Appendix A Descriptors

This Appendix is based on an overview of the QSAR descriptors in MOE (Molecular Operating Environment) by the Chemical Computing Group. Please refer to http://www.chemcomp.com/journal/descr.htm for the original source. The following list shows the sub-groups of the 2D descriptors:

• 2D Molecular Descriptors

- Physical Properties $(2D_{phys})$
- Subdivided Surface Areas $(2D_{sa})$
- Atom Counts and Bond Counts (2D_{counts})
- Kier & Hall Connectivity and Kappa Shape Indices $(2D_{kh})$
- Adjacency and Distance Matrix Descriptors $(2D_{adj})$
- Pharmacophore Feature Descriptors $(2D_{pharm})$
- Partial Charge Descriptors $(2D_{charge})$

Table A.1: List of QSAR descriptors in the Molecular Operating Environment (MOE). The descriptions are based on the Chemical Computing Group's webpage [1]

Code	Type	Used	Description
apol	$2\mathrm{D}_{phys}$		Sum of the atomic polarizabilities (including implicit hy- drogens) with polarizabilities taken from [2].
bpol	$2\mathrm{D}_{phys}$		Sum of the absolute value of the difference between atomic polarizabilities of all bonded atoms in the molecule (in- cluding implicit hydrogens) with polarizabilities taken from [2].
density	$2\mathrm{D}_{phys}$		Molecular mass density: Weight divided by vdw_vol.
FCharge	$2 \operatorname{D}_{phys}$	V	Total charge of the molecule (sum of formal charges).
mr	2 D _{phys}		Molecular refractivity (including implicit hydrogens). This property is calculated from an 11 descriptor linear model [3] with R^2 =0.997, RMSE=0.168 on 1,947 small molecules.
SMR	$2\mathrm{D}_{phys}$		Molecular refractivity (including implicit hydrogens). This property is an atomic contribution model [4] that as- sumes the correct protonation state (washed structures). The model was trained on 7000 structures and results
			may vary from the mr descriptor.
$AM1_dipole$	$2\mathrm{D}_{phys}$	R	The dipole moment calculated using the AM1 Hamiltonian $$
AM1_E	$2\mathrm{D}_{phys}$	R	[5]. The total energy calculated using the AM1 Hamiltonian [5].
$AM1_Eele$	$2\mathrm{D}_{phys}$	R	The electronic energy calculated using the AM1 Hamilto-
AM1_HF	$2\mathrm{D}_{phys}$	R	nian [5]. The heat of formation calculated using the AM1 Hamilto- nian [5].
AM1_IP	$2\mathrm{D}_{phys}$	R	The ionization potatnial calculated using the AM1 Hamil- tonian [5].
AM1_HOMO	$2 \operatorname{D}_{phys}$	R	The energy of the Highest Unoccupied Molecular Orbital calculated using the AM1 Hamiltonian [5].
AM1_LUMO	$2 \mathrm{D}_{phys}$	R	The energy of the Lowest Unoccupied Molecular Orbital calculated using the AM1 Hamiltonian [5].
MNDO_dipole	$2 \operatorname{D}_{phys}$	R	The dipole moment calculated using MNDO Hamiltonian [5].
MNDO_E	$2 \mathrm{D}_{phys}$	R	The total energy calculated using the MNDO Hamiltonian [5].
$MNDO_Eele$	$2 \mathrm{D}_{phys}$	R	The electronic energy calculated using the MNDO Hamil- tonian [5].
MNDO_HF	$2\mathrm{D}_{phys}$	R	The heat of formation calculated using the MNDO Hamil- tonian [5].
MNDO_IP	$2 \mathrm{D}_{phys}$	R	The ionization potatnial calculated using the MNDO Hamiltonian [5].
MNDO_HOMO	$2 \mathrm{D}_{phys}$	R	The energy of the Highest Unoccupied Molecular Orbital calculated using the MNDO Hamiltonian [5].
MNDO_LUMO	$2 \operatorname{D}_{phys}$	R	The energy of the Lowest Unoccupied Molecular Orbital calculated using the MNDO Hamiltonian [5].
PM3_dipole	$2 D_{phys}$	U	The dipole moment calculated using PM3 Hamiltonian [5].
РМ3_Е	$2\mathrm{D}_{phys}$		The total energy calculated using the PM3 Hamiltonian [5].
$PM3_Eele$	$2\mathrm{D}_{phys}$		The electronic energy calculated using the PM3 Hamilto- nian [5].
PM3_HF	$2 \operatorname{D}_{phys}$		The heat of formation calculated using the PM3 Hamilto- nian [5].
PM3_IP	$2\mathrm{D}_{phys}$		The ionization potatnial calculated using the PM3 Hamil- tonian [5].
РМ3 _ НОМО	$2\mathrm{D}_{phys}$		The energy of the Highest Unoccupied Molecular Orbital calculated using the PM3 Hamiltonian [5].

PM3_LUMO	$2\mathrm{D}_{phys}$		The energy of the Lowest Unoccupied Molecular Orbital
TPSA	$2\mathrm{D}_{phys}$		calculated using the PM3 Hamiltonian [5]. Total Polar Surface Area calculated using group contribu- tions to approximate the polar surface area from connec-
Weight	$2 \mathrm{D}_{phys}$		tion table information only [6]. Molecular weight (including implicit hydrogens) with
LogS	$2\mathrm{D}_{phys}$	R	atomic weights taken from [2]. Log of the aqueous solubility calculated from an atom con-
$\rm logP(o/w)$	$2\mathrm{D}_{phys}$		tributiontilear atom type model [7]. Log of the octanol/water partition coefficient (including implicit hydrogens). This property is calculated from a linear atom type model [8] with R^2 =0.931, RMSE=0.393
SlogP	2 D _{phys}		on 1,847 molecules. Log of the octanol/water partition coefficient (including implicit hydrogens). This property is an atomic contribu- tion model [4] that calculates logP from the given struc- ture; i.e., the correct protonation state (washed struc- tures). Results may vary from the logP(o/w) descriptor. The training set for SlogP was 7000 structures.
vdw_vol	$2\mathrm{D}_{phys}$		van der Waals volume calculated using a connection table approximation.
vdw_area	$2\mathrm{D}_{phys}$		Area of van der Waals surface calculated using a connec- tion table approximation.
SlogP_VSA0	$2 D_{sa}$		Sum of v_i such that $L_i := -0.4$.
SlogP_VSA1	$2D_{sa}$		Sum of v_i such that L_i is in [-0.4,-0.2].
SlogP_VSA2	$2D_{sa}$	U	Sum of v_i such that L_i is in [-0.2,0].
SlogP_VSA3	$^{2}\mathrm{D}_{sa}^{sa}$	0	Sum of v_i such that L_i is in [0,0.1].
-			
SlogP_VSA4	$2D_{sa}$		Sum of v_i such that L_i is in [0.1,0.15].
SlogP_vsa5	$2D_{sa}$		Sum of v_i such that L_i is in $[0.15, 0.20]$.
SlogP_VSA6	$2 D_{sa}$		Sum of v_i such that L_i is in [0.20,0.25].
SlogP_VSA7	$2 D_{sa}$		Sum of v_i such that L_i is in [0.25,0.30].
$SlogP_VSA8$	$2 D_{sa}$		Sum of v_i such that L_i is in [0.30,0.40].
SlogP_VSA9	$2 D_{sa}$		Sum of v_i such that $L_i \gtrsim 0.40$.
SMR_VSA0	$2D_{sa}$		Sum of v_i such that R_i is in [0,0.11].
SMR_VSA1	$2D_{sa}$		Sum of v_i such that R_i is in [0.11,0.26].
SMR_VSA2	$2D_{sa}$		Sum of v_i such that R_i is in [0.26,0.35].
SMR_VSA3	$^{2}\mathrm{D}_{sa}$		Sum of v_i such that R_i is in [0.35,0.39].
SMR_VSA4	$2D_{sa}^{a}$		
			Sum of v_i such that R_i is in [0.39,0.44].
SMR_VSA5	$2D_{sa}$		Sum of v_i such that R_i is in [0.44,0.485].
SMR_VSA6	$2 D_{sa}$		Sum of v_i such that R_i is in [0.485,0.56].
SMR_VSA7	$2 D_{sa}$	U	Sum of v_i such that $R_i \downarrow 0.56$.
nmol	$2D_{count}$	V	Number of molecules.
a_aro	$2D_{count}$		Number of aromatic atoms.
a_count	$2D_{count}$		Number of atoms (including implicit hydrogens).
a_heavy	$2D_{count}$		Number of heavy $atoms(Z_i > 1)$.
a_ICM	$2\mathrm{D}_{count}$		Atom information content (mean).
a_IC	$2D_{count}$		Atom information content (total).
a_nH	$2D_{count}$		Number of hydrogen atoms (including implicit hydrogens).
a_nB	$2D_{count}$	V	Number of boron atoms.
a_nC	$2D_{count}$	•	Number of carbon atoms.
a⊒n0 a_nN			Number of nitrogen atoms.
a_nO	$2D_{count}$		0
	$2D_{count}$		Number of oxygen atoms.
a_nF	$2D_{count}$		Number of fluorine atoms.
a_nP	$2D_{count}$	V	Number of phosphorus atoms.
a_nS	$2D_{count}$		Number of sulfur atoms.
a_nCl	$2 D_{count}$		Number of chlorine atoms.
a_nBr	$2D_{count}$	V	Number of bromine atoms.
a_nI	$2D_{count}$		Number of iodine atoms.
b_1rotN	$2D_{count}$	U	Number of rotatable single bonds.
b_1rotR	$2D_{count}$		Fraction of rotatable single bonds.
b_ar	$2D_{count}$		Number of aromatic bonds.
b_count	$2D_{count}$		Number of bonds (including implicit hydrogens).

b_double	$2\mathrm{D}_{count}$	U	Number of double bonds. Aromatic bonds are not consid-
1.1	аD		ered to be double bonds.
b_heavy b_notN	$2D_{count}$		Number of bonds between heavy atoms. Number of rotatable bonds
b_rotN	$2D_{count}$		Number of rotatable bonds.
b_rotR	$2D_{count}$		Fraction of rotatable bonds.
b_single	$2D_{count}$		Number of single bonds (including implicit hydrogens). Aromatic bonds are not considered to be single bonds.
b_triple	$2D_{count}$		Number of triple bonds.
VAdjMa	$2D_{count}$		Vertex adjacency information (magnitude): $1 + \log_2 m$
			where m is the number of heavy-heavy bonds. If m is
			zero, then zero is returned.
VAdjEq	$2D_{count}$		Vertex adjacency information (equality): $-(1-f)log_2(1-f)$
			f) – $f \log_2 f$ where $f = (n^2 - m)/n^2$, n is the number of
			heavy atoms and m is the number of heavy-heavy bonds.
			If f is not in the open interval $(0,1)$, then 0 is returned.
lip_acc	$2\mathrm{D}_{counts}$		Number of O and N atoms.
lip_don	$2 D_{counts}$		Number of OH and NH atoms.
lip_druglike	$2 D_{counts}$	R	1 if $lip_violation < 2$ otherwise 0.
lip_violation	$2 D_{counts}$	R	Number of violations of Lipinski's Rule of Five [9].
opr_brigid	$2 D_{counts}$		Number of rigid bonds [10].
opr_nring	$2D_{counts}$		Number of ring bonds [10].
opr_nrot	$2D_{counts}$		Number of rotatable bonds [10].
opr_leadlike	$2D_{counts}$	R	1 if $opr_violation < 2$ otherwise 0.
opr_violation	$2D_{counts}$	R	Number of violations of Oprea's lead-like test [10].
chi0	$2D_{kh}$		Atomic connectivity index (order 0) [11, 12].
chi0_C	$2D_{kh}^{\kappa n}$		Carbon connectivity index (order 0).
chi1	$2D_{kh}^{\kappa n}$		Atomic connectivity index (order 1) [11, 12].
chi1_C	$2D_{kh}$		Carbon connectivity index (order 1).
chi0v	$2D_{kh}$		Atomic valence connectivity index (order 0) [11, 12].
chi0v_C	$2D_{kh}$		Carbon valence connectivity index (order 0).
chi1v	$2D_{kh}$		Atomic valence connectivity index (order 1) [11, 12].
chi1v_C	$2D_{kh}$		Carbon valence connectivity index (order 1).
Kier1	$2D_{kh}^{kh}$		First kappa shape index [11].
Kier2	$2D_{kh}^{\kappa n}$		Second kappa shape index [11].
Kier3	$2D_{kh}^{kh}$		Third kappa shape index [11].
KierA1	$2D_{kh}$		First alpha modified shape index [11].
KierA2	$2D_{kh}$		Second alpha modified shape index [11].
KierA3	$2D_{kh}$		Third alpha modified shape index [11].
KierFlex	$2D_{kh}$		Kier molecular flexibility index [11].
zagreb	$2D_{kh}$		Zagreb index.
balabanJ	$2D_{adj}$		Balaban's connectivity topological index [13].
diameter	$^{2}\mathrm{D}_{adj}$		Largest value in the distance matrix [14].
petitjean	$2D_{adj}$		Value of (diameter-radius) / diameter as defined in [14].
radius	$2D_{adj}$		Radius is defined as the smallest of the r_i [14].
BCUT_PEOE_0	$2 D_{a d j}$ $2 D_{a d j}$		The BCUT descriptors are calculated from the eigenvalues
_ = = 1 	- a aj		of a modified adjancy matrix [15]. Smallest eigenvalue.
BCUT_PEOE_1	$2\mathrm{D}_{adj}$		The BCUT descriptors are calculated from the eigenvalues
	<i>a ay</i>		of a modified adjancy matrix [15]. 1/3-ile eigenvalue.
BCUT_PEOE_2	$2 D_{adj}$		The BCUT descriptors are calculated from the eigenvalues
Deelin Lollin	2D a aj		of a modified adjancy matrix [15]. 2/3-ile eigenvalue.
BCUT_PEOE_3	$2D_{adj}$		The BCUT descriptors are calculated from the eigenvalues
Deel_I Holl_5	2 D a dj		of a modified adjancy matrix [15]. Largest eigenvalue.
BCUT_SLOGP_0	$2D_{adi}$		The BCUT descriptors using LogP contribution instead of
DOOT_DDOOT_0	$2D_{adj}$		partial charge. Smallest eigenvalue.
BCUT_SLOGP_1	$2 D_{adj}$		The BCUT descriptors using LogP contribution instead of
DCUI_SLOGI_I	$2D_{adj}$		
DOUT SLOOD A	аD		partial charge. 1/3-ile eigenvalue.
BCUT_SLOGP_2	$2 D_{a dj}$		The BCUT descriptors using LogP contribution instead of
BOUT SLOOP :	эD		partial charge. 2/3-ile eigenvalue.
BCUT_SLOGP_3	$2 D_{a dj}$		The BCUT descriptors using LogP contribution instead of
DOUT GMD A	эD		partial charge. Largest eigenvalue.
BCUT_SMR_0	$2 D_{adj}$		The BCUT descriptors using atomic contribution to molar refractivity instead of partial charge. Smallest eigenvalue
			refractivity instead of partial charge. Smallest eigenvalue.

BCUT_SMR_1	$2 \mathbf{D}_{adj}$		The BCUT descriptors using atomic contribution to molar
BCUT_SMR_2	$2\mathrm{D}_{adj}$		refractivity instead of partial charge. 1/3-ile eigenvalue. The BCUT descriptors using atomic contribution to molar
BCUT_SMR_3	$2 \mathbf{D}_{adj}$		refractivity instead of partial charge. 2/3-ile eigenvalue. The BCUT descriptors using atomic contribution to molar refractivity instead of partial charge. Largest eigenvalue
GCUT_PEOE_0	$2\mathbf{D}_{adj}$		refractivity instead of partial charge. Largest eigenvalue. The GCUT descriptors are calculated from the eigenvalues of a modified graph distance adjancy matrix. Smallest
GCUT_PEOE_1	$2 D_{adj}$		eigenvalue. The GCUT descriptors are calculated from the eigenval- ues of a modified graph distance adjancy matrix. 1/3-ile
GCUT_PEOE_2	$2 D_{adj}$	U	eigenvalue. The GCUT descriptors are calculated from the eigenval- ues of a modified graph distance adjancy matrix. 2/3-ile
GCUT_PEOE_3	$2 \mathrm{D}_{adj}$		eigenvalue. The GCUT descriptors are calculated from the eigenval- ues of a modified graph distance adjancy matrix. Largest
GCUT_SLOGP_0	$2 \mathbf{D}_{adj}$		eigenvalue. The GCUT descriptors using LogP contribution instead of partial charge. Smallest eigenvalue.
GCUT_SLOGP_1	$2 \mathbf{D}_{adj}$		The GCUT descriptors using LogP contribution instead of partial charge. 1/3-ile eigenvalue.
GCUT_SLOGP_2	$2\mathrm{D}_{adj}$		The GCUT descriptors using LogP contribution instead of partial charge. 2/3-ile eigenvalue.
GCUT_SLOGP_3	$2\mathrm{D}_{adj}$		The GCUT descriptors using LogP contribution instead of partial charge. Largest eigenvalue.
GCUT_SMR_0	$2\mathrm{D}_{adj}$		The GCUT descriptors using atomic contribution to molar refractivity instead of partial charge. Smallest eigenvalue.
GCUT_SMR_1	$2\mathrm{D}_{adj}$		The GCUT descriptors using atomic contribution to molar refractivity instead of partial charge. 1/3-ile eigenvalue.
GCUT_SMR_2	$2\mathrm{D}_{adj}$		The GCUT descriptors using atomic contribution to molar refractivity instead of partial charge. 2/3-ile eigenvalue.
GCUT_SMR_3	$2\mathrm{D}_{adj}$		The GCUT descriptors using atomic contribution to molar refractivity instead of partial charge. Largest eigenvalue.
VDistEq	$2 \mathbf{D}_{adj}$		VdistEq is defined as the sum of $log_2 m - log_2 p_i/m$ where p_i is the number of distance matrix entries equal to i.
VDistMa	$2\mathrm{D}_{adj}$		VDistMa is defined as the sum of $log_2 m - D_{ij} log_2 D_{ij}/m$ over all i and j.
weinerPath	$2D_{adj}$		Wiener path number [16, 17].
weinerPol	$2 D_{a dj}$		Wiener polarity number [16].
a_acc	$2 D_{pharm}$		Number of hydrogen bond acceptor atoms (not counting
			acidic atoms but counting atoms that are both hydrogen
			bond donors and acceptors such as -OH).
a_acid	$2 D_{pharm}$	V	Number of acidic atoms.
a_base	$2 D_{pharm}$	V	Number of basic atoms.
a_don	$2 D_{pharm}$		Number of hydrogen bond donor atoms (not counting ba-
			sic atoms but counting atoms that are both hydrogen bond
			donors and acceptors such as -OH).
a_hyd	$2D_{pharm}$		Number of hydrophobic atoms.
vsa_acc	$2 D_{pharm}$		Approximation to the sum of VDW surface areas of pure
			hydrogen bond acceptors (not counting acidic atoms and atoms that are both hydrogen bond donors and acceptors such as -OH).
vsa_acid	$2 \mathrm{D}_{pharm}$	V	Approximation to the sum of VDW surface areas of acidic atoms.
vsa_base	$2 \mathrm{D}_{pharm}$	V	Approximation to the sum of VDW surface areas of basic atoms.
vsa_don	$2 \mathrm{D}_{pharm}$		Approximation to the sum of VDW surface areas of pure hydrogen bond donors (not counting basic atoms and atoms that are both hydrogen bond donors and acceptors such as -OH).

vsa_hyd	$2\mathrm{D}_{pharm}$	Approximation to the sum of VDW surface areas of hy- drophobic atoms.
vsa_other	$2 D_{pharm}$	Approximation to the sum of VDW surface areas of atoms
vsa_pol	$2 D_{pharm}$	typed as "other". Approximation to the sum of VDW surface areas of polar (both hydrogen bond donors and acceptors) atoms (such as OH)
PC+	$2\mathrm{D}_{charge}$	as -OH). Total positive partial charge (Suffix: Q for external charges, PEOE for calculated charges).
PC-	$2 D_{charge}$ U	Total negative partial charge (Suffix: Q for external charges, PEOE for calculated charges).
RPC+	$2\mathrm{D}_{charge}$	Relative positive partial charge (Suffix: Q for external charges, PEOE for calculated charges).
PRC-	$2 D_{charge}$	Relative negative partial charge (Suffix: Q for external charges, PEOE for calculated charges).
VSA_POS	$2 D_{charge}$ U	Total positive van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_NEG	$2D_{charge}$	Total negative van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_PPOS	$2 D_{charge}$	Total positive polar van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_PNEG	$2 \mathrm{D}_{charge}$	Total negative polar van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_HYD	$2 \mathrm{D}_{charge}$	Total hydrophobic van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_POL	$2\mathrm{D}_{charge}$	Total polar van der Waals surface area (Suffix: Q for ex- ternal charges, PEOE for calculated charges).
VSA_FPOS	$2\mathrm{D}_{charge}$	Fractional positive van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_FNEG	$2 D_{charge}$	Fractional negative van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_FPPOS	$2 D_{charge}$	Fractional positive polar van der Waals surface area (Suf- fix: Q for external charges, PEOE for calculated charges).
VSA_FPNEG	$2 D_{charge}$	Fractional negative polar van der Waals surface area (Suf- fix: Q for external charges, PEOE for calculated charges).
VSA_FHYD	$2 D_{charge}$	Fractional hydrophobic van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
VSA_FPOL	$2 D_{charge}$	Fractional polar van der Waals surface area (Suffix: Q for external charges, PEOE for calculated charges).
PEOE_VSA+6	$2 D_{charge}$	Sum of v_i where q_i is greater than 0.3.
PEOE_VSA+5	$2D_{charge}$	Sum of v_i where q_i is in the range [0.25,0.30].
PEOE_VSA+4	$2 D_{charge}$	Sum of v_i where q_i is in the range [0.20,0.25].
PEOE_VSA+3	$2 D_{charge}$	Sum of v_i where q_i is in the range [0.15,0.20].
$PEOE_VSA+2$	$2 D_{charge}$	Sum of v_i where q_i is in the range [0.10,0.15].
PEOE_VSA+1	$2 D_{charge}$	Sum of v_i where q_i is in the range $[0.05, 0.10]$.
$PEOE_VSA+0$	$2 D_{charge}$	Sum of v_i where q_i is in the range [0.00,0.05].
PEOE_VSA-0	$2 D_{charge}$	Sum of v_i where q_i is in the range [-0.05,0.00].
PEOE_VSA-1	$2 D_{charge}$	Sum of v_i where q_i is in the range [-0.10,-0.05].
PEOE_VSA-2	$2 D_{charge}$	Sum of v_i where q_i is in the range [-0.15,-0.10].
PEOE_VSA-3	$2 D_{charge}$	Sum of v_i where q_i is in the range [-0.20,-0.15].
$PEOE_VSA-4$	$2 D_{charge}$	Sum of v_i where q_i is in the range [-0.25,-0.20].
$PEOE_{VSA-5}$	$2 D_{charge}$	Sum of v_i where q_i is in the range [-0.30,-0.25].
PEOE_VSA-6	$2D_{charge}$	Sum of v_i where q_i is less than -0.30.
E	$3D_{Epot}$	Value of the potential energy.
E_ang	$3D_{Epot}$	Angle bend potential energy.
E_ele	$3D_{Epot}$	Electrostatic component of the potential energy.
E_nb	$3D_{Epot}$	Value of the potential energy with all non-bonded terms disabled.
E_oop	$3D_{Epot}$	Out-of-plane potential energy.
E_sol	$3D_{Epot}$ U	Solvation energy.
E_stb	$3D_{Epot}$	Bond stretch-bend cross-term potential energy.
E_{str}	$3D_{Epot}$	Bond stretch potential energy.

E_strain	$3D_{Epot}$	Local strain energy: the current energy minus the value of the energy at a near local minimum.
E_tor	$3D_{Epot}$	Torsion potential energy.
E_vdw		van der Waals component of the potential energy.
E_rele	$3D_{Epot}$ $3D_{Epot}$ V	Electrostatic interaction energy (x3d).
E_rele E_rnb	11 p 0 0	0. ()
	Dpor	Non-bonded interaction energy $(x3d)$.
E_rsol	$3D_{Epot}$ V	Solvation free energy difference (x3d).
E_rvdw	$3D_{Epot}$ V	van der Waals interaction energy (x3d).
ASA	$3D_{shape}$	Water accessible surface area calculated using a radius of
	_	1.4 A for the water molecule.
dens	$3D_{shape}$	Mass density: molecular weight divided by van der Waals
		volume.
glob	$3D_{shape}$	Globularity, or inverse condition number of the covariance
		matrix of atomic coordinates.
pmi	$3D_{shape}$	Principal moment of inertia.
pmiX	$3D_{shape}$	x component of the principal moment of inertia (x3d).
pmiY	$3D_{shape}$	y component of the principal moment of inertia (x3d).
pmiZ	$3D_{shape}$	z component of the principal moment of inertia (x3d).
rgyr	$3D_{shape}$	Radius of gyration.
std_dim1	3D _{shape}	Standard dimension 1: the square root of the largest eigen-
	enapo	value of the covariance matrix of the atomic coordinates.
std_dim2	$3D_{shape}$	Standard dimension 2: the square root of the second
	snape	largest eigenvalue of the covariance matrix of the atomic
		coordinates.
std_dim3	$3D_{shape}$	Standard dimension 3: the square root of the third largest
	32 shape	eigenvalue of the covariance matrix of the atomic coordi-
		nates.
vol	$3D_{shape}$	van der Waals volume calculated using a grid approxima-
VOI	5D _{shape}	tion (spacing 0.75 A).
VSA	3D .	van der Waals surface area.
ASA+	3D _{shape}	Water accessible surface area of all atoms with positive
ASAT	$3D_{conf}$	partial charge.
ASA-	ъD	. 0
ASA-	$3D_{conf}$	Water accessible surface area of all atoms with negative
ACA TI	аD	partial charge.
ASA_H	$3D_{conf}$	Water accessible surface area of all hydrophobic atoms.
ASA_P	$3D_{conf}$	Water accessible surface area of all polar atoms.
DASA	$3D_{conf}$	Absolute value of the difference between ASA+ and ASA
CASA+	$3D_{conf}$	Positive charge weighted surface area [18].
CASA-	$3D_{conf}$	Negative charge weighted surface area [18].
DCASA	$3D_{conf}$	Absolute value of the difference between CASA+ and
	_	CASA- [18].
dipole	$3D_{conf}$	Dipole moment calculated from the partial charges of the
		molecule.
dipoleX	$3D_{conf}$	The x component of the dipole moment (x3D).
dipoleY	$3D_{conf}$	The y component of the dipole moment (x3D).
dipoleZ	$3D_{conf}$	The z component of the dipole moment (x3D).
FASA+	$3D_{conf}$	Fractional ASA $+$ calculated as ASA $+$ / ASA.
FASA-	$3D_{conf}$	Fractional ASA- calculated as ASA- / ASA.
FCASA+	$3D_{conf}$	Fractional CASA $+$ calculated as CASA $+$ / ASA.
FCASA-	$3D_{conf}$	Fractional CASA- calculated as CASA- / ASA.
FASA_H	3D _{conf}	Fractional ASA_H calculated as ASA_H / ASA.
FASA_P	3D _{conf}	Fractional ASA_P calculated as ASA_P / ASA.

Bibliography

- [1] Chemical Computing Group Inc. QSAR descriptor. http://www.chemcomp.com/journal/descr.htm, 2005.
- [2] CRC. Handbook of Chemistry and Physics. CRC Press, 1994.
- [3] P. Labute. MOE molar refractivity model. unpublished. Source code in \$MOE/lib/svl/quasar.svl/q_mref.svl, 1998.
- [4] S.A. Wildman and G.M. Crippen. Prediction of physiochemical parameters by atomic contributions. Journal of Chemical Information and Computer Sciences, 39:868-873, 1999.
- [5] J.J.P. Stewart. MOPAC manual (seventh edition, 1993.
- [6] P. Ertl, B. Rohde, and P. Selzer. Fast calculation of molecular polar surface area as sum of fragment-based contributions and its application to prediction of drug transport properties. *Journal of Medicinal Chemistry*, 43:3714-3717, 2000.
- [7] T.J. Hou, K. Xia, W. Zhang, and X.J. Xu. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution. *Journal of Chemical Information and Computer Sciences*, 44:266-275, 2004.
- [8] P. Labute. MOE logP(octanol/water) model. unpublished. Source code in \$MOE/lib/svl/quasar.svl/qlogp.svl, 1998.
- [9] C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23:3-25, 1997.
- [10] T.I. Oprea. Property distribution of drug-related chemical databases. Journal of Computer-Aided Molecular Design, 14:251-264, 2000.
- [11] L.H. Hall and L.B. Kier. The molecular connectivity chi indexes and kappa shape indexes in structure-property relations. In D. Boyd and K. Lipkowitz, editors, *Reviews of Computational Chemistry*, chapter 9, pages 367-422. VCH Publishers, Inc., 1991.
- [12] L.H. Hall and L.B. Kier. The nature of structure-activity relationships and their relation to molecular connectivity. European Journal of Medicinal Chemistry - Chimica Therapeutica, 4:307-312, 1997.
- [13] A.T. Balaban. Highly discriminating distance-based topological index. Chemical Physics Letters, 89:399-404, 1982.
- [14] M. Petitjean. Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. *Journal of Chemical Information and Computer Sciences*, 32:331-337, 1992.
- [15] R.S. Pearlman. Novel software tools for chemical diversity. Perpectives in Drug Discovery and Design, pages 339-353, 1998.

- [16] A.T. Balaban. Five new topological indices for the branching of tree-like graphs. Theoretica Chimica Acta, 53:355-375, 1979.
- [17] H. Wiener. Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69:17-20, 1947.
- [18] D. Stanton and P. Jurs. Analytical Chemistry, 62:2323, 1990.