Convenient Synthesis of Green
 Diisoindolodithienylpyrro-methene-dialkynyl Borane Dyes

Sébastien Goeb and Raymond Ziessel*
Laboratoire de Chimie Moléculaire, Centre National de la Recherche Scientifique (CNRS), Université Louis Pasteur; Ecole de chimie, Polymères, Matériaux de Strasbourg (ECPM), 25 rue Becquerel, 67087
Strasbourg, Cedex 02, France
ziessel@chimie.u-strasbg.fr

Supporting Information (8 pages)

Experimental Section

General Methods. The 200, $400\left({ }^{1} \mathrm{H}\right), 50,100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and $128 \mathrm{MHz}\left({ }^{11} \mathrm{~B}\right)$ NMR spectra were recorded at room temperature using perdeuterated solvents as internal standards: \%o(H) in ppm relative to residual protiated solvent; $\%_{o}(\mathrm{C})$ in ppm relative to the solvent. A fast-atom bombardment ZAB-HF-VB-analytical apparatus in positive mode was used with a mnitrobenzyl alcohol (m-NBA) as matrix. FT-IR spectra were recorded on the neat liquids or as thin films, prepared with a drop of dichloromethane, and evaporated to dryness on KBr pellets. Melting points were obtained on a capillary melting point apparatus in open-ended capillaries and are uncorrected. Chromatographic purification was conducted using 40-63 $\mu \mathrm{m}$ silica gel or aluminium oxide 90 standardized. Thin layer chromatography (TLC) was performed on silica gel or aluminium oxide plates coated with fluorescent indicator. All mixtures of solvents are given in v / v ratio. The experimental procedures for each reaction were tested several times to optimally find the best conditions.

Materials. THF was dried over Na-benzophenone prior to distillation. $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ were prepared and purified according to the literature procedures. All anhydrous reactions were carried out under dry argon by using Schlenk tube techniques.

General Procedure Following Experimental Conditions 1. A solution of the 5 and the ethynyl derivate in benzene and triethylamine was argon degassed for $30 \mathrm{~min} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was then added and the solution was stirred at $60^{\circ} \mathrm{C}$ for 6 h . The solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water, brine, and dried over absorbent cotton. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel.

4-(4-iodophenyl)-2-methylbut-3-yn-2-ol (3): to a solution of 1,4-diiodobenzene (2.00 g , $6.06 \mathrm{mmol})$ in THF (10 mL) and diisopropylamine (6 mL) was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(255 \mathrm{mg}$, $0.36 \mathrm{mmol})$ and $\mathrm{CuI}(72 \mathrm{mg}, 0.36 \mathrm{mmol})$. The solution was degassed with argon for 30 min . 2-methyl-3-butyn-2-ol ($510 \mathrm{mg}, 60.06 \mathrm{mmol}$) was then added dropwise and the solution was stirred overnight at room temperature. The solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water, brine, and dried over magnesium sulfate. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel, eluting with dichloromethane-petroleum ether ($\mathrm{v} / \mathrm{v} 70 / 30$) to dichloromethane to give $910 \mathrm{mg}(52 \%)$ of $\mathbf{3}$ as a white solid; mp: $87-88^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35\left(\mathrm{AB}, 4 \mathrm{H},{ }^{A B} J=8.5 \mathrm{~Hz}\right.$, $\left.v \delta_{\mathrm{AB}}=99.5 \mathrm{~Hz}\right), 2.66(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.3, 133.1, 122.2, 95.2, 94.1, 81.1, 65.5, 31.3.

1-ethynyl-4-iodobenzene (4): to a solution of $\mathbf{3}(900 \mathrm{mg}, 3.15 \mathrm{mmol})$ in THF (10 mL) was added potassium tert-butoxide ($390 \mathrm{mg}, 3.46 \mathrm{mmol}$). The solution was refluxed for 1 h and the solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water, brine, and dried over magnesium sulfate. The solvent was removed by rotary evaporation. The residue was purified by chromatography on alumina, eluting with dichloromethane-petroleum ether ($v / v 5 / 95$) $470 \mathrm{mg}(66 \%)$ of $\mathbf{4}$ as a white solid; $\mathrm{mp}: 87-88^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32\left(\mathrm{AB}, 4 \mathrm{H},{ }^{A B} J=8.5 \mathrm{~Hz}, v \delta_{\mathrm{AB}}=98.4 \mathrm{~Hz}\right), 3.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 137.3, 133.1, 121.5, 94.0, 82.1, 79.9.

Compound 5 : to a solution of $\mathbf{4}(199 \mathrm{mg}, 0.87 \mathrm{mmol})$ in anhydrous THF (4 mL) was added dropwise $\mathrm{EtMgBr}(0.8 \mathrm{~mL}, 0.80 \mathrm{mmol}, 1 \mathrm{M}$ in THF) at room temperature. The solution was
stirred at $50^{\circ} \mathrm{C}$ for 2 h . The mixture was then added at room temperature via a canula to a solution of BOD ($200 \mathrm{mg}, 0.36 \mathrm{mmol}$) in anhydrous THF (9 mL). The mixture was then stirred at $70{ }^{\circ} \mathrm{C}$ for 6 h . The solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water and dried over absorbent cotton. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel, eluting with dichloromethanepetroleum ether ($v / v 45 / 55$) to give $268 \mathrm{mg}(78 \%)$ of $\mathbf{5}$ as a green solid; $\mathrm{mp}: 243-244^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): $\delta 8.13\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J=3.5 \mathrm{~Hz}\right.$), $7.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.5\right.$ $\mathrm{Hz}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.28\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.12\left(\mathrm{AB}, 8 \mathrm{H},{ }^{A B} J=8.3 \mathrm{~Hz}, v \delta_{\mathrm{AB}}=268.1 \mathrm{~Hz}\right)$, $7.04\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}\right), 6.95\left(\mathrm{dt}, 2 \mathrm{H},{ }^{3} J=3.5 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}\right), 3.88(\mathrm{~s}, 6 \mathrm{H})$, $2.94\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz}\right), 1.37\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v\right.$ 50/50)): $\delta 158.2,150.7,143.0,136.9,133.3,133.1,132.3,130.4,128.6,127.3,125.8,124.6$, $120.4,119.7,112.8,102.7,97.6,92.6,55.5,23.7,15.9 ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(\mathrm{v} / \mathrm{v}$ 50/50)): -7.72 (s); IR (KBr, cm ${ }^{-1}$): 3058, 2964, 2931, 2832, 2181, 1626, 1596, 1556, 1486, 1437, 1386, 1230, 1197, 1112, 811; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 266$ (75000), 348 (23000), 377 (22000), 709 (84000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) 989.1 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, $957.1\left([\mathrm{M}-\mathrm{OMe}]^{+}, 20\right)$; Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{35} \mathrm{BI}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 57.10 ; \mathrm{H}$, 3.57 ; N, 2.83. Found: C, 56.85; H, 3.25; N, 2.65.

2-methyl-4-\{4-[2-(trimethylsilyl)ethynyl]phenyl\}but-3-yn-2-ol (6): to a solution of 1,4diiodobenzene ($2.00 \mathrm{~g}, 6.06 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ and diisopropylamine $(6 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(510 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{CuI}(144 \mathrm{mg}, 0.72 \mathrm{mmol})$. The solution was degassed with argon for 30 min . The trimethylsilylacetylene ($601 \mathrm{mg}, 6.06 \mathrm{mmol}$) was then added and, after 4 h , the 2-methyl-3-butyn-2-ol ($1.01 \mathrm{~g}, 12.12 \mathrm{mmol}$) too. The solution was stirred overnight at room temperature. The solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water, brine, and dried over magnesium sulfate. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel, eluting with dichloromethane-petroleum ether $(\mathrm{v} / \mathrm{v} 60 / 40)$ to dichloromethane to give $590 \mathrm{mg}(39 \%)$ of 6 as a white solid; mp: $109-110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36\left(\mathrm{AB}, 4 \mathrm{H},{ }^{A B} J=8.4\right.$ $\left.\mathrm{Hz}, v \delta_{\mathrm{AB}}=10.9 \mathrm{~Hz}\right), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $131.8,131.4,123.0,122.8,104.5,96.1,95.6,81.8,65.6,31.4,-0.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2981, $2961,2158,1497,1406,1369,120,1162,865,842,833 ; \mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak,
relative intensity) $257.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, $183.1\left([\mathrm{M}-\mathrm{TMS}]^{+}, 20\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{OSi}$: C, 74.95; H, 7.86. Found: C, 74.73; H, 7.64.

1-Ethynyl-4-(trimethylsilylethynyl)benzene (7): to a solution of $\mathbf{6}(580 \mathrm{mg}, 2.26 \mathrm{mmol}$) in anhydrous toluene (10 mL) was added sodium hydroxide ($100 \mathrm{mg}, 2.49 \mathrm{mmol}$). The solution was refluxed for 30 min at $130{ }^{\circ} \mathrm{C}$. The solvent was removed by rotary evaporation. The residue was treated with $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane. The organic extracts were washed with water, and then brine, and dried over magnesium sulfate. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel, eluting with dichloromethane-petroleum ether ($v / v 8 / 92$) to give 360 mg (80%) of [2-(4ethynylphenyl)ethynyl]trimethylsilane as a white solid; mp: $57-58^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.9$, $131.8,123.6,122.1,104.4,96.5,83.2,79.0,-0.1$.

Compound 8 : a solution of $5(80 \mathrm{mg}, 0.08 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\left(7 \mathrm{mg}, 9.71 \times 10^{-3} \mathrm{mmol}\right)$ and $\mathrm{CuI}\left(2 \mathrm{mg}, 9.71 \times 10^{-3} \mathrm{mmol}\right)$ in THF (14 mL) and $i-\mathrm{Pr}_{2} \mathrm{NH}(6 \mathrm{~mL})$ was argon degassed for 30 min . Ethynyltrimethylsilane ($24 \mathrm{mg}, 0.24 \mathrm{mmol}$) was then added dropwise and the solution was stirred for 6 h . The solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water, brine, and dried over absorbent cotton. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel, eluting with dichloromethane-petroleum ether (v / v 40/60) to give $33 \mathrm{mg}(94 \%)$ of Bod bisphenylbisbipymethyl as a green solid; to a solution of $7(103 \mathrm{mg}, 0.52 \mathrm{mmol})$ in anhydrous THF (3 mL) was added dropwise $\operatorname{EtMgBr}(0.4 \mathrm{~mL}, 0.44 \mathrm{mmol}, 1 \mathrm{M}$ in THF) at room temperature. The solution was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The mixture was then added at room temperature via a canula to a solution of $\mathbf{1}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in anhydrous THF (5 mL). The mixture was then stirred at $70{ }^{\circ} \mathrm{C}$ for 6 h . The solvent was removed by rotary evaporation. The residue was treated with water and extracted with dichloromethane. The organic extracts were washed with water and dried over absorbent cotton. The solvent was removed by rotary evaporation. The residue was purified by chromatography on silica gel, eluting with dichloromethane-petroleum ether ($v / v 10 / 90$) to dichloromethane-petroleum ether ($v / v 40 / 60$) to give $130 \mathrm{mg}(80 \%)$ of Bod bisphényITMS as a green solid; $\mathrm{mp}: 260-262^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): $\delta 8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J=3.5 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=\right.$ $8.5 \mathrm{~Hz}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.11\left(\mathrm{AB}, 8 \mathrm{H},{ }^{A B} J=8.5 \mathrm{~Hz}, v \delta_{\mathrm{AB}}=90.4 \mathrm{~Hz}\right), 6.98(\mathrm{~m}$,
$4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 2.96\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}\right), 1.39\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}\right), 0.22(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50$)): $\delta 158.1,150.7,143.0,133.2,132.3,132.0,131.9,131.4$, 130.4, 128.6, 127.3, 125.5, 124.7, 131.6, 120.3, 119.7, 112.9, 105.4, 102.7, 98.3, 95.2, 83.4, 79.1, 55.5, 23.7, 15.9, 0.2; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): -7.46 (s); IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3072,2964,2932,2834,2210,2155,1626,1597,1557,1488,1436,1387,1249,1200$, 1112, 862, 839, 811; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 283$ (91000), 300 (116000), 348 (21000), 386 (19000), 643 (sh, 22000), 708 (81000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) $929.1\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100), $855.2\left(\left[\mathrm{M}-\mathrm{Si}(\mathrm{Me})_{3}\right]^{+}, 25\right)$; Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{53} \mathrm{BN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}_{2}$: C, 73.68; H, 5.75; N, 3.01. Found: C, 73.44; H, 5.49; N, 2.75.

Compound 9 : prepared following exptl conditions 1 ; from 5 ($35 \mathrm{mg}, 0.04 \mathrm{mmol}$), 4^{\prime} -ethynyl-2, $2^{\prime}, 6^{\prime}, 2^{\prime}$ '-terpyridine ($20 \mathrm{mg}, 0.08 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(5 \mathrm{mg}, 4.25 \times 10^{-3} \mathrm{mmol}\right)$, benzene (8 mL) and $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$; chromatography on alumina, eluting with dichloromethanepetroleum ether ($v / v 60 / 40$) to give $42 \mathrm{mg}(95 \%)$ of 9 as a green solid; $\mathrm{mp}: 171^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}\left(\mathrm{v} / \mathrm{v} 50 / 50\right.$)): 8.66 (dt, $4 \mathrm{H},{ }^{3} J=4.0 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}$), 8.59 (d, $\left.4 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 8.56(\mathrm{~s}, 4 \mathrm{H}), 8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} \mathrm{~J}=3.5 \mathrm{~Hz}\right), 7.82\left(\mathrm{td}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} J=\right.$ $2.0 \mathrm{~Hz}), 7.74\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=9.0 \mathrm{~Hz}\right), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.23\left(\mathrm{AB}, 8 \mathrm{H},{ }^{A B} J=8.3\right.$ $\left.\mathrm{Hz}, v \delta_{\mathrm{AB}}=108.3 \mathrm{~Hz}\right), 7.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.03(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 2.99\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} J=\right.$ $7.4 \mathrm{~Hz}), 1.42\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): 158.3 , $155.9,155.5,150.7,149.2,143.1,136.6,133.4,133.3,132.4,131.7,131.4,130.4,128.7$, 127.4, 126.1, 124.8, 123.8, 123.1, 121.1, 121.0, 120.4, 119.7, 112.9, 102.7, 98.4, 96.7, 96.4, 93.9, 89.0, 55.5, 23.8, 16.0; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): -7.40 (s); UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 232$ (117000), 284 (104000), 297 (101000), 320 (124000), 335 (130000), 640 (sh, 22000), 709 (86000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) $1247.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; Anal. Calcd for $\mathrm{C}_{81} \mathrm{H}_{55} \mathrm{BN}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 78.00$; H, 4.44; N, 8.98. Found: C, 77.75; H, 4.23; N, 8.79.

Compound 10 : prepared following exptl conditions 1 ; from 5 ($50 \mathrm{mg}, 0.05 \mathrm{mmol}$), 5 -ethynyl-2, 2'-bipyridine ($20 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(7 \mathrm{mg}, 6.07 \times 10^{-3} \mathrm{mmol}\right)$, benzene $(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$; chromatography on silica gel, eluting with dichloromethane to dichloromethane-methyl alcohol ($v / v 99.5 / 0.5$) to give $37 \mathrm{mg}(72 \%)$ of $\mathbf{1 0}$ as a green solid; $\mathrm{mp}: 149^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): $8.74(\mathrm{~m}, 2 \mathrm{H}), 8.66(\mathrm{~m}, 2 \mathrm{H})$, $8.43(\mathrm{~m}, 4 \mathrm{H}), 8.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=3.5 \mathrm{~Hz}\right), 7.88\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=2.4 \mathrm{~Hz}\right), 7.81(\mathrm{td}, 2 \mathrm{H}$,
$\left.{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=2.2 \mathrm{~Hz}\right), 7.77\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.11-7.05$ $(\mathrm{m}, 6 \mathrm{H}), 7.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=3.9 \mathrm{~Hz}\right), 3.90(\mathrm{~s}, 6 \mathrm{H}), 2.97\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right), 1.41\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J=7.4\right.$ Hz), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): 158.3, 151.6, 150.8, 149.2, 143.1, 139.2, 136.9, 133.3, 132.4, 131.6, 131.1, 130.4, 128.7, 127.3, 125.9, 124.7, 123.9, 121.5, 121.1, $120.4,119.7,112.8,102.8,93.8,87.7,55.6,23.7,15.9 ;{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(\mathrm{v} / \mathrm{v}\right.$ 50/50)): -4.57 (s); IR (KBr, cm^{-1}): 3048, 2966, 2933, 2833, 2213, 2178, 1626, 1597, 1556, 1507, 1488, 1457, 1387, 1231, 1200, 1112, 836, 812; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ 266 (75000), 348 (23000), 377 (22000), 640 (sh, 21000), 709 (84000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) $1093.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 1061.1 ($\left.[\mathrm{M}-\mathrm{OMe}]^{+},<5\right)$; Anal. Calcd for $\mathrm{C}_{71} \mathrm{H}_{49} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $78.01 ; \mathrm{H}, 4.52 ; \mathrm{N}, 7.69$. Found: C, $77.62 ; \mathrm{H}, 4.25 ; \mathrm{N}, 7.40$.

Compound 11 : prepared following exptl conditions 1 ; from $5(30 \mathrm{mg}, 0.03 \mathrm{mmol})$, 6-ethynyl-5,5'-dimethyl-2,2'-bipyridine ($14 \mathrm{mg}, 0.07 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(4 \mathrm{mg}, 3.64 \times 10^{-3}\right.$ mmol), benzene (8 mL) and $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$; chromatography on silica gel, eluting with dichloromethane to dichloromethane-methyl alcohol ($v / v 99.8 / 0.2$) to give $33 \mathrm{mg}(94 \%)$ of $\mathbf{1 1}$ as a green solid; $\mathrm{mp}: 181^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(\mathrm{v} / \mathrm{v} 50 / 50)$): $8.47(\mathrm{~m}$, $2 \mathrm{H}), 8.39\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 8.26\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 8.23\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=3.5 \mathrm{~Hz}\right), 7.79(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J=9.0 \mathrm{~Hz}\right), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.64\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz}\right), 7.60\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.35(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.26\left(\mathrm{AB}, 8 \mathrm{H},{ }^{A B} J=8.0 \mathrm{~Hz}, v \delta_{\mathrm{AB}}=131.7 \mathrm{~Hz}\right), 7.10\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=9.0 \mathrm{~Hz}\right)$, $7.02\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=3.5 \mathrm{~Hz}\right), 3.92(\mathrm{~s}, 6 \mathrm{H}), 3.00\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}\right), 2.56(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H})$, $1.41\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): 158.3, 154.4, 153.3, $150.8,149.4,143.1,142.4,137.8,137.3,135.6,133.3,133.1,132.4,121.6,121.4,130.39$, 130.36, 128.6, 127.3, 125.9, 124.7, 121.2, 120.9, 120.4, 120.1, 119.8, 112.8, 102.8, 98.4, 92.8, 89.2, 55.6, 23.7, 19.5, 18.5, 15.9; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50$)): -8.01 (s); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3037, 3000, 2967, 2933, 2834, 2212, 2180, 1626, 1597, 1554, 1488, 1438, 1387, 1230, 1200, 1111, 829, 811; UV-Vis ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\lambda \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 231$ (65000), 246 (64000), 297 (91000), 342 (95000), 638 ($\mathrm{sh}, 19000$), 708 (81000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) $1149.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 1117.3\left([\mathrm{M}-\mathrm{OMe}]^{+}, 20\right)$; Anal. Calcd for $\mathrm{C}_{75} \mathrm{H}_{57} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 78.38; H, 5.00; N, 7.31. Found: C, 78.23; H, 4.62; N, 6.92.

Compound 12 : prepared following exptl conditions 1 ; from 5 ($30 \mathrm{mg}, 0.03 \mathrm{mmol}$), 4ethynylpyrene ($17 \mathrm{mg}, 0.07 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(4 \mathrm{mg}, 3.64 \times 10^{-3} \mathrm{mmol}\right)$, benzene $(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$; chromatography on silica gel, eluting with dichloromethane-petroleum ether
(v / v 15/85) to dichloromethane-petroleum ether ($v / v 50 / 50$) to give $35 \mathrm{mg}(97 \%)$ of $\mathbf{1 7}$ as a green solid; mp: $173^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): $8.63\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $7.8 \mathrm{~Hz}), 8.29-8.00(\mathrm{~m}, 19 \mathrm{H}), 7.78-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 8 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.05(\mathrm{q}, 4 \mathrm{H}$, $\left.{ }^{3} J=7.4 \mathrm{~Hz}\right), 1.47\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)\right): 158.3$, $150.8,143.1,133.3,132.4,132.0,131.7,131.5,131.4,131.3,131.1,130.5,129.7,128.7$, $128.4,128.2,127.4,126.3,125.8,125.7,125.6,125.4,124.8,124.7,124.60,124.58,122.1$, $120.4,119.8,118.1,102.8,98.5,95.5,93.5,90.0,55.6,23.8,16.0,{ }^{11} \mathrm{~B}$ NMR (128 MHz , $\left.\mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)\right):-3.24(\mathrm{~s}) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3041,2967,2933,2834,2204,2181$, 1626, 1595, 1557, 1512, 1488, 1435, 1386, 1230, 1198, 1110, 845, 811; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda$ $\mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 237$ (150000), 309 (115000), 376 (133000), 399 (135000), 640 (sh, 21000), 708 (83000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) $1185.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 1153.2$ ([M - OMe] $]^{+}, 20$); Anal. Calcd for $\mathrm{C}_{83} \mathrm{H}_{53} \mathrm{BN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 84.11; H, 4.51; N, 2.36. Found: C, 83.87; H, 4.27; N, 2.02.

Compound 13 : prepared following exptl conditions 1 ; from 5 ($30 \mathrm{mg}, 0.03 \mathrm{mmol}$), 4ethynylpyrene ($20 \mathrm{mg}, 0.07 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(4 \mathrm{mg}, 3.64 \times 10^{-3} \mathrm{mmol}\right)$, benzene $(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$; chromatography on silica gel, eluting with dichloromethane-petroleum ether ($v / v 15 / 85$) to dichloromethane-petroleum ether ($v / v 50 / 50$) to give $35 \mathrm{mg}(95 \%)$ of $\mathbf{1 8}$ as a yellow/green solid; $\mathrm{mp}:>350^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): 8.26-8.21 $(\mathrm{m}, 6 \mathrm{H}), 8.18\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=6.5 \mathrm{~Hz}\right), 8.13\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.5 \mathrm{~Hz}\right), 7.69(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz}\right), 7.67\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=3.0 \mathrm{~Hz}\right), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.57\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=8.0\right.$ $\mathrm{Hz}), 7.47\left(\mathrm{td}, 4 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.35\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.26\left(\mathrm{AB}, 8 \mathrm{H},{ }^{A B} J=8.5\right.$ $\left.\mathrm{Hz}, v \delta_{\mathrm{AB}}=126.1 \mathrm{~Hz}\right), 7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}\right), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.00\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $7.4 \mathrm{~Hz}), 1.43\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): 158.3 , $150.8,143.1,134.84,134.77,133.3,132.4,132.0,131.69,131.66,131.3,131.1,131.0,130.4$, $128.8,128.74,128.66,128.4,128.1,127.4,127.3,126.8,126.7,126.4,125.4,124.8,122.0$, $121.0,120.8,120.6,120.5,120.4,119.7,112.8,102.8,98.5,89.5,85.7,55.6,23.8,16.0 ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): -4.57 (s); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3049, 1963, 2926, 2829, 2179, 2203, 1627, 1595, 1552, 1488, 1436, 1387, 1230, 1110, 834, 809; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda$ $\mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 228$ (106000), 259 (118000), 280 (85000), 345 (68000), 445 (102000), 474 (122000), 640 (sh, 21000), 708 (84000); $\mathrm{FAB}^{+} \mathrm{m} / \mathrm{z}$ (nature of the peak, relative intensity) $1285.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 1253.2\left([\mathrm{M}-\mathrm{OMe}]^{+}, 10\right)$; Anal. Calcd for $\mathrm{C}_{91} \mathrm{H}_{57} \mathrm{BN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 85.03$; H, 4.47; N, 2.18. Found: C, 84.72; H, 4.13; N, 1.88 .

Compound 14 : prepared following exptl conditions 1 ; from $5(80 \mathrm{mg}, 0.08 \mathrm{mmol})$, 6-ethynyl-5,5'-dimethyl-2,2'-bipyridine ($20 \mathrm{mg}, 0.09 \mathrm{mmol}$), 4-ethynylpyrene ($19 \mathrm{mg}, 0.09$ $\mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(11 \mathrm{mg}, 9.71 \mathrm{x} 10^{-3} \mathrm{mmol}\right)$, benzene $(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$; chromatography on silica gel, eluting with dichloromethane-petroleum ether ($v / v 30 / 70$) to dichloromethane to give $40 \mathrm{mg}(43 \%)$ of 14 as a green solid; mp: $164{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)$): $8.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=9.0 \mathrm{~Hz}\right), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.37\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.0\right.$ $\mathrm{Hz}), 8.27\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=3.5 \mathrm{~Hz}\right), 8.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right), 8.17-7.97(\mathrm{~m}, 8 \mathrm{H}), 7.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $8.0 \mathrm{~Hz}), 7.60\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}\right), 7.43\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=\right.$ $8.4 \mathrm{~Hz}), 7.29\left(\mathrm{~d}, 2 \mathrm{H},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right), 7.17\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.12\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.05(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J=3.5 \mathrm{~Hz}\right), 6.99\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}\right), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.01\left(\mathrm{q}, 4 \mathrm{H},{ }^{3} J=7.4\right.$ $\mathrm{Hz}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.44\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}\right.$ $(v / v 50 / 50)): 158.1,154.2,153.2,150.7,149.3,143.0,142.4,137.8,137.3,135.7,133.2$, $133.1,132.3,132.0,131.6,131.5,131.4,131.3,131.21,131.15,130.4,129.6,128.6,128.4$, $128.2,127.4,127.3,126.2,125.9,125.7,125.6,125.3,124.73,124.65,124.54,124.51,122.1$, $121.2,120.9,120.3,120.1,119.8,118.0,112.9,110.8,102.8,102.6,98.5,98.4,95.4,92.8$, $90.1,89.2,55.5,23.8,19.5,18.5,16.0 ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CCl}_{4}(v / v 50 / 50)\right):-6.15$ (s); IR (KBr, cm^{-1}): 3038, 2966, 2932, 2830, 2210, 2182, 1625, 1596, 1556, 1488, 1437, 1386, 1230, 1198, 1111, 836, 811; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 237$ (97000), 296 (85000), 308 (95000), 344 (76000), 376 (76000), 398 (71000), 640 (sh, 20000), 708 (80000); FAB^{+} m / z (nature of the peak, relative intensity) $1167.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 1103.2\left([\mathrm{M}-2 \mathrm{OMe}]^{2+}\right.$, 15); Anal. Calcd for $\mathrm{C}_{79} \mathrm{H}_{55} \mathrm{BN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $81.29 ; \mathrm{H}, 4.75 ; \mathrm{N}, 4.80$. Found: C, $81.00 ; \mathrm{H}, 4.52 ; \mathrm{N}$, 4.61.

