,44.8,40.5,40.3,40.1,36.5,31.6$, 30.5, 29.9, 29.8, 29.7, 29.6, 29.1, 27.2 (two coincident signals), 23.0, 20.2, 20.1, 20.0, 19.6, 19.5, 19.4, 19.3, 14.4, 14.2. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{LiO}[\mathrm{M}+\mathrm{Li}]^{+}$ 415.6846. Found 415.6851.

1

To a solution of ketone $\mathbf{1 6}(68 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathrm{TsNHNH}_{2}(45 \mathrm{mg}, 0.241$ mmol) in dry DMF/sulfolane ($1 \mathrm{~mL}, 1 / 1$) was added p-toluenesulfonic acid monohydrate $(4.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ and the reaction mixture was heated to $100^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{3} \mathrm{CN}$ $(40 \mathrm{mg}, 0.63 \mathrm{mmol})$ was added and the reaction temperature was raised to $110{ }^{\circ} \mathrm{C}$ and
continued for 2 h . After cooling to $25^{\circ} \mathrm{C}$, water (2 mL) then hexanes (2 mL) were added to the reaction mixture with vigorous stirring. The organic layer was separated and the aqueous layer was extracted with hexanes $(3 \times 1 \mathrm{~mL})$. The organic layers were combined and washed with saturated NaHCO_{3} solution $(2 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration, the residue was purified through column chromatography, eluting with hexanes to give saturated hydrocarbon $1(59 \mathrm{mg}, 94 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+12.1(c$ $0.80, \mathrm{CHCl}_{3}$), natural material: $[\alpha]^{20}{ }_{\mathrm{D}}+10.7\left(c \quad 0.44, \mathrm{CHCl}_{3}\right)^{2} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.58-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.15(\mathrm{~m}, 17 \mathrm{H}), 1.09-0.95(\mathrm{~m}, 10 \mathrm{H})$, $0.91-0.84(\mathrm{~m}, 7 \mathrm{H}), 0.82-0.76(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.52,45.54$, 45.52, 45.20, 40.21, 37.87, 36.86, 36.55, 30.36, 29.98, 29.95, 29.95, 29.69, 29.17, 27.26, $27.26,27.06,26.94,23.07,20.29,20.29,20.08,19.64,19.58,19.55,19.53,14.39,14.19$. Full MS(EI, 70 ev) attached on page S32.

Table S1 comparison of ${ }^{13} \mathrm{C}$ NMR of natural and synthetic $\mathbf{1}$

atom number	natural $\mathbf{1}(\text { (c) })^{3}$	synthetic 1 (ठc)
C1	14.39	14.39
C2	20.08	20.08
C3	40.22	40.21
C4	29.71	29.69
C5	45.56	45.54
C6	27.29	27.26
C7	46.53	46.52
C8	27.29	27.26
C9	45.54	45.52
C10	30.00	29.98
C11	37.88	37.88
C12	26.94	26.94
C13	30.36	30.36
C14	27.07	27.06
C15	36.88	36.86
C16	29.98	29.95
C17	45.22	45.20
C18	29.98	29.95
C19	36.57	36.55
C20	29.17	29.17
C21	23.07	23.07
C22	14.18	14.19
Me-4,10	$19.65,19.59$	$19.64,19.58$
Me-6,8	$20.30,20.30$	$20.29,20.29$
Me-16,18		
		19.56

Our epimerization problem encountered during the synthesis of compound $\mathbf{3}$ was shown in the following reaction:

($d r>140: 1$)
17

(dr ~ 8:1)
18

References

1. The synthesis of ent-6 was described in: Zhou, J.; Burgess, K. Angew. Chem. Int. Ed. 2007, 46, 1129-1131.
2. Herber, C.; Breit, B. Angew. Chem. Int. Ed. 2005, 44, 5267-5269.
3. Chow, S.; Fletcher, M. T.; Lambert, L. K.; Gallagher, O. P.; Moore, C. J.; Cribb, B. W.; Allsopp, P. G.; Kitching, W. J. Org. Chem. 2005, 70, 1808-1827.

compound 11

compound 11

compound 12

compound 12

compound 13

compound 13

compound 14

compound 14

compound 7

compound 7

compound 9

compound 9

compound 3

compound 3

compound 15

compound 15

compound 16

compound 16

compound 1

compound 1

