Supporting Information
 Cylindrical inclusions in a copolymer membrane

Qiyi Zhang and Yuqiang Ma

National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

Self-consistent field theory for polymer systems

The present system consists of AB diblock copolymers and A homopolymers. In the SCFT, ${ }^{1-3}$ the problem of many interacting chains is reduced to one of a single noninteracting polymer in external (mean) fields, created by the other chains. The fundamental quantity to be calculated in mean field studies is the polymer segment probability distribution function, $q(\mathbf{r}, s)$, representing the probability of finding segment s at position \mathbf{r}. The probability, $q(\mathbf{r}, s)$, satisfies the usual modified diffusion equation for the flexible polymer chains with the Gaussian statistics. For the copolymer amphiphile, it is

$$
\frac{\partial q_{a}(\mathbf{r}, s)}{\partial s}= \begin{cases}R_{g}^{2} \nabla^{2} q_{a}(\mathbf{r}, s)-w_{H}(\mathbf{r}) q_{a}(\mathbf{r}, s), & \text { if } \quad s<f \tag{1}\\ R_{g}^{2} \nabla^{2} q_{a}(\mathbf{r}, s)-w_{T}(\mathbf{r}) q_{a}(\mathbf{r}, s), & \text { if } \quad s>f\end{cases}
$$

with the initial condition $q_{a}(\mathbf{r}, 0)=1$. Because the two ends of the copolymer are distinct, a second distribution function $q_{a}^{+}(\mathbf{r}, s)$ is defined. It satisfies the same diffusion equation (1) with the right-hand side multiplied by -1 , and the initial condition, $q_{a}^{+}(\mathbf{r}, N)=1$.

The homopolymer only requires one end-segment distribution function, $q_{S}(\mathbf{r}, s)$, with the initial condition, $q_{S}(\mathbf{r}, 0)=1$. It satisfies

$$
\begin{equation*}
\frac{\partial q_{S}(\mathbf{r}, s)}{\partial s}=R_{g}^{2} \nabla^{2} q_{S}(\mathbf{r}, s)-w_{S}(\mathbf{r}) q_{S}(\mathbf{r}, s) \tag{2}
\end{equation*}
$$

The full partition function for a copolymer molecule acted upon by the mean field is

$$
\begin{equation*}
Q_{a}=\int \mathrm{d} \mathbf{r} q_{a}(\mathbf{r}, s) q_{a}^{+}(\mathbf{r}, s) \tag{3}
\end{equation*}
$$

and that for a homopolymer is

$$
\begin{equation*}
Q_{S}=\int \mathrm{d} \mathbf{r} q_{S}(\mathbf{r}, s) q_{S}(\mathbf{r}, N-s) \tag{4}
\end{equation*}
$$

In the grand-canonical ensemble, the segment concentrations are given by

$$
\begin{gather*}
\phi_{H}(\mathbf{r})=\exp \left(\frac{\mu}{k_{B} T}\right) \int_{0}^{f} \mathrm{~d} s q_{a}(\mathbf{r}, s) q_{a}^{+}(\mathbf{r}, s) \tag{5}\\
\phi_{T}(\mathbf{r})=\exp \left(\frac{\mu}{k_{B} T}\right) \int_{f}^{1} \mathrm{~d} s q_{a}(\mathbf{r}, s) q_{a}^{+}(\mathbf{r}, s) \tag{6}\\
\phi_{S}(\mathbf{r})=\int_{0}^{1} \mathrm{~d} s q_{S}(\mathbf{r}, s) q_{S}(\mathbf{r}, 1-s) \tag{7}
\end{gather*}
$$

Within the SCFT approximation, the free energy of the system is given by eq (3) in the paper. The field configurations corresponding to stationary points of \mathcal{F}, satisfy the following set of coupled equations:

$$
\begin{gather*}
w_{H}(\mathbf{r})=\chi N \phi_{T}(\mathbf{r})+\xi(\mathbf{r}) \tag{8}\\
w_{T}(\mathbf{r})=\chi N\left[\phi_{H}(\mathbf{r})+\phi_{S}(\mathbf{r})\right]+\xi(\mathbf{r}) \tag{9}\\
w_{S}(\mathbf{r})=\chi N \phi_{T}(\mathbf{r})+\xi(\mathbf{r}) \tag{10}\\
\phi_{0}(\mathbf{r})=\phi_{H}(\mathbf{r})+\phi_{T}(\mathbf{r})+\phi_{S}(\mathbf{r}) \tag{11}
\end{gather*}
$$

The above non-linear equations can be solved numerically by a real space combinatorial screening algorithm. ${ }^{4,5}$ The algorithm consists of defining a uniform grid with resolution $\triangle x=\triangle z=0.1 R_{g}$ within the simulation cell, generating the initial values of the potential fields randomly. Using a Crank-Nicholson scheme and an alternating-direction implicit (ADI) method, ${ }^{6}$ the diffusion equations are then integrated on the two-dimensional lattice with appropriate boundary conditions. Next, the eqs (5)-(7) are evaluated to obtain new expressions for the species volume fractions. The final step is to update the potential fields using eqs (8)-(10) by means of a linear mix of new and old solutions. These iterations are continued until incompressibility eq (11) is satisfied within acceptable tolerance of 10^{-4}.

Various contributions to free energy

The various contributions to F are given by ${ }^{7-9}$

$$
\begin{gather*}
\frac{N U}{\rho_{0} k_{B} T V}=\frac{1}{V} \int \mathrm{~d} \mathbf{r}\left\{\chi N \phi_{T}(\mathbf{r})\left[\phi_{H}(\mathbf{r})+\phi_{S}(\mathbf{r})\right]+H(\mathbf{r})\left[\phi_{H}(\mathbf{r})+\phi_{S}(\mathbf{r})-\phi_{T}(\mathbf{r})\right]\right\} \tag{12}\\
\frac{N S_{s}}{\rho_{0} k_{B} V}=\frac{1}{V} \int \mathrm{~d} \mathbf{r}\left[w_{S}(\mathbf{r}) \phi_{S}(\mathbf{r})\right]-\overline{\phi_{S}} \ln \left[\frac{V \overline{\phi_{S}}}{Q_{S}}-1\right] \tag{13}\\
\frac{N S_{a}}{\rho_{0} k_{B} V}=\frac{1}{V} \int \mathrm{~d} \mathbf{r}\left[w_{H}(\mathbf{r}) \phi_{H}(\mathbf{r})+w_{T}(\mathbf{r}) \phi_{T}(\mathbf{r})\right]-\overline{\phi_{a}} \ln \left[\frac{V \overline{\phi_{a}}}{Q_{a}}-1\right] \tag{14}\\
\frac{N \mu n_{a}}{\rho_{0} k_{B} T V}=\frac{N \mu \overline{\phi_{a}}}{\rho_{0} k_{B} T V} \tag{15}
\end{gather*}
$$

where the quantities denoted by an over-bar are the volume-averaged copolymer (amphiphile) and homopolymer (solvent) concentrations.

References

(1) Matsen, M. W.; Schick, M. Phy. Rev. Lett. 1994, 72, 2660.
(2) Schmid, F. J. Phys.: Condens. Matter 1998, 10, 8105.
(3) Matsen, M. W. J. Phys.: Condens. Matter 2002, 14, R21.
(4) Drolet, F.; Fredrickson, G. H. Phy. Rev. Lett. 1999, 83, 4317.
(5) Drolet, F.; Fredrickson, G. H. Macromolecules 2001, 34, 5317.
(6) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes; Cambridge University Press: Cambridge, England, 1989.
(7) Thompson, R. B.; Matsen, M. W. J. Chem. Phys. 2000, 112, 6863.
(8) Maniadis, P.; Thompson, R. B.; Rasmussen, K. \varnothing.; Lookman, T. Phys. Rev. E. 2004, 69, 031801.
(9) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436.

