Appendix A

Descriptors

This Appendix is based on an overview of the QSAR descriptors in MOE
(Molecular Operating Environment) by the Chemical Computing Group.
Please refer to http://www.chemcomp.com/journal/descr.htm for the orig-
inal source. The following list shows the sub-groups of the 2D descriptors:

e 2D Molecular Descriptors

Physical Properties (2Dpys)

Subdivided Surface Areas (2Dy,)

Atom Counts and Bond Counts (2D¢ounts)

Kier & Hall Connectivity and Kappa Shape Indices (2Dyy,)
Adjacency and Distance Matrix Descriptors (2Dq4;)
Pharmacophore Feature Descriptors (2Dppqpm)

Partial Charge Descriptors (2D pqrge)



Table A.1: List of QSAR descriptors in the Molecular Operating Environ-
ment (MOE). The descriptions are based on the Chemical Computing Group’s
webpage [1]

Code Type Used  Description

apol 2Dpnys Sum of the atomic polarizabilities (including implicit hy-
drogens) with polarizabilities taken from [2].

bpol 2Dpnys Sum of the absolute value of the difference between atomic
polarizabilities of all bonded atoms in the molecule (in-
cluding implicit hydrogens) with polarizabilities taken
from [2].

density 2Dpnys Molecular mass density: Weight divided by vdw_vol.

FCharge 2Dpnys \Y% Total charge of the molecule (sum of formal charges).

mr 2Dpnys Molecular refractivity (including implicit hydrogens).
This property is calculated from an 11 descriptor linear
model [3] with R?>=0.997, RMSE=0.168 on 1,947 small
molecules.

SMR 2Dpnys Molecular refractivity (including implicit hydrogens).
This property is an atomic contribution model [4] that as-
sumes the correct protonation state (washed structures).
The model was trained on 7000 structures and results
may vary from the mr descriptor.

AM1 _dipole 2Dpnys R The dipole moment calculated using the AM1 Hamiltonian
[5].

AM1_E 2Dpnys R The total energy calculated using the AM1 Hamiltonian
[5].

AM1 _Eele 2Dpnys R The electronic energy calculated using the AM1 Hamilto-
nian [5].

AM1_HF 2Dpnys R The heat of formation calculated using the AM1 Hamilto-
nian [5].

AM1_IP 2Dpnys R The ionization potatnial calculated using the AM1 Hamil-
tonian [5].

AM1_HOMO 2Dpnys R The energy of the Highest Unoccupied Molecular Orbital
calculated using the AM1 Hamiltonian [5].

AM1_LUMO 2Dpnys R The energy of the Lowest Unoccupied Molecular Orbital
calculated using the AM1 Hamiltonian [5].

MNDO_dipole 2Dpnys R The dipole moment calculated using MNDO Hamiltonian
[5].

MNDO_E 2Dpnys R The total energy calculated using the MNDO Hamiltonian
[5].

MNDO_Eele 2Dpnys R The electronic energy calculated using the MNDO Hamil-
tonian [5].

MNDO_HF 2Dpnys R The heat of formation calculated using the MNDO Hamil-
tonian [5].

MNDO_IP 2Dpnys R The ionization potatnial calculated using the MNDO
Hamiltonian [5].

MNDO_HOMO 2Dpnys R The energy of the Highest Unoccupied Molecular Orbital
calculated using the MNDO Hamiltonian [5].

MNDO_LUMO 2Dpnys R The energy of the Lowest Unoccupied Molecular Orbital
calculated using the MNDO Hamiltonian [5].

PM3_dipole 2Dpnys U The dipole moment calculated using PM3 Hamiltonian [5].

PM3_E 2Dpnys The total energy calculated using the PM3 Hamiltonian
[5].

PM3_Eele 2Dpnys The electronic energy calculated using the PM3 Hamilto-
nian [5].

PM3_HF 2Dpnys The heat of formation calculated using the PM3 Hamilto-
nian [5].

PM3_IP 2Dpnys The ionization potatnial calculated using the PM3 Hamil-
tonian [5].

PM3_HOMO 2Dpnys The energy of the Highest Unoccupied Molecular Orbital

calculated using the PM3 Hamiltonian [5].
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The energy of the Lowest Unoccupied Molecular Orbital
calculated using the PM3 Hamiltonian [5].

Total Polar Surface Area calculated using group contribu-
tions to approximate the polar surface area from connec-
tion table information only [6].

Molecular weight (including implicit hydrogens) with
atomic weights taken from [2].

Log of the aqueous solubility calculated from an atom con-
tributiontilear atom type model [7].

Log of the octanol/water partition coefficient (including
implicit hydrogens). This property is calculated from a
linear atom type model [8] with R2=0.931, RMSE=0.393
on 1,847 molecules.

Log of the octanol/water partition coefficient (including
implicit hydrogens). This property is an atomic contribu-
tion model [4] that calculates logP from the given struc-
ture; l.e., the correct protonation state (washed struc-
tures). Results may vary from the logP(o/w) descriptor.
The training set for SlogP was 7000 structures.

van der Waals volume calculated using a connection table
approximation.

Area of van der Waals surface calculated using a connec-
tion table approximation.
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Number of molecules.

i= -0.4.
-0.4,-0.2].
-0.2,0].
0,0.1].
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in [0.26,0.35].
is in [0.35,0.39].

in [0.39,0.44].

in [0.44,0.485].

in [0.485,0.56].
i 0.56.

Number of aromatic atoms.

Number of atoms (including implicit hydrogens).

Number of heavy atoms(Z; > 1).
Atom information content (mean).

Atom information content (total).

Number of hydrogen atoms (including implicit hydrogens).

Number of boron atoms.

Number of carbon atoms.

Number of nitrogen atoms.

Number of oxygen atoms.

Number of fluorine atoms.

Number of phosphorus atoms.

Number of sulfur atoms.

Number of chlorine atoms.

Number of bromine atoms.

Number of iodine atoms.

Number of rotatable single bonds.

Fraction of rotatable single bonds.

Number of aromatic bonds.

Number of bonds (including implicit hydrogens).
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Number of double bonds. Aromatic bonds are not consid-
ered to be double bonds.

Number of bonds between heavy atoms.

Number of rotatable bonds.

Fraction of rotatable bonds.

Number of single bonds (including implicit hydrogens).
Aromatic bonds are not considered to be single bonds.
Number of triple bonds.

Vertex adjacency information (magnitude): 1 + logom
where m is the number of heavy-heavy bonds. If m is
zero, then zero is returned.

Vertex adjacency information (equality): —(1— f)logs (1—
f) — floga f where f = (n? — m)/n?, n is the number of
heavy atoms and m is the number of heavy-heavy bonds.
If f is not in the open interval (0,1), then 0 is returned.
Number of O and N atoms.

Number of OH and NH atoms.

1 if lip_violation < 2 otherwise 0.

Number of violations of Lipinski’s Rule of Five [9].
Number of rigid bonds [10].

Number of ring bonds [10].

Number of rotatable bonds [10].

1 if opr_violation < 2 otherwise 0.

Number of violations of Oprea’s lead-like test [10].
Atomic connectivity index (order 0) [11, 12].

Carbon connectivity index (order 0).

Atomic connectivity index (order 1) [11, 12].

Carbon connectivity index (order 1).

Atomic valence connectivity index (order 0) [11, 12].

Atomic valence connectivity index (order 1

)

(
Carbon valence connectivity index (order 0

( [11, 12).

(

)
).
)
Carbon valence connectivity index (order 1).
First kappa shape index [11].

Second kappa shape index [11].

Third kappa shape index [11].

First alpha modified shape index [11].
Second alpha modified shape index [11].
Third alpha modified shape index [11].

Kier molecular flexibility index [11].

Zagreb index.

Balaban’s connectivity topological index [13].

Largest value in the distance matrix [14].

Value of (diameter-radius) / diameter as defined in [14].
Radius is defined as the smallest of the r; [14].

The BCUT descriptors are calculated from the eigenvalues
of a modified adjancy matrix [15]. Smallest eigenvalue.
The BCUT descriptors are calculated from the eigenvalues
of a modified adjancy matrix [15]. 1/3-ile eigenvalue.
The BCUT descriptors are calculated from the eigenvalues
of a modified adjancy matrix [15]. 2/3-ile eigenvalue.
The BCUT descriptors are calculated from the eigenvalues
of a modified adjancy matrix [15]. Largest eigenvalue.
The BCUT descriptors using LogP contribution instead of
partial charge. Smallest eigenvalue.

The BCUT descriptors using LogP contribution instead of
partial charge. 1/3-ile eigenvalue.

The BCUT descriptors using LogP contribution instead of
partial charge. 2/3-ile eigenvalue.

The BCUT descriptors using LogP contribution instead of
partial charge. Largest eigenvalue.

The BCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. Smallest eigenvalue.
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The BCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. 1/3-ile eigenvalue.
The BCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. 2/3-ile eigenvalue.
The BCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. Largest eigenvalue.
The GCUT descriptors are calculated from the eigenvalues
of a modified graph distance adjancy matrix. Smallest
eigenvalue.

The GCUT descriptors are calculated from the eigenval-
ues of a modified graph distance adjancy matrix. 1/3-ile
eigenvalue.

The GCUT descriptors are calculated from the eigenval-
ues of a modified graph distance adjancy matrix. 2/3-ile
eigenvalue.

The GCUT descriptors are calculated from the eigenval-
ues of a modified graph distance adjancy matrix. Largest
eigenvalue.

The GCUT descriptors using LogP contribution instead
of partial charge. Smallest eigenvalue.

The GCUT descriptors using LogP contribution instead
of partial charge. 1/3-ile eigenvalue.

The GCUT descriptors using LogP contribution instead
of partial charge. 2/3-ile eigenvalue.

The GCUT descriptors using LogP contribution instead
of partial charge. Largest eigenvalue.

The GCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. Smallest eigenvalue.
The GCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. 1/3-ile eigenvalue.
The GCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. 2/3-ile eigenvalue.
The GCUT descriptors using atomic contribution to molar
refractivity instead of partial charge. Largest eigenvalue.
VdistEq is defined as the sum of logs m — logs pi /m where
p; is the number of distance matrix entries equal to i.
VDistMa is defined as the sum of logy m — D;;logs Dij/m
over all i and j.

Wiener path number [16, 17].

Wiener polarity number [16].

Number of hydrogen bond acceptor atoms (not counting
acidic atoms but counting atoms that are both hydrogen
bond donors and acceptors such as -OH).

Number of acidic atoms.

Number of basic atoms.

Number of hydrogen bond donor atoms (not counting ba-
sic atoms but counting atoms that are both hydrogen bond
donors and acceptors such as -OH).

Number of hydrophobic atoms.

Approximation to the sum of VDW surface areas of pure
hydrogen bond acceptors (not counting acidic atoms and
atoms that are both hydrogen bond donors and acceptors
such as -OH).

Approximation to the sum of VDW surface areas of acidic
atoms.

Approximation to the sum of VDW surface areas of basic
atoms.

Approximation to the sum of VDW surface areas of pure
hydrogen bond donors (not counting basic atoms and
atoms that are both hydrogen bond donors and acceptors

such as -OH).
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3D Epot
3D Epot
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Approximation to the sum of VDW surface areas of hy-

drophobic atoms.

Approximation to the sum of VDW surface areas of atoms

typed as "other”.

Approximation to the sum of VDW surface areas of polar

(both hydrogen bond donors and acceptors) atoms (such

as -OH).

Total positive partial charge (Suffix: Q for external

charges, PEOE for calculated charges).

Total negative partial charge (Suffix: Q for external

charges, PEOE for calculated charges).

Relative positive partial charge (Suffix: Q for external

charges, PEOE for calculated charges).

Relative negative partial charge (Suffix: Q for external

charges, PEOE for calculated charges).

Total positive van der Waals surface area (Suffix: Q for

external charges, PEOE for calculated charges).

Total negative van der Waals surface area (Suffix: Q for

external charges, PEOE for calculated charges).

Total positive polar van der Waals surface area (Suffix: Q

for external charges, PEOE for calculated charges).

Total negative polar van der Waals surface area (Suffix: Q

for external charges, PEOE for calculated charges).

Total hydrophobic van der Waals surface area (Suffix: Q

for external charges, PEOE for calculated charges).

Total polar van der Waals surface area (Suffix: Q for ex-

ternal charges, PEOE for calculated charges).

Fractional positive van der Waals surface area (Suffix: Q

for external charges, PEOE for calculated charges).

Fractional negative van der Waals surface area (Suffix: Q

for external charges, PEOE for calculated charges).

Fractional positive polar van der Waals surface area (Suf-

fix: Q for external charges, PEOE for calculated charges).

Fractional negative polar van der Waals surface area (Suf-

fix: Q for external charges, PEOE for calculated charges).

Fractional hydrophobic van der Waals surface area (Suffix:

Q for external charges, PEOE for calculated charges).

Fractional polar van der Waals surface area (Suffix: Q for

external charges, PEOE for calculated charges).

Sum of v; where ¢; is greater than 0.3.

Sum of v; where g; is in the range [0.25,0.30].

Sum of v; where g; is in the range [0.20,0.25].

Sum of v; where g; is in the range [0.15,0.20].

Sum of v; where g; is in the range [0.10,0.15].

Sum of v; where g; is in the range [0.05,0.10].

Sum of v; where g; is in the range [0.00,0.05].

Sum of v; where g; is in the range [-0.05,0.00].

Sum of v; where g; is in the range [-0.10,-0.05].

Sum of v; where g; is in the range [-0.15,-0.10].

Sum of v; where g; is in the range [-0.20,-0.15].
]
]

Sum of v; where ¢; is in the range [-0.25,-0.20].
Sum of v; where g; is in the range [-0.30,-0.25].
Sum of v; where g; is less than -0.30.

Value of the potential energy.

Angle bend potential energy.

Electrostatic component of the potential energy.
Value of the potential energy with all non-bonded terms
disabled.

Out-of-plane potential energy.

Solvation energy.

Bond stretch-bend cross-term potential energy.
Bond stretch potential energy.
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Local strain energy: the current energy minus the value
of the energy at a near local minimum.

Torsion potential energy.

van der Waals component of the potential energy.
Electrostatic interaction energy (x3d).

Non-bonded interaction energy (x3d).

Solvation free energy difference (x3d).

van der Waals interaction energy (x3d).

Water accessible surface area calculated using a radius of
1.4 A for the water molecule.

Mass density: molecular weight divided by van der Waals
volume.

Globularity, or inverse condition number of the covariance
matrix of atomic coordinates.

Principal moment of inertia.

x component of the principal moment of inertia (x3d).

y component of the principal moment of inertia (x3d).

z component of the principal moment of inertia (x3d).
Radius of gyration.

Standard dimension 1: the square root of the largest eigen-
value of the covariance matrix of the atomic coordinates.
Standard dimension 2: the square root of the second
largest eigenvalue of the covariance matrix of the atomic
coordinates.

Standard dimension 3: the square root of the third largest
eigenvalue of the covariance matrix of the atomic coordi-
nates.

van der Waals volume calculated using a grid approxima-
tion (spacing 0.75 A).

van der Waals surface area.

Water accessible surface area of all atoms with positive
partial charge.

Water accessible surface area of all atoms with negative
partial charge.

Water accessible surface area of all hydrophobic atoms.
Water accessible surface area of all polar atoms.
Absolute value of the difference between ASA+4 and ASA-.
Positive charge weighted surface area [18].

Negative charge weighted surface area [18].

Absolute value of the difference between CASA+ and
CASA- [18].

Dipole moment calculated from the partial charges of the
molecule.

The x component of the dipole moment (x3D).

The y component of the dipole moment (x3D).

The z component of the dipole moment (x3D).
Fractional ASA+ calculated as ASA+ / ASA.

Fractional ASA- calculated as ASA- / ASA.

Fractional CASA+ calculated as CASA+ / ASA.
Fractional CASA- calculated as CASA- / ASA.
Fractional ASA_H calculated as ASA_H / ASA.
Fractional ASA_P calculated as ASA_P / ASA.
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