Supporting Information

For Design of New, Chiral Phase Transfer Catalysts for Asymmetric Conjugate Additions of α-Substituted-α-cyanoacetates to Acetylenic Esters

Xisheng Wang, Masanori Kitamura, and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan

General Information:

Infrared (IR) spetra were recorded on a Shimadzu IRPrestige-21 spectrometer. ¹H and ¹³C NMR spectra were measured on a JEOL JNM-FX400 NMR instrument (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) at ambient temperature and calibrated using SiMe₄ ($\delta = 0$ ppm) and the centeral line of CDCl₃ triplet ($\delta = 77$ ppm) as internal references unless otherwise noted. The following abbreviations were used to express the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad. Chemical shifts are reported in ppm from the residual solvent as an internal standard. High performed liquid chromatography (HPLC) was performed on Shimadzu 10A instruments using a Daicel CHIRALPAK AD-H, OD-H or AS-H, 4.6 mm × 25 mm column. High-resolution mass spectra (HRMS) were performed on BRUKER micrOTOF focus–KR. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. All reactions were monitored by thin-layer chromatography carried out on

Merck precoated TLC plates (silica gel 60GF-254, 0.25 mm), visualization by using UV (254 nm), or dyes such as KMnO₄, PMA. The products were purified by flash column chromatography on silica gel 60 (Merck 1.09386.9025, 230~400 mesh). In experiments requiring dry solvents, ether and tetrahydrofuran (THF) were purchased from Kanto Chemical Co. Inc. as "dehydrated". Toluene was dried over sodium metal. Dichloromethane (CH₂Cl₂) was stored over 4 Å molecular sieves. Other simple chemicals were purchased and used as received.

Synthesis of Chiral Ammonium Salts:

The key intermediate (S)-7 was prepared according to literatures.¹

Synthesis of (*S*)-1i: A mixture of (*S*)-7i (751 mg, 0.52 mmol), morpholine (136 μ L, 1.56 mmol), and K₂CO₃ (360 mg, 2.6 mmol) in acetonitrile (10 mL) was heated to reflux and stirring was maintained for 10 h. After cooling to room temperature, the resulting mixture was filtrated through a celite pad to remove the inorganic salts and concentrated. The residue was purified by column chromatography on silica gel (MeOH/CH₂Cl₂ = 1:60-1:5 as eluant) to furnish (*S*)-1i (597 mg, 0.41 mmol, 79% yield). [α]²⁸_D -5.0° [c = 0.96, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 2H), 8.15 (s, 8H), 8.13 (d, J = 8.4 Hz, 2H), 7.97 (s, 4H), 7.91 (s, 4H), 7.75-7.71 (m, 4H), 7.58-7.49 (m, 4H), 5.31 (d, J = 13.6 Hz, 2H), 4.06 (d, J = 13.6 Hz, 2H), 3.93 (br, 2H), 3.52 (br, 2H),

3.14 (br, 2H), 3.04 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 141.2, 141.0, 140.6, 138.6, 138.3, 134.0, 132.6 (q, $J_{C-F} = 34$ Hz), 132.4 (q, $J_{C-F} = 34$ Hz), 131.8, 131.0, 129.4, 128.8, 128.7, 128.2, 127.8, 127.6, 127.5, 126.5, 123.1 (q, $J_{C-F} = 275$ Hz), 122.8, 122.1 (br), 60.5, 58.7, 57.6; IR (neat) 3057, 2876, 1620, 1589, 1366, 1277, 1171, 1126, 893, 845, 685 cm⁻¹; HRMS (ESI-TOF) calcd for C₇₀H₄₀F₂₄NNaO ([M+Na]⁺): 1366.2721, Found: 1366.2712.

Chiral Ammonium Salt (*S*)-**1b**: 74% yield; $[\alpha]_{D}^{31}$ +19.8° [c = 1.03, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (br, 2H), 8.15-7.92 (br, 2H), 8.10 (s, 2H), 8.09 (d, J = 5.2 Hz, 2H), 8.04 (s, 2H), 7.71 (t, J = 7.2 Hz, 2H), 7.48-7.38 (m, 4H), 4.81 (d, J = 13.6 Hz, 2H), 4.03 (d, J = 13.6 Hz, 2H), 3.33 (t, J = 12.8 Hz, 2H), 2.65 (t, J = 12.8 Hz, 2H), 1.09 (br, 4H), 0.87 (br, 2H), 0.63 (t, J = 7.2 Hz, 6H), 0.30 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 138.6, 136.6, 133.7, 132.4, 131.2, 130.4-129.8 (m), 128.8, 128.6, 128.3, 122.8 (q, J_{C-F} = 275 Hz), 122.7, 122.2-122.0 (m), 57.6, 57.4, 24.4, 18.9, 13.2; IR (neat) 2965, 2359, 1470, 1368, 1281, 1173, 1134, 750 cm⁻¹; HRMS (ESI-TOF) calcd for C₄₆H₃₈F₁₂NNa ([M+Na]⁺): 832.2807, Found: 832.2810.

Chiral Ammonium Salt (S)-1c: 62% yield; $[\alpha]_{D}^{32}$ -10.0° [c = 0.97, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.17 (m, 10H), 8.12 (d, J = 8.4 Hz, 2H), 8.03 (s, 2H), 7.98 (s, 2H), 7.92 (s, 4H), 7.77 (s, 2H), 7.73-7.69 (m, 2H), 7.47 (br, 4H), 5.16 (d, J = 14.0 Hz, 2H), 3.94 (d, J = 14.0 Hz, 2H), 3.47 (t, J = 13.2 Hz, 2H), 2.84 (t, J = 10.4 Hz, 2H), 1.15 (br, 2H), 0.99 (br, 2H), 0.82 (br, 2H), 0.60 (br, 2H), 0.53 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 141.6, 140.9, 138.7, 138.6, 134.0, 132.8 (q, $J_{C-F} = 34$ Hz), 132.4 (q, $J_{C-F} = 34$ Hz), 132.2, 131.2, 129.8, 128.9, 128.8, 128.7, 128.2, 128.1 (br), 127.8, 127.4 (br), 126.3, 123.4, 123.2 (q, $J_{C-F} = 273$ Hz), 122.1 (br), 58.0, 57.9, 25.0, 19.6, 13.6; IR (neat) 2963, 2878, 1470, 1368, 1279, 1173, 1132, 901, 845, 771 cm⁻¹;

HRMS (ESI-TOF) calcd for $C_{74}H_{50}F_{24}NNa$ ([M+Na]⁺): 1408.3555, Found: 1408.3546. **Chiral Ammonium Salt (S)-1d:** 91% yield; $[\alpha]_D^{34}$ +23.1° [c = 0.92, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.6 Hz, 2H), 8.03 (s, 2H), 7.68 (t, J = 7.6 Hz, 2H), 7.46-7.38 (m, 4H), 7.17 (br, 4H), 5.21 (d, J = 13.6 Hz, 2H), 3.77 (br, 2H), 3.64 (d, J = 13.6 Hz, 2H), 3.11 (br, 2H), 1.63-1.58 (m, 2H), 1.53 (br, 2H), 1.01 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3 (d, J_{C-F} = 253 Hz), 139.9 (dt, J_{C-F} = 253, 14 Hz), 138.2, 137.0, 134.7 (br), 133.5, 131.3, 130.8, 128.6, 128.0, 127.3, 123.3, 114.7 (br), 58.7, 57.7, 20.1, 20.0; IR (neat) 3053, 2943, 2911, 1614, 1585, 1528, 1449, 1362, 1242, 1045, 895, 752 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{39}H_{28}F_6NNa$ ([M+Na]⁺): 624.2120, Found: 624.2112.

Chiral Ammonium Salt (*S*)-1e: 66% yield; $[\alpha]_D^{34}$ +27.4° [c = 0.42, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 6.8 Hz, 2H), 8.03 (s, 2H), 7.67 (t, J = 6.8 Hz, 2H), 7.45-7.39 (m, 4H), 7.32-7.21 (m, 4H), 5.07 (d, J = 13.6 Hz, 2H), 3.93 (d, J = 13.6 Hz, 2H), 3.79 (br, 2H), 3.67 (br, 2H), 3.06 (br, 2H), 2.86 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1 (d, J_{C-F} = 255 Hz), 139.8 (dt, J_{C-F} = 255, 15 Hz), 138.3, 136.7, 134.7 (dd, J_{C-F} = 12, 7 Hz), 133.6, 131.4, 130.9, 128.6, 128.5, 127.9, 127.4, 122.9, 114.8 (d, J_{C-F} = 15 Hz), 60.5, 58.2, 57.6; IR (neat) 3053, 3007, 2878, 1614, 1526, 1447, 1362, 1242, 1047, 895, 752 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₈H₂₆F₆NNaO ([M+Na]⁺): 626.1913, Found: 626.1914.

Chiral Ammonium Salt (*S*)-**1f:** 84% yield; $[\alpha]_{D}^{33}$ +39.6° [c = 1.10, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 2H), 8.04 (d, J = 8.4 Hz, 2H), 7.68-7.64 (m, 2H), 7.50-7.18 (br, 4H), 7.45-7.40 (m, 4H), 7.21 (t, J = 7.6 Hz, 2H), 6.92 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 8.4 Hz, 2H), 4.99 (d, J = 13.6 Hz, 2H), 4.05 (d, J = 13.6 Hz, 2H), 3.87 (t, J = 8.8 Hz, 2H), 3.17-3.06 (m, 4H), 2.61 (t, J = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃)

δ 151.3 (d, $J_{C-F} = 255$ Hz), 148.4, 139.8 (dt, $J_{C-F} = 255$, 15 Hz), 138.3, 136.7, 134.8 (q, $J_{C-F} = 7$ Hz), 133.7, 131.6, 130.9, 129.2, 128.7, 128.5, 127.9, 127.4, 122.9, 121.7, 116.4, 114.9 (d, $J_{C-F} = 18$ Hz), 58.3, 58.0, 43.5; IR (neat) 3057, 2920, 1618, 1614, 1526, 1447, 1362, 1242, 1045, 920, 864, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₄₄H₃₁F₆N₂Na ([M+Na]⁺): 701.2386, Found: 701.2390.

Chiral Ammonium Salt (*S*)-1g: 81% yield; $[\alpha]_{D}^{29}$ +32.3° [c = 0.89, CHCl₃]; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (br, 2H), 8.09 (s, 2H), 8.08 (d, J = 10.0 Hz, 2H), 8.04 (s, 2H), 7.91 (br, 2H), 7.73-7.69 (m, 2H), 7.48 (s, 2H), 7.47 (s, 2H), 4.87 (d, J = 13.6 Hz, 2H), 4.16 (d, J = 13.6 Hz, 2H), 3.86 (br, 2H), 3.50 (br, 2H), 2.86 (br, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 138.4, 136.5, 133.7, 133.1-132.2 (m), 132.0, 131.2, 130.3 (br), 128.8, 128.2, 127.5, 124.2 (q, J_{C-F} = 275 Hz), 122.5, 122.3-122.2 (m), 60.5, 58.5, 57.6; IR (neat) 3057, 2876, 1468, 1373, 1323, 1279, 1177, 1130, 897, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₄₂H₂₈F₁₂NNaO ([M+Na]⁺): 790.1974, Found: 790.1978.

Chiral Ammonium Salt (*S*)-**1h**: 73% yield; $[\alpha]_{D}^{34}$ +21.8° [c = 0.43, CH₃OH]; ¹H NMR (400 MHz, CD₃OD) δ 8.34 (s, 2H), 8.21 (d, J = 8.4 Hz, 2H), 8.06 (s, 2H), 7.96 (s, 2H), 7.81 (s, 2H), 7.74-7.62 (m, 10H), 7.54-7.50 (m, 4H), 4.99 (d, J = 14.0 Hz, 2H), 3.93 (d, J = 14.0 Hz, 2H), 3.33 (br, 4H), 2.90 (br, 4H); ¹³C NMR (100 MHz, Cl₂CDCDCl₂) δ 151.7 (d, J_{C-F} = 255 Hz), 141.1, 140.9, 140.1, 140.0 (dt, J_{C-F} = 255, 15 Hz), 138.7, 138.6, 135.8-135.4 (m), 134.3, 132.1, 131.2, 129.2, 128.6, 128.5, 127.9, 125.8, 122.8, 112.2-111.8 (m), 61.0, 59.0, 58.1; IR (neat) 2957, 1616, 1528, 1400, 1346, 1244, 1045, 852, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₆₂H₃₆F₁₂NNaO ([M+Na]⁺): 1038.2600, Found: 1038.2571.

Synthesis of Substrates 3a-g:

Substrates **3a-g** were prepared from nitriles **8a-g** and di-*t*-butyl dicarbonate according to literatures.^{2, 3}

To a two-necked 200-mL round-bottomed flask equipped with magnetic stirrer were added diisopropylamine (6.60 mL, 47 mmol) and dry THF (40 mL). The solution was cooled to -78 °C (dry ice-methanol) and *n*-butyllithium (1.6 N in hexane, 29 mL, 46 mmol) was syringed in. The solution was stirred for 10 min at -78 °C and warmed to room temperature during 20 min. After cooling to -78 °C, a solution of nitrile **8** (20 mmol in 15 mL of dry THF) was syringed in during 10 min, and the mixture was allowed to stir for 0.5 h at -78 °C and 0.5 h while it warmed to room temperature. The anion solution was then cooled to -78 °C and a solution of di-*t*-butyl dicarbonate (4.82 mL in 10 mL dry THF, 21 mmol) was syringed in during 10 min and allowed to stir for 2 h at -78 °C. The reaction was quenched with 10 mL of saturated NH₄Cl. Ether (75 mL) and water (20 mL) were added, and the layers were separated. The organic layer was washed successively with HCl (10%, 30 mL × 3), water (30 mL × 3) and brine (30 mL), dried over Na₂SO₄. Evaporation and column chromatography on silica gel (ethyl acetate/hexane = 1:30-1:10 as eluant) afforded **3a-g**, all as colorless or pale yellow oils, with >95% yields.

2-Cyano-4-phenylbutyric Acid *tert*-**Butyl Ester** (**3a**): ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.20 (m, 5H), 3.35 (t, *J* = 7.6 Hz, 1H), 2.91-2.75 (m, 2H), 2.22 (dt, *J* = 7.6, 7.6 Hz, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 139.3, 128.7, 128.5, 126.7, 116.7, 84.1, 37.8, 32.7, 31.4, 27.8; IR (neat) 2980, 2936, 2249, 1740, 1371, 1278, 1260, 1152, 912, 839, 700 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₅H₁₉NNaO₂ ([M+Na]⁺): 268.1308, Found: 268.1307.

2-Cyanohexanoic Acid *tert*-**Butyl Ester** (**3b**): ¹H NMR (400 MHz, CDCl₃) δ 3.39 (t, *J* = 7.2 Hz, 1H), 1.91 (q, *J* = 7.2 Hz, 2H), 1.50 (s, 9H), 1.47-1.33 (m, 4H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 116.9, 83.7, 38.5, 29.5, 28.7, 27.7, 21.9, 13.6; IR (neat) 2963, 2936, 2874, 2249, 1740, 1456, 1369, 1277, 1258, 1153, 912, 839, 748 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₁H₁₉NNaO₂ ([M+Na]⁺): 220.1308, Found: 220.1310.

2-Cyanopentanoic Acid *tert*-**Butyl Ester** (**3c**): ¹H NMR (400 MHz, CDCl₃) δ 3.40 (t, *J* = 7.2 Hz, 1H), 1.89 (dt, *J* = 7.2, 7.2 Hz, 2H), 1.59-1.48 (m, 2H), 1.50 (s, 9H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 116.9, 83.8, 38.4, 31.8, 27.7, 20.0, 13.3; IR (neat) 2968, 2938, 2249, 1740, 1369, 1260, 1153, 842, 748 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₀H₁₇NNaO₂ ([M+Na]⁺): 206.1151, Found: 206.1152.

2-Cyanobutyric Acid *tert*-**Butyl Ester** (**3d**): ¹H NMR (400 MHz, CDCl₃) δ 3.63 (dd, *J* = 7.2, 6.4 Hz, 1H), 2.01-1.93 (m, 2H), 1.50 (s, 9H), 1.12 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 116.8, 83.8, 39.9, 27.7, 23.6, 11.1; IR (neat) 2978, 2939, 2249, 1740, 1371, 1279, 1153, 840, 735 cm⁻¹; HRMS (ESI-TOF) calcd for C₉H₁₅NNaO₂ ([M+Na]⁺): 192.0995, Found: 192.0987.

Cyanomethylacetic Acid *tert*-Butyl Ester (3e): reported compound.³

2-Cyano-3-methylbutyric Acid *tert*-**Butyl Ester (3f)**: ¹H NMR (400 MHz, CDCl₃) δ 3.30 (d, *J* = 5.6 Hz, 1H), 2.44-2.32 (m, 1H), 1.51 (s, 9H), 1.12 (d, *J* = 7.2 Hz, 3H), 1.10 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 115.7, 83.7, 46.3, 29.9, 27.8, 20.6, 18.7; IR (neat) 2972, 2936, 2249, 1738, 1468, 1371, 1283, 1260, 1155, 843, 748 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{10}H_{17}NNaO_2$ ([M+Na]⁺): 206.1152, Found: 206.1152.

2-Cyanohex-5-enoic Acid *tert*-**Butyl Ester** (**3g**): ¹H NMR (400 MHz, CDCl₃) δ 5.81-5.71 (m, 1H), 5.16-5.11 (m, 1H), 5.10-5.07 (m, 1H), 3.42(dd, J= 8.0, 6.8 Hz, 1H), 2.33-2.20 (m, 2H), 2.04-1.98 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 135.5, 117.0, 116.7, 83.9, 37.7, 30.6, 28.9, 27.7; IR (neat) 2980, 2938, 2249, 1738, 1643, 1369, 1279, 1258, 1152, 918, 839, 739 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₁H₁₇NNaO₂ ([M+Na]⁺): 218.1152, Found: 218.1153.

Synthesis of Substrate 3h:

A suspension of sodium *tert*-butoxide (461 mg, 4.8 mmol, 1.0 equiv) in dry THF (20 mL) was added cyanoacetic acid *tert*-butyl ester (1.02 g, 7.2 mmol, 1.5 equiv) dropwise at 0 °C under Ar. After stirring for 30 min at 0 °C, allyl bromide (406 μ L, 4.8 mmol, 1 equiv) was added dropwise at that temperature. The reaction mixture was then stirred for 3 h at 0 °C before being quenched by water (20 mL). The layers were separated and the aqueous layer was extracted with ether (15 mL × 2). The combined organic phase was washed with brine (30 mL), and then dried over Na₂SO₄. Evaporation and column chromatography on silica gel (ethyl acetate/hexane = 1:50 as eluant) afforded **3h** (360 mg, 41% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.77 (m, 1H),

5.29-5.22 (m, 2H), 3.47 (t, J = 6.8 Hz, 1H), 2.67-2.61 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 131.6, 119.7, 116.4, 84.1, 38.4, 33.9, 27.8; IR (neat) 2982, 2936, 2251, 1738, 1645, 1371, 1279, 1260, 1152, 926, 841, 741 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₂H₂₁NNaO₂ ([M+Na]⁺): 204.0995, Found: 234.1006.

Synthesis of Substrates 3i and 3j:

NC COOBu^t + R-Br
$$\xrightarrow{K_2CO_3, DMF}$$
 \xrightarrow{CN}
50 °C, 10 h $\xrightarrow{Si-k}$ $3i-k$

A stirred solution of **9i** (or **9j**, **9k**) (4.8 mmol), cyanoacetic acid *tert*-butyl ester (1.02 g, 7.2 mmol, 1.5 equiv), and K_2CO_3 (1.99 g, 14.4 mmol, 3.0 equiv) in DMF (8 mL) was heated to 50 °C for 10 h. The solution was cooled to room temperature and concentrated under reduced pressure. The resulting reaction mixture was suspended in diethyl ether (30 mL) and filtrated through a celite pad to remove inorganic salts. Evaporation and column chromatography on silica gel afforded **3i** (or **3j**, **3k**) (61% yield for **3i**, 76% yield for **3j**, 42% yield for **3k**) as colorless oils.

2-Cyano-5-methylhexanoic Acid *tert*-**Butyl Ester** (**3i**) (ethyl acetate/hexane = 1:60 as eluant) : ¹H NMR (400 MHz, CDCl₃) δ 3.38 (t, J = 6.8 Hz, 1H), 1.94-1.88 (m, 2H), 1.62-1.55 (m, 1H), 1.50 (s, 9H), 1.40-1.35 (m, 2H), 0.93 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 116.9, 83.8, 38.7, 35.6, 27.9, 27.7, 27.5, 22.3, 22.1; IR (neat) 2959, 2936, 2249, 1740, 1470, 1456, 1369, 1281, 1259, 1153, 841, 748 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₂H₂₁NNaO₂ ([M+Na]⁺): 234.1465, Found: 234.1470.

2-Cyano-4-(trimethylsilyl)butyric Acid *tert*-**Butyl Ester (3j)** (ethyl acetate/hexane = 1:150-1:100 as eluant): ¹H NMR (400 MHz, CDCl₃) δ 3.36 (t, J = 6.4 Hz, 1H), 1.91-1.84 (m, 2H), 1.50 (s, 9H), 0.72-0.59 (m, 2H), 0.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 117.0, 83.7, 41.6, 27.8, 25.3, 13.8, -2.0; IR (neat) 2980, 2955, 2899, 2247, 1740, 1371, 1250, 1153, 837, 750 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₂H₂₃NNaO₂Si ([M+Na]⁺): 264.1390, Found: 264.1382.

2-Cyano-4-(4-Bromophenyl)-butyric Acid *tert*-**Butyl Ester (3k)** (ethyl acetate/hexane = 1:50 as eluant): ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 3.34 (t, J = 7.2 Hz, 1H), 2.86-2.71 (m, 2H), 2.19 (q, J = 7.6 Hz, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 138.2, 131.8, 130.2, 120.5, 116.5, 84.2, 37.6, 32.0, 31.1, 27.7; IR (neat) 2980, 2933, 2868, 2249, 1738, 1489, 1456, 1369, 1275, 1258, 1148, 1072, 1011, 837, 737 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₅H₁₈BrNNaO₂ ([M+Na]⁺): 346.0413, Found: 346.0401.

General Procedure of Catalytic Enantioselective Conjugate Addition of Cyanoacetates to Acetylenic Esters under Phase Transfer Condition.

To a reaction vessel containing cyanoacetate **3** (0.3 mmol) and chiral ammonium salt (*S*)-**1i** (0.003 mmol, 1 mol %) were added toluene (6.0 mL) and propiolic acid *tert*-butyl ester (82 μ L, 0.6 mmol, 2 equiv) under Ar. After the reaction system was cooled to –40 °C, Cs₂CO₃ (118 mg, 0.36 mmol, 1.2 equiv) was added in a single portion. The reaction mixture was stirred vigorously at the same temperature for 6 h, quenched with saturated NH₄Cl solution (10 mL), extracted with diethyl ether (10 mL), dried over Na₂SO₄ and concentrated. The *E/Z* ratio was determined by ¹H NMR analysis of the crude sample. Purification of the residue by column chromatography on silica gel with hexane-ethyl

acetate as eluant afforded (E)-4 and (Z)-4, respectively. The product was identified by NMR spectroscopy. The enantiomeric excess of the product was determined by chiral HPLC using a chiral column.

(*E*)-4aa: $[\alpha]_{D}^{30}$ +9.3° [*c* = 1.04, CHCl₃ (81% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.17 (m, 5H), 6.87 (d, *J* = 16.0 Hz, 1H), 6.36 (d, *J* = 16.0 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.81-2.68 (m, 2H), 2.38 (dt, *J* = 13.6, 5.6 Hz, 1H), 2.14 (dt, *J* = 13.6, 5.6 Hz, 1H), 1.52 (s, 9H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 164.7, 140.3, 139.2, 128.6, 128.3, 126.6, 124.7, 116.4, 85.4, 61.0, 52.6, 39.0, 31.4, 27.7, 14.1; IR (neat) 2982, 2247, 1737, 1724, 1254, 1219, 1182, 1032, 837, 771, 700 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₀H₂₅NNaO₄ ([M+Na]⁺): 366.1676, Found: 366.1670. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 10.1 min (major) and 11.0 min (minor).

(*Z*)-4aa: $[\alpha]_{D}^{33}$ -24.9° [*c* = 0.92, CHCl₃ (70% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.19 (m, 5H), 6.13 (d, *J* = 11.6 Hz, 1H), 6.07 (d, *J* = 11.6 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.93-2.78 (m, 2H), 2.43-2.31 (m, 2H), 1.53 (s, 9H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 164.4, 139.6, 139.5, 128.7, 128.4, 126.6, 125.5, 117.2, 84.4, 61.1, 48.7, 41.2, 31.4, 27.8, 14.1; IR (neat) 2982, 2245, 1736, 1722, 1256, 1219, 1194, 1028, 840, 771, 700 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₀H₂₅NNaO₄ ([M+Na]⁺): 366.1676, Found: 366.1673. HPLC analysis: DAICEL Chiralpak OD-H, 2-propanol/hexane = 1:30, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 23.8 min (minor) and 26.6 min (major).

(*E*)-**4a**: $[\alpha]_{D}^{32}$ +8.7° [*c* = 1.05, CHCl₃ (94% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.18 (m, 5H), 6.77 (d, *J* = 16.0 Hz, 1H), 6.29 (d, *J* = 16.0 Hz, 1H), 2.84-2.67 (m, 2H), 2.37 (dt, *J* = 13.6, 5.2 Hz, 1H), 2.12 (dt, *J* = 13.6, 5.2 Hz, 1H), 1.52 (s, 9H), 1.50 (s, 9H); ¹³C

S-11

NMR (100 MHz, CDCl₃) δ 165.0, 164.1, 139.3, 139.2, 128.6, 128.4, 126.6, 126.5, 116.7, 85.3, 81.5, 52.6, 39.2, 31.5, 28.0, 27.7; IR (neat) 2980, 2934, 2247, 1740, 1719, 1456, 1369, 1254, 1150, 837, 700 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₂H₂₉NNaO₄ ([M+Na]⁺): 394.1989, Found: 394.2003. HPLC analysis: DAICEL Chiralpak AD-H + AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 39.6 min (major) and 41.4 min (minor).

(*Z*)-4a: $[\alpha]_{D}^{32}$ -29.7° [*c* = 1.01, CHCl₃ (84% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.19 (m, 5H), 6.05 (d, *J* = 12.0 Hz, 1H), 5.98 (d, *J* = 12.0 Hz, 1H), 2.93-2.78 (m, 2H), 2.42-2.30 (m, 2H), 1.53 (s, 9H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 163.7, 139.7, 138.4, 128.7, 128.4, 127.1, 126.5, 117.4, 84.2, 81.9, 48.4, 41.2, 31.4, 28.1, 27.8; IR (neat) 2980, 2934, 2245, 1724, 1705, 1456, 1371, 1261, 1153, 843, 700 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₂H₂₉NNaO₄ ([M+Na]⁺): 394.1989, Found: 394.1988. HPLC analysis: DAICEL Chiralpak OD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 19.5 min (major) and 21.9 min (minor).

(*E*)-**4b**: $[\alpha]_{D}^{31}$ +15.5° [*c* = 1.11, CHCl₃ (95% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, *J* = 16.0 Hz, 1H), 6.24 (d, *J* = 16.0 Hz, 1H), 2.07 (dt, *J* = 13.6, 4.4 Hz, 1H), 1.82 (dt, *J* = 13.6, 4.4 Hz, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.43-1.33 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 164.2, 139.7, 126.0, 116.9, 85.0, 81.4, 52.7, 37.3, 28.0, 27.7, 27.1, 22.2, 13.6; IR (neat) 2980, 2938, 2247, 1740, 1719, 1369, 1256, 1150, 980, 839 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₈H₂₉NNaO₄ ([M+Na]⁺): 346.1989, Found: 346.1994. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 11.9 min (minor) and 12.9 min (major). (*Z*)-**4b**: $[\alpha]_{D}^{33}$ -16.4° [*c* = 0.99, CHCl₃ (95% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, *J* = 11.6 Hz, 1H), 5.94 (d, *J* = 11.6 Hz, 1H), 2.12-2.00 (m, 2H), 1.51 (s, 9H), 1.50 (s, 9H), 1.46-1.34 (m, 4H), 0.94 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 163.8, 138.9, 126.8, 117.7, 83.8, 81.8, 48.3, 39.3, 28.1 27.7, 26.9, 22.4, 13.7; IR (neat) 2978, 2934, 2245, 1742, 1719, 1369, 1252, 1152, 841, 773 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₈H₂₉NNaO₄ ([M+Na]⁺): 346.1989, Found: 346.1987. HPLC analysis: DAICEL Chiralpak AS-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 12.0 min (minor) and 13.7 min (major).

(*E*)-4c: $[\alpha]_{D}^{30} + 28.3^{\circ} [c = 1.05, CHCl_{3} (94\% ee)]; {}^{1}H NMR (400 MHz, CDCl_{3}) \delta 6.74 (d, c)$ J = 16.0 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 2.06 (dt, J = 12.8, 5.2 Hz, 1H), 1.81 (dt, J = 12.8, 5.8 Hz, 1H), 1.81 (dt, {12.8} 12.8, 5.2 Hz, 1H), 1.58-1.41 (m, 2H), 1.51 (s, 9H), 1.50 (s, 9H), 0.98 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 164.2, 139.7, 126.0, 116.9, 85.0, 81.4, 52.6, 39.5, 28.0, 27.7, 18.5, 13.5; IR (neat) 2978, 2936, 2247, 1740, 1719, 1369, 1254, 1150, 840 cm⁻¹: HRMS (ESI-TOF) calcd for $C_{17}H_{27}NNaO_4$ ([M+Na]⁺): 332.1832, Found: 332.1829. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 12.9 min (minor) and 14.3 min (major). (Z)-4c: $[\alpha]_{D}^{32}$ -20.6° [c = 0.80, CHCl₃ (93% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, J = 11.6 Hz, 1H), 5.94 (d, J = 11.6 Hz, 1H), 2.10-1.98 (m, 2H), 1.67-1.46 (m, 2H), 1.51 (s, 9H), 1.50 (s, 9H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 163.8, 138.9, 126.8, 117.6, 83.8, 81.8, 48.4, 41.6, 28.1, 27.7, 18.4, 13.8; IR (neat) 2978, 2936, 2247, 1740, 1717, 1369, 1248, 1152, 839 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₇H₂₇NNaO₄ ([M+Na]⁺): 332.1832, Found: 332.1823. HPLC analysis: DAICEL Chiralpak AS-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 13.6 min (minor) and 15.2 min (major).

(*E*)-4d: $[\alpha]_{D}^{34}$ +27.7° [*c* = 1.01, CHCl₃ (95% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.73 (d, *J* = 16.0 Hz, 1H), 6.24 (d, *J* = 16.0 Hz, 1H), 2.14 (dt, *J* = 21.2, 7.6 Hz, 1H), 1.89 (dt, *J* =

S-13

21.2, 7.6 Hz, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.09 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 164.2, 139.5, 126.3, 116.7, 85.0, 81.4, 53.4, 31.2, 28.0, 27.7, 9.4; IR (neat) 2980, 2938, 2247, 1742, 1719, 1369, 1254, 1152, 850, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₆H₂₅NNaO₄ ([M+Na]⁺): 318.1676, Found: 318.1672. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, $\lambda = 220$ nm, retention time: 12.7 min (minor) and 16.4 min (major).

(*Z*)-4d: ¹H NMR (400 MHz, CDCl₃) δ 6.03 (d, *J* = 11.6 Hz, 1H), 5.93 (d, *J* = 11.6 Hz, 1H), 2.14 (q, *J* = 7.6 Hz, 2H), 1.51 (s, 9H), 1.50 (s, 9H), 1.15 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 163.8, 138.7, 127.0, 117.5, 83.9, 81.8, 49.0, 33.2, 28.1, 27.8, 9.4; IR (neat) 2978, 2936, 2245, 1742, 1717, 1369, 1248, 1150, 841, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₆H₂₅NNaO₄ ([M+Na]⁺): 318.1676, Found: 318.1670.

(*E*)-**4e**: $[\alpha]_{D}^{34}$ +31.8° [*c* = 1.05, CHCl₃ (93% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.77 (d, *J* = 15.6 Hz, 1H), 6.23 (d, *J* = 15.6 Hz, 1H), 1.71 (s, 3H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 164.2, 140.1, 125.7, 117.6, 85.0, 81.4, 46.7, 27.9, 27.6, 23.9; IR (neat) 2980, 2938, 2247, 1742, 1717, 1369, 1255, 1151, 839 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₅H₂₃NNaO₄ ([M+Na]⁺): 304.1520, Found: 304.1516. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:200, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 14.6 min (minor) and 27.5 min (major).

(*Z*)-4e: ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, *J* = 11.6 Hz, 1H), 5.98 (d, *J* = 11.6 Hz, 1H), 1.83 (s, 3H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 163.8, 139.7, 126.6, 118.6, 83.8, 81.8, 43.4, 28.1, 27.6, 26.1; IR (neat) 2980, 2936, 2247, 1742, 1717, 1369, 1254, 1153, 837 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₅H₂₃NNaO₄ ([M+Na]⁺): 304.1520, Found: 304.1516.

(*E*)-**4f**: $[\alpha]_{D}^{30}$ +36.6° [*c* = 1.02, CHCl₃ (96% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.72 (d, *J* = 16.0 Hz, 1H), 6.25 (d, *J* = 16.0 Hz, 1H), 2.43-2.33 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.01 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 164.1, 139.5, 126.7, 115.5, 84.9, 81.3, 59.1, 35.5, 28.0, 27.7, 18.3, 17.6; IR (neat) 2976, 2936, 2247, 1740, 1719, 1460, 1369, 1323, 1256, 1150, 982, 839, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₇H₂₇NNaO₄ ([M+Na]⁺): 332.1832, Found: 332.1825. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 9.9 min (minor) and 11.2 min (major).

(*Z*)-4f: ¹H NMR (400 MHz, CDCl₃) δ 6.04 (d, *J* = 11.6 Hz, 1H), 5.91 (d, *J* = 11.6 Hz, 1H), 2.39-2.29 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.15 (d, *J* = 6.8 Hz, 3H), 1.14 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 163.8, 137.7, 127.2, 116.7, 83.8, 81.8, 53.5, 37.5, 28.1, 27.8, 18.0; IR (neat) 2974, 2932, 2247, 1722, 1711, 1393, 1369, 1288, 1221, 1153, 845, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₇H₂₇NNaO₄ ([M+Na]⁺): 332.1832, Found: 332.1826.

(*E*)-**4g**: $[\alpha]_{D}^{32}$ +27.0° [*c* = 1.08, CHCl₃ (92% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, *J* = 16.0 Hz, 1H), 6.25 (d, *J* = 16.0 Hz, 1H), 5.82-5.72 (m, 1H), 5.10 (d, *J* = 17.6 Hz, 1H), 5.05 (d, *J* = 10.4 Hz, 1H), 2.27-2.14 (m, 3H), 1.95-1.89 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 164.1, 139.4, 135.5, 126.3, 116.6, 116.5, 85.2, 81.5, 52.3, 36.6, 29.2, 28.0, 27.7; IR (neat) 2980, 2936, 2247, 1742, 1719, 1645, 1369, 1323, 1256, 1150, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₈H₂₇NNaO₄ ([M+Na]⁺): 344.1832, Found: 344.1836. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 13.9 min (minor) and 15.5 min (major).

(Z)-4g: $[\alpha]_{D}^{33}$ -22.6° [c = 1.06, CHCl₃ (89% ee)]; ¹H NMR (400 MHz, CDCl₃) δ 6.04 (d,

J = 11.6 Hz, 1H), 5.95 (d, J = 11.6 Hz, 1H), 5.85-5.74 (m, 1H), 5.10 (d, J = 17.6 Hz, 1H), 5.05 (d, J = 10.4 Hz, 1H), 2.39-2.19 (m, 2H), 2.19-2.10 (m, 2H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 163.7, 138.5, 135.9, 127.0, 117.4, 116.3, 84.1, 81.9, 48.1, 38.6, 29.1, 28.1, 27.7; IR (neat) 2980, 2934, 2247, 1732, 1705, 1643, 1371, 1277, 1261, 1157, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₈H₂₇NNaO₄ ([M+Na]⁺): 344.1832, Found: 344.1828. HPLC analysis: DAICEL Chiralpak AS-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, $\lambda = 220$ nm, retention time: 15.2 min (minor) and 18.2 min (major).

(*E*)-**4h**: $[\alpha]_{D}^{33}$ +37.9° [*c* = 0.98, CHCl₃ (92% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, *J* = 15.6 Hz, 1H), 6.24 (d, *J* = 15.6 Hz, 1H), 5.82-5.71 (m, 1H), 5.30-5.26 (m, 2H), 2.80 (dd, *J* = 14.0, 8.0 Hz, 1H), 2.59 (dd, *J* = 14.0, 8.0 Hz, 1H), 1.50 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 164.1, 139.0, 129.6, 126.5, 121.6, 116.5, 85.2, 81.5, 52.4, 41.8, 28.0, 27.7; IR (neat) 2980, 2936, 2247, 1742, 1719, 1651, 1371, 1256, 1150, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₇H₂₅NNaO₄ ([M+Na]⁺): 330.1676, Found: 330.1677. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 10.1 min (minor) and 15.6 min (major).

(*Z*)-**4h**: $[\alpha]_{D}^{33}$ -19.3° [*c* = 0.68, CHCl₃ (81% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.03 (d, *J* = 11.6 Hz, 1H), 5.97 (d, *J* = 11.6 Hz, 1H), 5.92-5.82 (m, 1H), 5.30-5.25 (m, 2H), 2.88-2.77 (m, 2H), 1.51 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 163.8, 137.9, 130.4, 127.1, 121.2, 117.4, 84.1, 81.8, 47.7, 43.3, 28.1, 27.8; IR (neat) 2980, 2932, 2247, 1744, 1717, 1645, 1369, 1246, 1219, 1152, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₇H₂₅NNaO₄ ([M+Na]⁺): 330.1676, Found: 330.1672. HPLC analysis: DAICEL Chiralpak AS-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 15.1 min (minor) and 17.2 min (major). (*E*)-**4i**: $[\alpha]_{D}^{32}$ +27.3° [*c* = 1.06, CHCl₃ (95% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, *J* = 16.0 Hz, 1H), 6.24 (d, *J* = 16.0 Hz, 1H), 2.07 (dt, *J* = 12.8, 4.8 Hz, 1H), 1.82 (dt, *J* = 12.8, 4.8 Hz, 1H), 1.62-1.55 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.41-1.35 (m, 1H), 1.31-1.22 (m, 1H), 0.91 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 164.2, 139.7, 126.0, 116.9, 84.9, 81.4, 52.7, 35.7, 33.8, 28.0, 27.8, 27.7, 22.2, 22.1; IR (neat) 2978, 2961, 2936, 2247, 1740, 1719, 1653, 1369, 1256, 1150, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₉H₃₁NNaO₄ ([M+Na]⁺): 360.2145, Found: 360.2152. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 12.3 min (minor) and 13.7 min (major).

(*Z*)-**4i**: $[\alpha]_{D}^{32}$ -28.6° [*c* = 0.95, CHCl₃ (93% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, *J* = 11.6 Hz, 1H), 5.93 (d, *J* = 11.6 Hz, 1H), 2.13-2.01 (m, 2H), 1.67-1.54 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.48-1.34 (m, 2H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 163.8, 138.8, 126.8, 117.7, 83.8, 81.8, 48.3, 37.6, 33.6, 28.1, 27.9, 27.8, 22.4, 22.3; IR (neat) 2959, 2936, 2245, 1732, 1717, 1369, 1250, 1153, 772 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₉H₃₁NNaO₄ ([M+Na]⁺): 360.2145, Found: 360.2146. HPLC analysis: DAICEL Chiralpak AS-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 10.4 min (minor) and 12.1 min (major).

(*E*)-4j: $[\alpha]_{D}^{32}$ +17.8° [*c* = 1.11, CHCl₃ (95% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.73 (d, *J* = 16.0 Hz, 1H), 6.24 (d, *J* = 16.0 Hz, 1H), 2.07 (dt, *J* = 14.0, 4.0 Hz, 1H), 1.80 (dt, *J* = 14.0, 4.0 Hz, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 0.72 (dt, *J* = 14.0, 4.0 Hz, 1H), 0.55 (dt, *J* = 14.0, 4.0 Hz, 1H), 0.02 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 164.3, 139.6, 126.2, 116.9, 84.9, 81.4, 55.1, 33.5, 28.0, 27.7, 11.9, -2.1; IR (neat) 2980, 2955, 2247, 1740, 1719, 1647, 1369, 1323, 1252, 1150, 839, 771 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{19}H_{33}NNaO_4Si$ ([M+Na]⁺): 390.2071, Found: 390.2071. HPLC analysis: DAICEL Chiralpak OD-H + OD-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 22.9 min (major) and 24.0 min (minor).

(*Z*)-**4j**: $[\alpha]_{D}^{32}$ -20.7° [*c* = 0.91, CHCl₃ (93% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 6.02 (d, *J* = 11.6 Hz, 1H), 5.93 (d, *J* = 11.6 Hz, 1H), 2.14-2.01 (m, 2H), 1.50 (s, 18H), 0.80-0.65 (m, 2H), 0.03 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 163.8, 138.5, 126.9, 117.8, 83.7, 81.8, 50.2, 35.1, 28.1, 27.8, 11.7, -2.0; IR (neat) 2982, 2955, 2243, 1732, 1709, 1371, 1279, 1248, 1157, 842, 771 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₉H₃₃NNaO₄Si ([M+Na]⁺): 390.2071, Found: 390.2063. HPLC analysis: DAICEL Chiralpak AS-H, 2-propanol/hexane = 1:400, flow rate = 0.5 mL/min, λ = 220 nm, retention time: 11.0 min (minor) and 13.0 min (major).

(*E*)-**4k**: $[\alpha]_{D}^{27}$ +3.9° [*c* = 1.21, CHCl₃ (95% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.75 (d, *J* = 15.6 Hz, 1H), 6.28 (d, *J* = 15.6 Hz, 1H), 2.80-2.63 (m, 2H), 2.34 (dt, *J* = 12.8, 5.2 Hz, 1H), 2.09 (dt, *J* = 12.8, 5.2 Hz, 1H), 1.52 (s, 9H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 164.0, 139.0, 138.2, 131.7, 130.1, 126.6, 120.4, 116.5, 85.4, 81.5, 52.4, 38.8, 30.9, 28.0, 27.7; IR (neat) 2980, 2934, 2247, 1740, 1717, 1489, 1456, 1369, 1255, 1152, 837, 748 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₂H₂₈BrNNaO₄ ([M+Na]⁺): 472.1094 Found: 472.1092. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 1.0 mL/min, λ = 220 nm, retention time: 16.8 min (major) and 18.0 min (minor).

(*Z*)-**4k**: $[\alpha]_{D}^{28}$ -13.6° [*c* = 1.06, CHCl₃ (91% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.05 (d, *J* = 11.6 Hz, 1H), 5.96 (d, *J* = 11.6 Hz, 1H), 2.89-2.72 (m, 2H), 2.39-2.27 (m, 2H), 1.53 (s, 9H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 163.7, 138.7, 138.2, 131.7, 130.1, 127.2, 120.3, 117.3, 84.3, 82.0, 48.4, 40.8, 30.8, 28.1, 27.8; IR (neat) 2980, 2932, 2245, 1740, 1717, 1489, 1456, 1369, 1254, 1150, 839, 748 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{22}H_{28}BrNNaO_4$ ([M+Na]⁺): 472.1094 Found: 472.1101. HPLC analysis: DAICEL Chiralpak OD-H, 2-propanol/hexane = 1:100, flow rate = 1.0 mL/min, λ = 220 nm, retention time: 9.1 min (major) and 11.1 min (minor).

(*E*)-**4l**: $[\alpha]_{D}^{27}$ +1.0° [*c* = 1.10, CHCl₃ (18% *ee*)]; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.39 (m, 5H), 7.20 (d, *J* = 15.6 Hz, 1H), 6.28 (d, *J* = 15.6 Hz, 1H), 1.49 (s, 9H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 164.2, 139.5, 134.2, 129.3, 129.1, 126.1, 116.4, 85.6, 81.4, 56.2, 28.0, 27.5; IR (neat) 2980, 2936, 2249, 1742, 1717, 1651, 1450, 1369, 1251, 1146, 835, 756 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₀H₂₅NNaO₄ ([M+Na]⁺): 366.1676 Found: 366.1679. HPLC analysis: DAICEL Chiralpak AD-H, 2-propanol/hexane = 1:100, flow rate = 0.5 mL/min_x λ = 220 nm, retention time: 14.7 min (minor) and 16.4 min (major).

(Z)-4I: ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.2 Hz, 2H), 7.44-7.37 (m, 3H), 6.33 (d, J = 11.6 Hz, 1H), 6.16 (d, J = 11.6 Hz, 1H), 1.46 (s, 9H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 163.8, 139.9, 136.6, 129.0, 128.7, 127.7, 126.4, 116.8, 84.3, 81.8, 53.3, 28.0, 27.4; IR (neat) 2980, 2934, 2249, 1746, 1717, 1450, 1369, 1258, 1150, 822, 748 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₀H₂₅NNaO₄ ([M+Na]⁺): 366.1676 Found: 366.1675.

Catalytic Enantioselective Conjugate Addition of 2-Cyano-4-phenylbutyric acid *tert*-butyl ester (3a) to 2-Cyclohexenone under Phase Transfer Condition.

To a reaction vessel containing 2-cyano-4-phenylbutyric acid tert-butyl ester 3a (73.7

mg, 0.3 mmol) and chiral ammonium salt (S)-1i (4.4 mg, 0.003 mmol, 1 mol %) were added toluene (6.0 mL) and 2-cyclohexenone (58 µL, 0.6 mmol, 2 equiv) under Ar. After the reaction system was cooled to 0 °C, Cs₂CO₃ (49 mg, 0.15 mmol, 0.5 equiv) was added in a single portion. The reaction mixture was stirred vigorously at the same temperature for 2 h, quenched with saturated NH_4Cl solution (10 mL), extracted with diethyl ether (10 mL), dried over Na₂SO₄ and concentrated. Purification of the residue by column chromatography on silica gel with hexane-ethyl acetate (10:1-2:1) as eluant afforded 6 as a pale vellow oil. The products were identified by NMR spectroscopy. The *ee* and d. r. of the products were determined by chiral HPLC on chiral column. $\left[\alpha\right]_{D}^{33}$ $+8.6^{\circ}$ [c = 1.04, CHCl₃ (d. r. = 85/15, 91% ee (major)/4% ee (minor)]; ¹H NMR (400 MHz, CDCl₃) (mixture of isomers) δ7.32-7.16 (m, 5H), 2.91-2.81 (m, 1H), 2.63-2.01 (m, 10H), 1.85-1.60 (m, 2H), 1.57 (s, 4H, minor), 1.56 (s, 5H, major); ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 166.9 (minor), 166.7 (major), 139.7 (major), 139.6 (minor), 128.6, 128.2 (major), 128.1 (minor), 126.5, 117.8 (major), 117.7 (minor), 84.9 (major), 84.7 (minor), 55.3 (minor), 55.2 (major), 44.3 (major), 44.1 (minor), 43.9 (major), 42.7 (minor), 40.8 (minor), 40.7 (major), 37.4 (major), 36.8 (minor), 31.8 (major), 31.6 (minor), 27.8 (major), 27.5 (minor), 26.1, 24.2 (minor), 24.0 (major); IR (neat) 2976, 2936, 2241, 1732, 1717, 1454, 1369, 1252, 1152, 1030, 843, 770, 700 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₁H₂₇NNaO₃ ([M+Na]⁺): 364.1883, Found: 364.1871. HPLC analysis: DAICEL Chiralpak AD-H + AD-H, 2-propanol/hexane = 1:30, flow rate = 0.5 mL/min, $\lambda = 220$ nm, retention time: 57.3 min (major), 64.7 min (minor); 62.2 min (major), and 106.5 min (minor).

Determination of the Absolute Configuration of (*E*)-4e.

To a stirred solution of (*E*)-**4e** (93% *ee*) (80 mg, 0.28 mmol) in MeOH (3 mL) was added 10% Pd on carbon (17 mg) under Ar. The Ar was replaced by a stream of hydrogen, and then the mixture was stirred at 25 °C under 1 atm of hydrogen for 12 h. Insoluble materials were removed by filtration through a celite pad. The filtrate was concentrated under reduced pressure and then dissolved in CH₂Cl₂ (1 mL) and trifluoroacetic acid (2 mL). After stirring at 25 °C for 3 h, the reaction mixture was diluted with ether (10 mL) and water (10 mL) was added. The aqueous layer was extracted with ether (10 mL × 2) and the combined organic extracts were dried over Na₂SO₄. Ether and trifluoroacetic acid were evaporated under reduced pressure below 20 °C. To this crude mixture was added freshly prepared CH₂N₂ in ether until the color of the reaction mixture became yellow. Evaporation and column chromatography on silica gel afforded **5** (6.5 mg, 11% yield) as colorless oil. This product was found to be identical with the reported one by ¹H NMR and ¹³C NMR analysis. The absolute configuration of (*E*)-**4e** was found to be *S*: $[\alpha]_{D}^{29}$ -1.63° (*c* = 0.30, CHCl₃) [Lit³: $[\alpha]_{D}^{20}$ +1.7° (*c* = 5.09, CHCl₃) (82% *ee*, *R* enantiomer)].

X-ray Structure Determination

(*E*)-4j: The product was recrystallized by slow evaporation of ether. The single crystal was mounted on a MicroMeshTM (MiTeGen). Data of X-ray diffraction were collected

by Rigaku RAXIS-RAPID Imaging Plate two-dimensional area detector using graphite-monochromated CuK α radiation ($\lambda = 1.54187$ Å) to a maximum 20 value of 136.4 °. The structure was solved by direct methods⁴ and expanded using Fourier techniques⁵. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁶ on F² was based on 4007 observed reflections and 228 variable parameters. The absolute configuration was determined by reference to the Flack parameter⁷ 0.02(3). The crystallographic data were summarized in the following table.

(*E*)-4j

empirical formula	C ₁₉ H ₃₃ NO ₄ Si
formula weight	367.56
crystal system	Orthorhombic
space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> , Å	6.32501(11)
b, Å	15.6014(3)
<i>c</i> , Å	22.1928(4)
V, Å ³	2189.96(7)
Ζ	4
$D_{\text{calc}}, \text{g/cm}^3$	1.115
T, °C	-140
μ (CuK α), cm ⁻¹	11.135
no. of reflns meased	29093
no. of reflns obsd	4007

no. of reflns variable	228
R (All reflections)	0.0518
R_W (All reflections)	0.1438
goodness of fit	1.089
Flack Parameter (Friedel pairs = 1678)	0.02(3)

(*E*)-4k: The product was recrystallized from hot hexane. The single crystal was mounted on a MicroMeshTM (MiTeGen). Data of X-ray diffraction were collected by Rigaku RAXIS-RAPID Imaging Plate two-dimensional area detector using graphite-monochromated CuK α radiation ($\lambda = 1.54187$ Å) to a maximum 2 θ value of

136.4 °. The structure was solved by direct methods⁸ and expanded using Fourier techniques⁵. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁶ on F^2 was based on 8267 observed reflections and 506 variable parameters. The absolute configuration was determined by reference to the Flack parameter⁷ -0.02(2). The crystallographic data were summarized in the following table.

(<i>E</i>)-4k	
empirical formula	C ₂₂ H ₂₈ BrNO ₄
formula weight	450.37
crystal system	Orthorhombic
space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> , Å	11.9583(3)
b, Å	18.0650(3)
<i>c</i> , Å	21.9228(5)
V, Å ³	4735.88(18)
Ζ	8
$D_{\rm calc}, {\rm g/cm}^3$	1.263
T, ℃	-130
μ (CuK α), cm ⁻¹	25.676
no. of reflns meased	34419
no. of reflns obsd	8267
no. of reflns variable	506
R (All reflections)	0.0882

R_W (All reflections)	0.1804
goodness of fit	1.039
Flack Parameter (Friedel pairs = 3554)	-0.02(2)

ORTEP Diagram of (*E*)-4k

(Z)-4k: The product was recrystallized from CH_2Cl_2 /hexane. The single crystal was mounted on a MicroMeshTM (MiTeGen). Data of X-ray diffraction were collected by Rigaku RAXIS-RAPID Imaging Plate two-dimensional area detector using

graphite-monochromated CuK α radiation ($\lambda = 1.54187$ Å) to a maximum 20 value of 136.4 °. The structure was solved by direct methods⁸ and expanded using Fourier techniques⁵. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁶ on F² was based on 4010 observed reflections and 255 variable parameters. The absolute configuration was determined by reference to the Flack parameter⁷ 0.01(2). The crystallographic data were summarized in the following table.

(Z)-4k	
empirical formula	C ₂₂ H ₂₈ BrNO ₄
formula weight	450.37
crystal system	Orthorhombic
space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> , Å	5.8517(3)
<i>b</i> , Å	18.9534(6)
<i>c</i> , Å	20.9196(6)
V, Å ³	2320.17(14)
Ζ	4
D_{calc} , g/cm ³	1.289
T, ℃	-130
μ (CuK α), cm ⁻¹	26.205
no. of reflns meased	15477
no. of reflns obsd	4010
no. of reflns variable	255

R (All reflections)	0.0672
R_W (All reflections)	0.1652
goodness of fit	1.072
Flack Parameter (Friedel pairs = 1635)	0.01(2)

ORTEP Diagram of (Z)-4k

References:

(1) (a) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139. (b) Ooi,

T.; Uematsu, Y.; Maruoka, K. J. Org. Chem. 2003, 68, 4576. (c) Kitamura, M.; Shirakawa, S.; Maruoka, K. Angew. Chem. Int. Ed. 2005, 44, 1549.

- (2) Albarella, J. P. J. Org. Chem. 1977, 42, 2009.
- (3) Sawamura, M.; Hamashima, H.; Ito, Y. Tetrahedron 1994, 50, 4439.
- (4) <u>SIR2004</u>: Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. (2005)
- (5) <u>DIRDIF99</u>: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M.(1999). The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- (6) Least Squares function minimized: (SHELXL97)

 $\Sigma w (Fo^2 - Fc^2)^2$ where w = Least Squares weights.

- (7) Flack, H. D. Acta Cryst. 1983, A39, 876.
- (8) <u>SIR97</u>: Altomare, A.; Burla, M.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115-119.

Copies of ¹H and ¹³C NMR Spectra of Catalysts and Michael Addition Products:

¹H NMR: Chiral ammonium salt (*S*)-1b

¹³C NMR: Chiral ammonium salt (S)-1b

¹H NMR: Chiral ammonium salt (*S*)-1c

¹³C NMR: Chiral ammonium salt (*S*)-1c

¹H NMR: Chiral ammonium salt (*S*)-1d

¹³C NMR: Chiral ammonium salt (*S*)-1d

¹H NMR: Chiral ammonium salt (*S*)-1e

¹³C NMR: Chiral ammonium salt (*S*)-1e

¹H NMR: Chiral ammonium salt (*S*)-**1f**

¹³C NMR: Chiral ammonium salt (S)-1f

¹H NMR: Chiral ammonium salt (*S*)-1g

¹³C NMR: Chiral ammonium salt (S)-1g

¹H NMR: Chiral ammonium salt (*S*)-**1**h

¹³C NMR: Chiral ammonium salt (*S*)-1h

¹H NMR: Chiral ammonium salt (S)-1i

¹³C NMR: Chiral ammonium salt (S)-1i

¹H NMR: (*E*)-4aa

¹³C NMR: (*E*)-4aa

¹H NMR: (*Z*)-4aa

¹³C NMR: (Z)-4aa

¹H NMR: (*E*)-4a

¹³C NMR: (*E*)-4a

¹H NMR: (*Z*)-4a

¹³C NMR: (*Z*)-4a

¹H NMR: (*E*)-4b

¹³C NMR: (*E*)-4b

¹H NMR: (*Z*)-4b

¹³C NMR: (*Z*)-4b

¹H NMR: (*E*)-4c

¹³C NMR: (*E*)-4c

¹³C NMR: (*Z*)-4c

¹H NMR: (*E*)-4d

¹³C NMR: (*E*)-4d

¹H NMR: (*Z*)-4d

¹³C NMR: (*Z*)-4d

¹H NMR: (*E*)-4e

¹³C NMR: (*E*)-4e

¹H NMR: (*Z*)-4e

¹³C NMR: (*Z*)-4e

¹H NMR: (*E*)-4f

¹³C NMR: (*E*)-4f

¹H NMR: (*Z*)-4**f**

¹³C NMR: (*Z*)-4f

¹H NMR: (*E*)-4g

¹³C NMR: (*E*)-4g

¹H NMR: (*Z*)-4g

¹³C NMR: (*Z*)-4g

¹H NMR: (*E*)-4h

¹³C NMR: (*E*)-4h

¹H NMR: (*Z*)-4h

¹³C NMR: (*Z*)-4h

¹H NMR: (*E*)-4i

¹³C NMR: (*E*)-4i

¹H NMR: (*Z*)-4i

¹³C NMR: (*Z*)-4i

¹H NMR: (*E*)-4j

¹³C NMR: (*E*)-4j

¹³C NMR: (*Z*)-4j

¹H NMR: (*E*)-4k

¹³C NMR: (*E*)-4k

¹H NMR: (*Z*)-4k

¹³C NMR: (*Z*)-4k

¹H NMR: (*E*)-4l

¹³C NMR: (*E*)-4l

¹³C NMR: (*Z*)-4l

¹H NMR: Rac.-6 (mixture of isomers)

¹³C NMR: Rac.-6 (mixture of isomers)

¹³C NMR: (**5**)

