New route to azaspirocycles via the organolithium-mediated conversion of βalkoxy aziridines into cyclopentyl amines

Stephen P. Moore, Susannah C. Coote, Peter O'Brien* and John Gilday

Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.

AstraZeneca, Process R&D, Avlon Works, Severn Road, Hallen, Bristol,

BS10 7ZE, U.K.

paob1@york.ac.uk

Supporting Information Available: Experimental procedures and full characterisation data.

Table of contents:

S2 General

- S4 Experimental procedures and full characterisation data for all novel compounds
- S38 References for supporting information

General

All reactions were carried out under oxygen free N_2 or Ar using oven-dried and/or flame dried glassware. Organolithium reagents were titrated against *N*-benzylbenzamide before use.¹ Et₂O, THF, toluene and CH₂Cl₂ were dried on an Mbraun SPS solvent purification system, whereas TBME was freshly distilled from benzophenone ketyl. Petrol refers to the fraction of petroleum ether with a boiling point range of 40-60 °C. MeCN and MeOH were purchased in Winchester quantities and used as supplied. Brine refers to a saturated aqueous solution of NaCl. Water is distilled water.

Flash column chromatography was carried out using Fluka Chemie GmbH silica (220-440 mesh). Thin layer chromatography was carried out using commercially available Merck F_{254} aluminium-backed silica plates.

Proton (400 MHz) and carbon (100.6 MHz) NMR spectra were recorded on a Jeol ECX-400 instrument using an internal deuterium lock. For samples recorded as solutions in CDCl₃, chemical shifts are quoted in parts per million relative to CHCl₃ (δ_H 7.27) and CDCl₃ (δ_C 77.0, central line). For samples recorded as solutions in C₆D₆, chemical shifts are quoted in parts per million relative to C₆D₅H (δ_H 7.16) and C₆D₆ (δ_C 128.0, central line). Carbon NMR spectra were recorded with broadband proton decoupling and were assigned using DEPT experiments. Coupling constants (J) are quoted in Hertz. Melting points were measured on a Gallenkamp melting point apparatus and are uncorrected. For Kugelrohr distillation, the temperatures quoted correspond to the oven temperatures. Infra-red spectra were recorded on an ATI Matteson Genesis FT-IR or a Nicolet IR100 FT-IR machine. Chemical ionisation and high resolution mass spectra were recorded on a Fisons Analytical (VG) Autospec spectrometer.

General procedure A: Reductive alkylation of β-methoxy aziridines

Alkyllithium (2.5 equiv.) was added dropwise to a stirred solution of methoxy aziridine (0.4 mmol) in Et₂O (5 mL) at -78 °C under N₂. After stirring at -78 °C for 5 min, the resulting solution was allowed to warm to rt and stirred for 1 h. Saturated NH₄Cl_(aq) (5 mL) was added and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

General procedure B: Hydroboration of allylic sulfonamides

9-BBN (0.50 M solution in THF, 2.0 equiv.) was added dropwise to a stirred solution of allylic sulfonamide (0.3 mmol) in THF (5 mL) at 0 °C under N₂. The resulting solution was allowed to warm to rt and stirred at rt for 2 h. After cooling to 0 °C, 2.0 M NaOH_(aq) (6.0 equiv.) and 35% $H_2O_{2(aq)}$ (2.0 equiv.) were added cautiously. The resulting mixture was warmed to rt and stirred for 2 h. Then, Et₂O (10 mL) was added and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic extracts were washed with brine (10 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

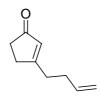
General procedure C: Mitsunobu cyclisation

DIAD or DEAD (1.2 equiv.) was added dropwise to a stirred solution of sulfonamido alcohol (0.2 mmol) and PPh₃ (1.2 equiv.) in THF (5 mL) at 0 °C under N₂. The resulting solution was allowed to warm to rt and stirred at rt for 3 h. Then, the solvent was evaporated under reduced pressure to give the crude product.

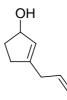
General procedure D: Lithium-halogen exchange in reductive alkylation

A solution of β -methoxy aziridine (0.3 mmol) in THF, Et₂O or TBME (5 mL) was added *via* canula to a stirred solution of the aryllithium, [3.0 equiv., freshly prepared by adding a solution

of *n*-butyllithium in hexanes (3.0 equiv.) to a stirred solution of aryl bromide (3.0 equiv.) in THF, Et₂O or TBME (3 mL) at -78 °C and stirring for 1 h], at -78 °C under nitrogen. After 5 min, the reaction mixture was allowed to warm to rt and then stirred for 1 h. Saturated NH₄Cl_(aq) (5 mL) was added and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.


3-Allyl-2-cyclopenten-1-one 4

-C

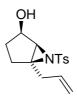

A solution of cyclopentenone (5.1 mL, 60.9 mmol) in THF (10 mL) was added dropwise *via* canula to a stirred solution of allylmagnesium chloride (36.5 mL of a 2.00 M solution in THF, 73.1 mmol) in THF (40 mL) at 0 °C under N₂. After being allowed to warm to rt, the reaction mixture was stirred for 2 h. Then, the reaction mixture was cooled to 0 °C and saturated $NH_4Cl_{(aq)}$ (40 mL) was added. The resulting mixture was stirred at rt for 15 min and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 40 mL) and the combined organic extracts were washed with brine (40 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by Kugelrohr distillation gave 1-allyl-2-cyclopenten-1-ol (7.13 g, 94%) as a colourless oil, bp 120-125 °C/1.2 mm Hg.

PDC (41.3 g, 110.0 mmol) was added in one portion to a stirred solution of 1-allyl-2cyclopenten-1-ol (6.82 g, 54.9 mmol) in CH₂Cl₂ (60 mL) at rt under N₂. The resulting brown suspension was stirred at rt for 6 h and then Et₂O (50 mL) was added. The solids were removed by filtration through a plug of silica and washed with Et₂O (300 mL). The filtrate was evaporated under reduced pressure to give the crude product. Purification by Kugelrohr distillation gave enone **4** (4.11 g, 61%) as a pale yellow oil, bp 120-125 °C/1.2 mm Hg; $R_{\rm F}$ (1:1 hexane-EtOAc) 0.4; ¹H NMR (400 MHz, C₆D₆) δ 5.84 (s, 1H, =CH), 5.51 (ddt, *J* = 18.0, 10.0, 7.0 Hz, 1H, CH=CH₂), 4.95 (dq, *J* = 10.0, 2.0 Hz, 1H, CH=CH_AH_B), 4.88 (dq, *J* = 18.0, 2.0 Hz, 1H, CH=CH_AH_B), 2.52 (d, *J* = 7.0 Hz, 2H, CH₂-CH=CH₂), 2.04-2.01 (m, 2H), 1.82-1.80 (m, 2H). Spectroscopic data comparable with those recorded in CDCl₃.²

3-(3-Butenyl)-2-cyclopenten-1-one 5

Magnesium turnings (457 mg, 18.8 mmol) were stirred for 30 min in a flame-dried flask at rt under Ar. THF (10 mL) was added and the resulting mixture stirred at rt for 15 min. Then, a solution of 4-bromo-1-butene (1.1 mL, 10.9 mmol) in THF (10 mL) was added dropwise *via* canula in order to maintain a gentle reflux. The resulting suspension was stirred and heated at reflux for 10 min, then cooled to 0 °C. A solution of 3-ethoxycyclopent-2-enone (1.0 mL, 8.4 mmol) in THF (5 mL) was added dropwise via canula and the reaction mixture was heated at reflux for 30 min. The reaction mixture was allowed to cool to rt and saturated NH₄Cl_(aq) (15 mL) was added. The layers were separated, and the aqueous layer was extracted with Et₂O (3 x 15 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by Kugelrohr distillation gave enone **5** (758 mg, 67%) as a colourless oil, bp 140-150 °C/20 mm Hg, $R_F(1:1 \text{ petrol-Et}_2O) 0.3$; ¹H NMR (400 MHz, CDCl₃) δ 5.92-5.90 (m, 1H, =CH), 5.71-5.61 (m, 1H, CH=CH₂), 5.04 (ddt, *J* = 10.0, 2.0, 1.0 Hz, 1H, CH=CH_AH_B), 5.01 (app. dq, *J* = 17.0, 2.0 Hz, 1H, CH=CH_AH_B), 2.14-2.12 (m, 2H), 2.02-1.92 (m, 4H), 1.88-1.85 (m, 2H). Spectroscopic data consistent with those reported in the literature.³

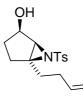
NaBH₄ (294 mg, 7.8 mmol) was added portionwise over 45 min to a stirred solution of enone **4** (792 mg, 6.5 mmol) and CeCl₃·7H₂O (2.90 g, 7.8 mmol) in MeOH (20 mL) at 0 °C under N₂. The resulting solution was stirred at 0 °C for 2 h. After being allowed to warm to rt, saturated NH₄Cl_(aq) (10 mL) was added. The mixture was extracted with CH₂Cl₂ (3 x 20 mL) and the combined organic extracts were washed with water (50 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by Kugelrohr distillation gave allylic alcohol **9** (693 mg, 86%) as a colourless oil, bp 105-110 °C/1.9 mm Hg; R_F (1:1 petrol-EtOAc) 0.5; IR (CHCl₃) 3599 (OH), 3012, 2935, 2850, 1637, 1452, 1429, 1388 (SO₂), 1142 (SO₂), 1026, 920, 669 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 5.79 (ddt, *J* = 17.0, 9.5, 7.0 Hz, 1H, C*H*=CH₂), 5.46 (s, 1H, =CH), 5.05-5.01 (m, 2H, CH=CH₂), 4.71 (br s, 1H, CHO), 2.68-2.65 (br m, 2H), 2.28-2.20 (m, 1H), 2.13-2.05 (m, 1H), 2.00-1.90 (m, 1H), 1.70-1.62 (m, 1H), 1.45 (s, 1H, OH); ¹³C NMR (100.6 MHz, C₆D₆) δ 146.1 (=C), 134.7 (=CH), 129.0 (=CH), 115.8 (=CH₂), 76.4 (CHO), 34.8 (CH₂), 32.9 (CH₂), 32.4 (CH₂); MS (CI, NH₃) *m/z* 107 [(M – H₂O + H)⁺, 100], 83(6); HRMS (CI, NH₃) *m/z* calcd for C₈H₁₂O (M – H₂O + H)⁺ 107.0861, found 107.0865.


3-(3-Butenyl)-2-cyclopenten-1-ol 10

NaBH₄ (622 mg, 16.5 mmol) was added portionwise over 45 min to a stirred solution of enone 5 (1.95 g, 14.3 mmol) and CeCl₃·7H₂O (6.40 g, 17.2 mmol) in MeOH (60 mL) at 0 °C under N₂. The resulting solution was stirred at 0 °C for 2 h. After being allowed to warm to rt, saturated NH₄Cl_(aq) (20 mL) was added. The mixture was extracted with CH₂Cl₂ (3 x 30 mL) and the

combined organic extracts were washed with water (50 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by Kugelrohr distillation gave allylic alcohol **10** (1.76 g, 89%) as a colourless oil, bp 120-140 °C/8 mm Hg, R_F (1:1 petrol-Et₂O) 0.3; IR (film) 3340 (OH), 2927, 2847, 1642, 1448, 1329, 1039, 910 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 5.72 (ddt, J = 17.0, 10.0, 6.0 Hz, 1H, CH=CH₂), 5.35 (app. sextet, J = 2.0 Hz, 1H, =CH), 4.99 (app. dq, J = 17.0, 2.0 Hz, 1H, CH=C H_A H_B), 4.96 (ddt, J = 10.0, 2.0, 1.0 Hz, 1H, CH=CH_AH_B), 4.67-4.63 (m, 1H, CHO), 2.20-2.12 (m, 1H), 2.10-1.94 (m, 5H), 1.91-1.83 (m, 1H), 1.59 (dddd, J = 13.5, 8.5, 5.0, 3.5 Hz, 1H), 0.98 (br s, 1H, OH); ¹³C NMR (100.6 MHz, C₆D₆) δ 147.9 (=C), 138.4 (=CH), 127.9 (=CH), 114.7 (=CH₂), 77.6 (CHO), 34.3 (CH₂), 33.6 (CH₂), 32.0 (CH₂), 30.7 (CH₂); MS (CI, NH₃) m/z 138 [(M – H₂O + NH₄)⁺, 30], 121 (100); HRMS (CI, NH₃) m/z: [M – H₂O + NH₄]⁺ calcd for C₉H₁₄O, 138.1283; found, 138.1284.

5-Allyl-6-[(4-methylphenyl)sulfonyl]-6-azabicyclo[3.1.0]pentan-2-ol cis-11



PhMe₃NBr₃ (121 mg, 0.3 mmol) was added to a stirred suspension of Chloramine-T trihydrate (1.0 g, 3.5 mmol) and allylic alcohol **9** (400 mg, 3.2 mmol) in MeCN (10 mL) at rt under N₂. After stirring for 18 h, the solids were removed by filtration through a plug of silica and washed with EtOAc. The filtrate was evaporated under reduced pressure to give the crude product, which contained a 70:30 mixture (by ¹H NMR spectroscopy) of hydroxy aziridines *cis*-**11** and *trans*-**11**. Purification by flash column chromatography on silica with hexane-EtOAc (1:1) as eluent gave a 45:55 mixture of hydroxy aziridine *trans*-**11** and TsNH₂ (289 mg) as a white solid and hydroxy aziridine *cis*-**11** (451 mg, 48%) as a colourless oil, $R_F(1:1$ hexane-EtOAc) 0.3; IR (CDCl₃) 3577 (OH), 3065, 2928, 1321 (SO₂), 1092 (SO₂), 986, 878, 686, 577 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.32 (d, *J* = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 5.88 (ddt, *J* = 17.0, 10.0, 7.0 Hz, 1H, CH=CH₂), 5.17 (dq, *J* = 17.0, 1.5 Hz, 1H, CH=CH_AH_B), 5.16-5.13 (m,

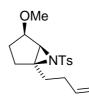
1H, CH=C H_AH_B), 4.26 (br qd, J = 7.5, 2.5 Hz, 1H, CHO), 3.45 (d, J = 2.5 Hz, 1H, CHN), 2.97 (dd, J = 15.0, 7.0 Hz, 1H), 2.90 (dd, J = 15.0, 7.0 Hz, 1H) 2.43 (s, 3H, Me), 2.08-2.02 (dd, J = 14.0, 8.0 Hz, 1H), 1.91 (dt, J = 13.0, 7.5, 1H), 1.72-1.64 (ddd, J = 14.0, 10.5, 8.0 Hz, 1H), 1.27-1.23 (br m, 1H), 1.23-1.13 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 144.0 (*ipso*-C₆H₄SO₂), 137.6 (*ipso*-C₆H₄Me), 133.3 (=CH), 129.6 (*o*-C₆H₄SO₂), 127.1 (*m*-C₆H₄SO₂), 118.6 (=CH₂), 73.0 (CHO), 60.1 (CN), 54.7 (CHN), 33.7 (CH₂), 29.9 (CH₂), 29.3 (CH₂), 21.6 (Me); MS (CI, NH₃) *m/z* 294 [(M + H)⁺, 100], 276 (25), 138 (36); HRMS (CI, NH₃) *m/z* calcd for C₁₅H₁₉NO₃S (M + H)⁺ 294.1164, found 294.1162.

Diagnostic signal for hydroxy aziridine *trans*-11: ¹H NMR (400 MHz, CDCl₃) δ 3.35 (s, 1H, CHN).

5-(3-Butenyl)-6-[(4-methylphenyl)sulfonyl]-6-azabicyclo[3.1.0]hexan-2-ol cis-12

 1H, CHO), 3.42 (d, J = 2.5 Hz, 1H, CHN), 2.47-2.39 (m, 1H), 2.46 (s, 3H, Me), 2.46-2.20 (m, 3H), 2.11 (dd, J = 14.0, 8.0 Hz, 1H), 1.94 (dt, J = 13.0, 8.0 Hz, 1H), 1.70 (ddd, J = 14.0, 10.5, 8.0 Hz, 1H), 1.20 (ddt, J = 13.0, 10.5, 8.0 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 144.0 (*ipso*-C₆H₄SO₂), 137.9 (*ipso*-C₆H₄Me), 137.3 (=CH), 129.6 (*o*-C₆H₄SO₂), 127.1 (*m*-C₆H₄SO₂), 115.5 (=CH₂), 72.9 (CHO), 61.1 (CN), 55.4 (CHN), 30.8 (CH₂), 29.9 (CH₂), 29.4 (CH₂), 28.2 (CH₂), 21.6 (Me); MS (CI, NH₃) *m/z* 308 [(M + H)⁺, 70], 290 (20), 152 (100); HRMS (CI, NH₃) *m/z*: [M + H]⁺ calcd for C₁₆H₂NO₃S, 308.1320; found, 308.1312.

Diagnostic signals for hydroxy aziridine *trans*-12: ¹H NMR (400 MHz, CDCl₃) δ 4.12 (br t, J = 4.0 Hz, 1H, CHO) and 3.31 (s, 1H, CHN).


1-Allyl-4-methoxy-6-[(4-methylphenyl)sulfonyl]-6-azabicyclo[3.1.0]pentane cis-13

KHMDS (2.5 mL of a 0.50 M solution in toluene, 1.1 mmol) was added dropwise to a stirred solution of hydroxy aziridine *cis*-**11** (333 mg, 1.1 mmol) in THF (10 mL) at -78 °C under N₂. After stirring at -78 °C for 30 min, MeI (0.1 mL, 2.3 mmol) was added dropwise. After stirring at -78 °C for 1 h, the resulting solution was allowed to warm to over 16 h. The reaction mixture was then poured into water (10 mL) and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic extracts were washed with water (10 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (1:1) as eluent gave methoxy aziridine *cis*-**13** (325 mg, 93%) as a white solid, mp 73-75 °C; *R*_F(1:1 petrol-Et₂O) 0.3; IR (CDCl₃) 2984, 2930, 2863, 1356 (SO₂), 1186 (SO₂), 1021, 928, 863, 617, 583 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.30 (d, *J* = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 5.91 (ddt, *J* = 17.5, 10.0, 7.0 Hz, 1H, CH=CH₂), 5.18 (dq, *J* = 18.0, 1.5 Hz, 1H, CH=CH₄AH_b),

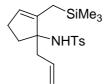
5.15 (ddt, J = 10.0, 1.0 Hz, 1H, CH=C H_AH_B), 3.86 (ddd, J = 9.0, 7.5, 2.5 Hz, 1H, CHO), 3.48 (d, J = 2.5 Hz, 1H, CHN), 3.12 (s, 3H, OMe), 3.03 (dd, J = 15.0, 7.0 Hz, 1H), 2.93 (dd, J = 15.0, 7.0 Hz, 1H), 2.42 (s, 3H, Me), 2.05 (dd, J = 14.0, 8.0 Hz, 1H), 1.81 (dt, J = 12.5, 8.0 Hz, 1H), 1.72-1.65 (m, 1H), 1.41-1.31 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 143.6 (*ipso*-C₆H₄SO₂), 137.9 (*ipso*-C₆H₄Me), 133.6 (=CH), 129.2 (*o*-C₆H₄SO₂), 127.1 (*m*-C₆H₄SO₂), 118.4 (=CH₂), 81.0 (CHO), 59.1 (CN), 56.9 (CHN), 50.6 (OMe), 33.8 (CH₂), 29.4 (CH₂), 25.9 (CH₂), 21.5 (Me); MS (CI, NH₃) *m/z* 308 [(M + H)⁺, 100], 276 (41), 266 (7), 152 (25), 137 (86), 120 (9); HRMS (CI, NH₃) *m/z* calcd for C₁₇H₂₁NO₃S (M + H)⁺ 308.1320, found 308.1321.

1-(3-Butenyl)-4-methoxy-6-[(4-methylphenyl)sulfonyl]-6-azabicyclo[3.1.0]hexane cis-14

KHMDS (2.4 mL of a 0.50 M solution in toluene, 1.2 mmol) was added dropwise to a stirred solution of hydroxy aziridine *cis*-**12** (280 mg, 0.9 mmol) in THF (20 mL) at -78 °C under N₂. After stirring at -78 °C for 30 min, MeI (0.1 mL, 1.8 mmol) was added dropwise. After stirring at -78 °C for 1 h, the resulting solution was allowed to warm to over 16 h. The reaction mixture was then poured into water (10 mL) and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic extracts were washed with water (10 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (1:1) as eluent gave methoxy aziridine *cis*-**14** (215 mg, 73%) as a colourless oil, $R_F(1:1 \text{ petrol-Et}_2O)$ 0.3; IR (film) 2928, 2857, 1319 (SO₂), 1156 (SO₂), 1117, 1091, 986 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H, o-C₆H₄SO₂), 7.30 (d, J = 8.5 Hz, 2H, m-C₆H₄SO₂), 5.84 (dddd, J = 17.0, 10.0, 7.0, 6.0 Hz, 1H, CH=CH₂), 5.08 (app. dq, J = 17.0, 2.0 Hz, 1H, CH=CH_AH_B), 5.02 (ddt, J = 10.0, 2.0, 1.0 Hz, 1H, CH=CH₄/H_B), 3.84 (ddd, J = 8.5, 8.0, 2.5 Hz, 1H, CHO), 3.45 (d, J = 2.5

Hz, 1H, CHN), 3.12 (s, 3H, OMe), 2.55-2.36 (m, 2H), 2.43 (s, 3H, Me), 2.33-2.21 (m, 2H), 2.10 (dd, J = 13.5, 8.0 Hz, 1H), 1.82 (dt, J = 12.5, 8.0 Hz, 1H), 1.68 (ddd, J = 13.5, 10.5, 8.0 Hz, 1H), 1.38 (ddt, J = 12.5, 10.5, 8.0 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 143.8 (*ipso*-C₆H₄SO₂), 138.1 (*ipso*-C₆H₄Me), 137.4 (=CH), 129.3 (*o*-C₆H₄SO₂), 127.1 (*m*-C₆H₄SO₂), 115.1 (=CH₂), 80.9 (CHO), 60.0 (CN), 57.0 (OMe), 51.2 (CHN), 31.0 (CH₂), 29.3 (CH₂), 28.4 (CH₂), 25.9 (CH₂), 21.6 (Me); MS (CI, NH₃) *m/z* 322 [(M + H)⁺, 30], 290 (25), 166 (100), 151 (60), 134 (40); HRMS (CI, NH₃) *m/z*: [M + H]⁺ calcd for C₁₇H₂₃NO₃S, 322.1469; found, 322.1477.

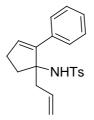
N-(1-Allyl-2-butyl-2-cyclopenten-1-yl)-4-methylbenzenesulfonamide 15a



Using general procedure A, methoxy aziridine *cis*-**13** (103 mg, 0.3 mmol) and *n*-butyllithium (0.4 mL of a 1.89 M solution in hexanes, 0.8 mmol) in Et₂O (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide **15a** (80 mg, 71%) as a white solid, mp 68-70 °C; $R_{\rm F}$ (2:1 petrol-Et₂O) 0.2; IR (CDCl₃) 3372 (NH), 2959, 2931, 2859, 1373 (SO₂), 1184 (SO₂), 1019, 815, 663, 579 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.25 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 5.61 (m, 1H, *CH*=CH₂), 5.43 (br t, J = 2.0 Hz, 1H, =CH), 5.14-5.08 (m, 2H, =CH₂), 4.88 (s, 1H, NH), 2.47-2.43 (m, 1H), 2.41 (s, 3H, Me), 2.39-2.20 (m, 3H), 2.12-2.05 (m, 1H), 1.94 (ddd, J = 13.5, 8.5, 5.0 Hz, 1H), 1.74-1.64 (br m, 1H), 1.59-1.51 (m, 1H), 1.37-1.00 (m, 4H), 0.84 (t, J = 7.0 Hz, 3H, Me); ¹³C NMR (100.6 MHz, CDCl₃) δ 144.2 (=C), 142.7 (*ipso*-C₆H₄SO₂), 139.7 (*ipso*-C₆H₄Me), 132.8 (*C*H=CH₂), 129.2 (o-C₆H₄SO₂), 127.9 (=CH), 127.0 (m-C₆H₄SO₂), 119.2 (CH=CH₂), 72.2 (CN), 43.4 (CH₂), 34.2 (CH₂), 29.8 (CH₂), 29.5 (CH₂), 25.8 (CH₂), 22.8 (CH₂), 21.4 (Me), 14.0 (Me); MS (CI, NH₃) m/z 334 [(M + H)⁺, 2], 292 (38), 189

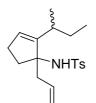
(21), 163 (100); HRMS (CI, NH₃) m/z calcd for C₁₉H₂₇NO₂S (M + NH₄)⁺ 351.2106, found 351.2100.

Using general procedure A, methoxy aziridine *cis*-**13** (123 mg, 0.4 mmol) and *n*-butyllithium (0.5 mL of a 1.89 M solution in hexanes, 1.0 mmol) in TBME (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide **15a** (108 mg, 81%) as a white solid.


N-[1-Allyl-2-(trimethylsilyl)methyl-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide 15b

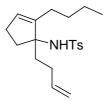
Using general procedure A, methoxy aziridine *cis*-**13** (122 mg, 0.4 mmol) and (trimethylsilyl)methyllithium (1.3 mL of a 0.77 M solution in pentane, 1.0 mmol) in Et₂O (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide **XX** (90 mg, 63%) as a white solid, mp 49-51 °C; R_F (2:1 petrol-Et₂O) 0.3; IR (CDCl₃) 3367 (NH), 3055, 2988, 1267 (SO₂), 1155 (SO₂), 843, 815, 574 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.26 (d, J = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 5.64-5.54 (m, 1H, *CH*=CH₂), 5.39 (s, 1H, =CH), 5.09 (d, J = 17.0 Hz, 1H, CH=CH_AH_B), 5.07 (d, J = 9.0 Hz, 1H, CH=CH_AH_B), 4.79 (s, 1H, NH), 2.45-2.41 (m, 1H), 2.43 (s, 3H, Me), 2.27-2.02 (m, 4H), 1.97-1.86 (m, 1H), 1.14 (d, J = 16.0 Hz, 1H, *CH*_AH_BSi), 1.06 (d, J = 16.0 Hz, 1H, CH_AH_BSi), 0.01 (s, 9H, SiMe₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 142.7 (*ipso*-C₆H₄SO₂), 141.5 (=C), 140.0 (*ipso*-C₆H₄Me), 132.9 (CH=CH₂), 129.3 (*o*-C₆H₄SO₂), 127.5 (=CH), 127.0 (*m*-C₆H₄SO₂), 119.0 (CH=*C*H₂), 72.9 (CN), 42.8 (CH₂), 33.4 (CH₂), 29.8 (CH₂), 21.4 (Me), 14.1 (CH₂Si), -0.88 (SiMe₃); MS (CI, NH₃) *m/z* 364 [(M + H)⁺, 82], 348 (15), 338 (10), 322 (100), 306 (27), 244 (27), 228 (9), 193 (60), 91 (10), 73 (32); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂NO₂SSi (M + H)⁺ 364.1765, found 354.1764.

Using general procedure A, methoxy aziridine *cis*-13 (141 mg, 0.5 mmol) and (trimethylsilyl)methyllithium (1.8 mL of a 0.65 M solution in pentane, 1.2 mmol) in TBME (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide 15b (128 mg, 77%) as a white solid.

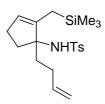

N-(1-Allyl-2-phenyl-2-cyclopenten-1-yl)-4-methylbenzenesulfonamide 15c

Using general procedure A, methoxy aziridine *cis*-**13** (204 mg, 0.7 mmol) and phenyllithium (1.3 mL of a 1.31 M solution in dibutyl ether, 1.6 mmol) in Et₂O (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide **15c** (137 mg, 58%) as a white solid, mp 85-86 °C; R_F (2:1 petrol-Et₂O) 0.2; IR (CDCl₃) 3369 (NH), 2927, 2853, 1388 (SO₂), 1155 (SO₂), 981, 607 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.28 (m, 2H, Ar), 7.15-7.11 (m, 5H, Ar), 6.05 (t, *J* = 2.5 Hz, 1H, =CH), 5.42 (ddt, *J* = 18.0, 9.5, 5.5 Hz, 1H, =CH), 4.94 (d, *J* = 18.0, 1H, CH=CH_AH_B), 4.94 (m, 3H, =CH₂ and NH), 2.61 (dd, *J* = 14.0, 9.0 Hz, 1H), 2.48-2.40 (m, 2H), 2.33- 2.26 (m, 1H), 2.30 (s, 3H, Me), 2.22-2.14 (m, 1H), 2.10-2.04 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 143.6 (=C), 142.9 (*ipso*-C₆H₄SO₂), 128.1 (CH, Ph), 127.2 (CH, Ph), 127.0 (*m*-C₆H₄SO₂), 126.9 (CH, Ph), 119.3 (CH=CH₂), 72.0 (CN), 42.7 (CH₂), 35.7 (CH₂), 29.9 (CH₂), 21.4 (Me); MS (CI, NH₃) *m/z* 371 [(M + NH₄)⁺, 14], 354 (20), 312 (30), 183 (100), 158 (5); HRMS (CI, NH₃) *m/z* calcd for C₂₁H₂₄NO₂S (M + H)⁺ 354.1528, found 354.1532.

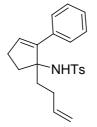
Using general procedure A, methoxy aziridine *cis*-13 (106 mg, 0.3 mmol) and phenyllithium (0.5 mL of a 1.78 M solution in dibutyl ether, 0.9 mmol) in TBME (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide 15c (83 mg, 68%) as a white solid.


N-(1-Allyl-2-sec-butyl-2-cyclopenten-1-yl)-4-methylbenzenesulfonamide 15d

Using general procedure A, methoxy aziridine cis-13 (112 mg, 0.4 mmol) and s-butyllithium (0.8 mL of a 1.10 M solution in cyclohexanes, 0.9 mmol) in Et₂O (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide 15d (95 mg, 85%) as a white solid, mp 61-63 °C; $R_{\rm F}$ (2:1 petrol-Et₂O) 0.3; IR (CDCl₃) 3369 (NH), 2965, 2930, 1330 (SO₂), 1154 (SO₂), 1056, 660 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) (~50:50 mixture of diastereoisomers) δ 7.75 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.28 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 5.65-5.53 (m, 2H, 2 x =CH), 5.13-5.07 (m, 2H, CH=CH₂), 4.75 and 4.68 (s, 1H, NH), 2.60-2.50 (m, 1H), 2.42 (s, 3H, Me), 2.33-2.20 (m, 2H), 2.14-2.00 (m, 3H), 1.94-1.83 (m, 1H), 1.56-1.45 (m, 1H), 1.40-1.26 (m, 1H), 1.07 and 1.02 (d, J = 7.0 Hz, 3H, CHMe), 0.89 and 0.85 (t, J = 7.5, 3H, CH₂Me); ¹³C NMR (100.6 MHz, CDCl₃) (~50:50 mixture of diastereoisomers) δ 151.2 and 150.9 (=C), 142.8 (*ipso*-C₆H₄SO₂), 140.4 (*ipso*-C₆H₄Me), 133.2 (CH=CH₂), 129.5 (*o*-C₆H₄SO₂), 127.4 and 127.1 (=CH), 126.8 (*m*-C₆H₄SO₂), 119.0 (CH=CH₂), 73.0 and 72.8 (CN), 42.7 and 42.5 (CH₂), 34.6 and 34.0 (CH₂), 32.1 and 32.0 (CH), 30.7 and 30.3 (CH₂), 29.6 and 29.4 (CH₂), 21.3 (Me), 21.0 (Me) 11.9 (Me); MS (CI, NH₃) m/z 351 [(M + NH_4 ⁺, 9], 334 (4), 292 (74), 189 (23), 163 (100); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂₇NO₂S $(M + NH_4)^+$ 351.2106, found 351.2105.

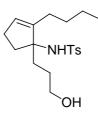

Using general procedure A, methoxy aziridine *cis*-**13** (104 mg, 0.3 mmol) and *s*-butyllithium (0.9 mL of a 1.15 M solution in cyclohexanes, 0.9 mmol) in TBME (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide **15d** (92 mg, 82%) as a white solid.

N-[1-(3-Butenyl)-2-butyl-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide 16a


Using general procedure A, *n*-butyllithium (1.0 mL of a 1.20 M solution in hexanes, 1.2 mmol) and methoxy aziridine *cis*-14 (150 mg, 0.5 mmol) in Et₂O (7 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (7:3) as eluent gave allylic sulfonamide 16a (131 mg, 80%) as a white solid, mp 66-67 °C; $R_F(7:3 \text{ petrol-Et}_2O)$ 0.2; IR (Nujol) 3258 (NH), 1325 (SO₂), 1152 (SO₂) cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.87 (d, *J* = 8.0, 2H, *o*-C₆H₄SO₂), 6.77 (d, *J* = 8.0, 2H, *m*-C₆H₄SO₂), 5.71-5.62 (m, 1H, CH=CH₂), 5.37 (s, 1H, NH), 5.23 (app. quintet, *J* = 2.0, 1H, =CH), 4.96 (app. dq, *J* = 17.0, 2.0, 1H, CH=CH_AH_B), 4.92 (app. dt, *J* = 11.0, 1.0, 1H, CH=CH_AH_B), 2.60 (ddd, *J* = 13.5, 9.0, 3.5, 1H), 2.51-2.42 (m, 1H), 2.03-1.95 (m, 2H), 1.91 (s, 3H, Me), 1.83-1.74 (m, 3H), 1.56-1.52 (m, 2H), 1.43-1.34 (m, 1H), 1.26-1.03 (m, 3H), 0.99-0.89 (m, 1H), 0.82 (t, *J* = 7.0, 3H, Me); ¹³C NMR (100.6 MHz, C₆D₆) δ 144.6 (=C), 142.2 (*ipso*-C₆H₄SO₂), 141.1 (*ipso*-C₆H₄Me), 138.3 (CH=CH₂), 129.2 (*o*-C₆H₄SO₂), 127.6 and 127.5 (*m*-C₆H₄SO₂ and =CH), 114.7 (=CH₂), 73.2 (CN), 38.3 (CH₂), 34.4 (CH₂), 30.2 (CH₂), 29.8 (CH₂), 28.5 (CH₂), 26.1 (CH₂), 23.2 (CH₂), 21.0 (Me), 14.3 (Me); MS (CI, NH₃) *m/z*: [M + H]⁺ calcd for C₂₀H₂₉NO₂S, 348.1997; found, 348.2002.

methylbenzenesulfonamide 16b

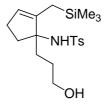
Using general procedure A, (trimethylsilyl)methyllithium (0.6 mL of a 0.63 M solution in pentane, 0.4 mmol) and methoxy aziridine *cis*-**14** (50 mg, 0.2 mmol) in Et₂O (3 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (7:3) as eluent gave allylic sulfonamide **16b** (48 mg, 82%) as a colourless oil, R_F (7:3 petrol-Et₂O) 0.3; IR (film) 3263 (NH), 2950, 2854, 1419, 1322 (SO₂), 1248, 1155 (SO₂), 1095 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.5, 2H, *o*-C₆H₄SO₂), 7.27 (d, J = 8.5, 2H, *m*-C₆H₄SO₂), 5.80-5.70 (m, 1H, CH=CH₂), 5.42-5.40 (m, 1H, =CH), 4.98-4.91 (m, 1H, CH=CH_AH_B), 4.95-4.92 (m, 1H, CH=CH_AH_B), 4.45 (s, 1H, NH), 2.43 (s, 3H, Me), 2.33-2.08 (m, 3H), 2.00-1.80 (m, 4H), 1.52-1.44 (m, 1H), 1.12 (dq, J = 16.0, 1.5, 1H, CH_AH_BSi), 1.05 (dq, J = 16.0, 2.0, 1H, CH_AH_BSi), 0.08 (br s, 9H, SiMe₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 142.8 (*ipso*-C₆H₄SO₂), 141.1 (=C), 137.9 (CH=CH₂), 137.9 (*ipso*-C₆H₄Me), 129.3 (*o*-C₆H₄SO₂), 127.6 (=CH), 127.0 (*m*-C₆H₄SO₂), 114.6 (=CH₂), 74.1 (CN), 37.1 (CH₂), 33.7 (CH₂), 30.0 (CH₂), 28.2 (CH₂), 21.5 (Me), 14.1 (CH₂Si), -0.8 (SiMe₃); MS (CI, NH₃) *m*/*z* 378 [(M + H)⁺, 35], 322 (30), 244 (45), 207 (100); HRMS (CI, NH₃) *m*/*z*: [M + H]⁺ calcd for C₂₀H₃₁NO₂SSi, 378.1923; found, 378.1909.


N-[1-(3-Butenyl)-2-phenyl-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide 16c

Using general procedure A, phenyllithium (1.0 mL of a 1.14 M solution in dibutyl ether, 1.2 mmol) and methoxy aziridine *cis*-14 (150 mg, 0.5 mmol) in Et₂O (7 mL) gave the crude product.

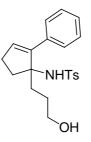
Purification by flash column chromatography on silica with petrol-Et₂O (7:3) as eluent gave allylic sulfonamide **16c** (109 mg, 63%) as a white solid, mp 85-88 °C; $R_F(7:3 \text{ petrol-Et}_2O)$ 0.1; IR (CH₂Cl₂) 3330 (NH), 3054, 2986, 1422, 1340 (SO₂), 1269, 1155 (SO₂), 896 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.76 (d, J = 8.0, 2H, o-C₆H₄SO₂), 7.28-7.26 (m, 2H, Ph), 7.05-6.99 (m, 3H, Ph), 6.68 (d, J = 8.0, 2H, m-C₆H₄SO₂), 5.77 (t, J = 2.5, 1H, =CH), 5.52-5.42 (m, 1H, C*H*=CH₂), 4.81-4.76 (m, 2H, =CH₂), 4.68 (s, 1H, NH), 2.56-2.51 (m, 1H), 2.45-2.37 (m, 1H), 2.02-1.83 (m, 3H), 1.86 (s, 3H, Me), 1.78-1.64 (m, 3H); ¹³C NMR (100.6 MHz, C₆D₆) δ 143.9 (=C), 142.4 (*ipso*-C₆H₄SO₂), 141.0 (*ipso*-C₆H₄Me), 138.0 (CH=CH₂), 135.7 (*ipso*-Ph), 133.5 (Ph), 129.3 (*o*-C₆H₄SO₂), 128.3 (Ph), 127.4, 127.3 and 127.2 (*m*-C₆H₄SO₂, Ph, =CH), 114.7 (=CH₂), 73.1 (CN), 37.5 (CH₂), 36.1 (CH₂), 30.1 (CH₂), 28.7 (CH₂), 21.0 (Me); MS (CI, NH₃) *m/z* 385 [(M + NH₄)⁺, 35], 368 (25), 312 (50), 197 (100); HRMS (CI, NH₃) *m/z*: [M + H]⁺ calcd for C₂₂H₂₅NO₂S, 348.1997; found, 348.1997.

N-{2-Butyl-[1-(3-hydroxypropyl)]-2-cyclopenten-1-yl}-4-methylbenzenesulfonamide 17a

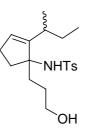


Using general procedure B, allylic sulfonamide **15a** (167 mg, 0.5 mmol) and 9-BBN (2.0 mL of a 0.50 M solution in THF, 1.0 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with hexane-EtOAc (1:1) as eluent gave sulfonamido alcohol **17a** (62 mg, 35%) as a colourless oil, $R_{\rm F}$ (1:1 hexane-EtOAc) 0.2; IR (CDCl₃) 3524 (OH), 3379 (NH), 2957, 2873, 1380 (SO₂), 1094 (SO₂), 979, 651 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.28 (d, J = 8.0 Hz, m-C₆H₄SO₂), 5.58 (d, J = 3.5 Hz, 1H, =CH), 5.40 (s, 1H, NH), 3.71-3.58 (m, 2H, CH₂OH), 2.49-2.35 (m, 1H), 2.45 (s, 3H, Me), 2.18-2.09 (m, 2H), 1.93-1.79 (m, 2H), 1.68-1.54 (m, 2H), 1.47-1.39 (m, 2H), 1.30-1.10 (m, 3H), 0.97-0.93 (m, 2H), 0.86 (t, J = 7.5 Hz, 3H, Me); ¹³C NMR (100.6 MHz, CDCl₃) δ 144.4 (=C), 142.6

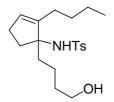
(*ipso*-C₆H₄SO₂), 139.7 (*ipso*-C₆H₄Me), 129.7 (*o*-C₆H₄SO₂), 127.0 (=CH) 126.9 (*m*-C₆H₄SO₂), 72.9 (CN), 62.5 (CH₂OH), 35.5 (CH₂), 34.0 (CH₂), 29.8 (CH₂), 29.4 (CH₂), 26.8 (CH₂), 25.8 (CH₂), 22.8 (CH₂), 21.4 (Me), 14.0 (Me); MS (CI, NH₃) *m/z* 292 [(M – C₃H₇O)⁺, 51], 196 (5), 189 (17), 181 (100); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂₉NO₃S (M - NHTs)⁺ 181.1592, found 181.1600.


N-{1-(3-Hydroxypropyl)-2-[(trimethylsilyl)methyl]-2-cyclopenten-1-yl}-4-

```
methylbenzenesulfonamide 17b
```



Using general procedure B, allylic sulfonamide **15b** (90 mg, 0.3 mmol) and 9-BBN (1.0 mL of a 0.50 M solution in THF, 0.5 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (1:4) as eluent gave sulfonamido alcohol **17b** (81 mg, 86%) as a colourless oil, $R_{\rm F}$ (1:4 petrol-Et₂O) 0.2; IR (CHCl₃) 3626 (OH), 3375 (NH), 3022, 2954, 1400, 1321 (SO₂), 1250, 1153 (SO₂), 862, 773, 665 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.94 (d, J = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 6.85 (d, J = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 6.27 (s, 1H, =CH), 5.28 (s, 1H, NH), 3.61-3.55 (m, 1H, CH_AH_BOH), 3.53-3.47 (m, 1H, CH_AH_BOH), 2.79 (br s, 1H, OH), 2.51 (ddd, J = 13.0, 9.0, 4.0 Hz, 1H), 2.43-2.34 (br m, 1H), 2.02-1.98 (m, 2H), 1.94 (s, 3H, Ar*Me*), 1.78 (ddd, J = 13.0, 9.0, 5.0 Hz, 1H), 1.71-1.62 (br m, 1H), 1.47-1.38 (br m, 2H), 1.20 (d, J = 16.0 Hz, 1H, CH_AH_BSi), 1.09 (d, J = 16.0 Hz, 1H, CH_AH_BSi), 0.04 (s, 9H, SiMe₃); ¹³C NMR (100.6 MHz, C₆D₆) δ 142.8 (*ipso*-C₆H₄SO₂), 142.3 (=C), 141.3 (*ipso*-C₆H₄Me), 129.3 (*o*-C₆H₄SO₂), 127.5 (*m*-C₆H₄SO₂), 126.9 (=CH), 73.8 (CN), 62.7 (CH₂OH), 36.4 (CH₂), 33.4 (CH₂), 30.2 (CH₂), 27.4 (CH₂), 21.1 (Me), 14.4 (CH₂Si), -0.70 (SiMe₃); MS (CI, NH₃) *m/z* 382 [(M + H)⁺, 10], 364 (10), 322 (13), 244 (27), 211 (100), 90 (7); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₃₁NO₃SSi (M + H)⁺ 382.1872, found 382.1874.

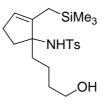
N-[1-(3-Hydroxypropyl)-2-phenyl-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide 17c


Using general procedure B, allylic sulfonamide **15c** (100 mg, 0.3 mmol) and 9-BBN (1.1 mL of a 0.50 M solution in THF, 0.6 mmol) in THF (3 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (1:1) as eluent gave sulfonamido alcohol **17c** (82 mg, 79%) as a colourless oil, $R_{\rm F}$ (1:1 petrol-EtOAc) 0.2; IR (CDCl₃) 3628 (OH), 3370 (NH), 2929, 1323 (SO₂), 1154 (SO₂), 815, 661, 581 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.34 (d, J = 8.0 Hz, 2H, A-C, $G_{\rm H}$, 4SO₂), 7.34 (d, J = 8.0 Hz, 2H, A-C, $G_{\rm H}$, 4SO₂), 7.34 (d, J = 8.0 Hz, 2H, A-R, A-R,

N-{2-*sec*-Butyl-[1-(3-hydroxypropyl)]-2-cyclopenten-1-yl}-4-methylbenzenesulfonamide 17d

Using general procedure B, allylic sulfonamide **15d** (90 mg, 0.3 mmol) and 9-BBN (1.1 mL of a 0.50 M solution in THF, 0.5 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with hexane-EtOAc (2:1) as eluent gave sulfonamido alcohol **17d** (57 mg, 60%) as a colourless oil, $R_{\rm F}$ (2:1 hexane-EtOAc) 0.3; IR (CDCl₃), 3628 (OH), 3380 (NH), 2963, 2875, 1380 (SO₂), 1120 (SO₂), 791, 728, 610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) (~50:50 mixture of diastereoisomers) δ 7.75 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.28 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 5.54-5.52 (m, 1H, =CH), 5.36 and 5.16 (s, 1H, NH), 3.66-3.54 (m, 2H, CH₂OH), 2.43 (s, 3H, Me), 2.33-2.23 (m, 1H), 2.22-1.74 (m, 5H), 1.60-1.25 (m, 5H), 1.04 and 1.01 (d, J = 7.0 Hz, 3H, CH*Me*), 0.88 and 0.85 (t, J = 7.0 Hz, 3H, CH₂*Me*); ¹³C NMR (100.6 MHz, CDCl₃) (~50:50 mixture of diastereoisomers) δ 151.4 and 151.2 (=C), 142.7 (*ipso*-C₆H₄SO₂), 140.5 and 140.4 (*ipso*-C₆H₄Me), 129.4 (o-C₆H₄SO₂), 126.7 (m-C₆H₄SO₂), 126.5 (=CH), 73.7 and 73.6 (CN), 62.6 (CH₂OH), 34.8 and 34.7 (CH₂), 34.3 (CH₂), 33.8 (CH₂), 32.0 and 31.9 (CH), 30.5 and 30.3 (CH₂), 29.7 and 29.5 (CH₂), 27.2 and 27.1 (CH₂), 21.4 (Me), 21.2 (Me), 12.0 and 11.8 (Me); MS (CI, NH₃) m/z 292 [(M - C₃H₇O)⁺, 42], 189 (24), 181 (100); HRMS (CI, NH₃) m/z calcd for C₁9H₂9NO₃S (M - NHT₅)⁺ 181.1592, found 181.1594.

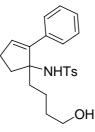
N-[2-Butyl-1-(4-hydroxybutyl)-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide 18a

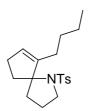


Using general procedure B, 9-BBN (1.0 mL of a 0.50 M solution in THF, 0.5 mmol) and allylic sulfonamide **16a** (83 mg, 0.2 mmol) in THF (8 mL) gave the crude product. Purification by flash column chromatography on silica with Et₂O as eluent gave alcohol **18a** (56 mg, 64%) as a white solid, mp 96-98 °C; $R_F(Et_2O)$ 0.3; IR (CH₂Cl₂) 3619 (OH), 3372 (NH), 3053, 2986, 1422, 1340 (SO₂), 1264, 1154 (SO₂), 896 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.82 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 6.77 (d, *J* = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 5.23 (br s, 1H, =CH), 4.82 (s, 1H, NH), 3.30-

3.24 (m, 2H, CH₂O), 2.58 (ddd, J = 13.5, 9.0, 3.5 Hz, 1H), 2.52-2.43 (m, 1H), 2.04-1.95 (m, 1H), 1.91 (s, 3H, Me), 1.81 (ddd, J = 13.5, 9.5, 5.0 Hz, 1H), 1.56-1.38 (m, 4H), 1.24-1.15 (m, 7H), 0.97-0.89 (m, 1H), 0.83 (t, J = 7.5 Hz, 3H, Me), 0.72 (br s, 1H, OH); ¹³C NMR (100.6 MHz, C₆D₆) δ 145.2 (=C), 142.3 (*ipso*-C₆H₄SO₂), 141.3 (*ipso*-C₆H₄Me), 129.3 (*o*-C₆H₄SO₂), 127.5 (*m*-C₆H₄SO₂), 127.2 (=CH), 73.5 (CN), 62.3 (CH₂O), 39.3 (CH₂), 34.5 (CH₂), 33.2 (CH₂), 30.2 (CH₂), 29.9 (CH₂), 26.3 (CH₂), 23.2 (CH₂), 21.1 (Me), 20.4 (CH₂), 14.3 (Me); MS (CI, NH₃) *m/z* 383 [(M + NH₄)⁺, 15], 292 (25), 195 (100); HRMS (CI, NH₃) *m/z*: [M + NH₄]⁺ calcd for C₂₀H₃₁NO₃S, 383.2368; found, 383.2367.

N-{1-(4-Hydroxybutyl)-2-[(trimethylsilyl)methyl]-2-cyclopenten-1-yl}-4-


methylbenzenesulfonamide 18b

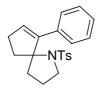

Using general procedure B, 9-BBN (0.7 mL of a 0.50 M solution in THF, 0.3 mmol) and allylic sulfonamide **16b** (64 mg, 0.2 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (7:3) as eluent gave alcohol **18b** (47 mg, 71%) as a colourless oil, $R_{\rm F}$ (3:7 petrol-Et₂O) 0.1; IR (film) 3482 (OH), 3271 (NH), 2949, 2860, 1418, 1323 (SO₂), 1248, 1155 (SO₂), 1093, 860 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.5 Hz, 2H, *o*-C₆H₄SO₂), 7.26 (d, J = 8.5 Hz, 2H, *m*-C₆H₄SO₂), 5.37-5.34 (br m, 1H, =CH), 4.76 (s, 1H, NH), 3.60 (t, J = 6.5 Hz, 2H, CH₂O), 2.43 (s, 3H, Me), 2.31-2.06 (m, 3H), 1.89-1.76 (m, 3H), 1.50 (app. quintet, J = 6.5 Hz, 2H, CH₂), 1.40-1.15 (m, 3H), 1.10 (dq, J = 16.0, 1.5 Hz, 1H, CH_AH_BSi), 0.99 (dq, J = 16.0, 2.0 Hz, 1H, CH_AH_BSi), 0.10 (s, 9H, SiMe₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 142.8 (*ipso*-C₆H₄SO₂), 141.7 (=C), 140.0 (*ipso*-C₆H₄Me), 129.3 (*o*-C₆H₄SO₂), 127.3 (=CH), 127.0 (*m*-C₆H₄SO₂), 74.1 (CN), 62.5 (CH₂O), 38.0 (CH₂), 33.7 (CH₂), 32.7 (CH₂), 29.9 (CH₂), 21.4 (Me), 20.1 (CH₂), 14.2 (CH₂Si), -0.9 (SiMe₃); MS (CI, NH₃) *m/z* 396 [(M +

H)⁺, 5], 322 (30), 244 (35), 225 (100); HRMS (CI, NH₃) *m/z*: [M + H]⁺ calcd for C₂₀H₃₃NO₃SSi, 396.2029; found, 396.2025.

N-[1-(4-Hydroxybutyl)-2-phenyl-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide 18c

Using general procedure B, 9-BBN (1.0 mL of a 0.50 M solution in THF, 0.5 mmol) and allylic sulfonamide **16c** (90 mg, 0.2 mmol) in THF (8 mL) gave the crude product. Purification by flash column chromatography on silica with Et₂O as eluent gave alcohol **18c** (65 mg, 69%) as a white solid, mp 85-88 °C; $R_{\rm F}({\rm Et_2O})$ 0.3; IR (CH₂Cl₂) 3620 (OH), 3378 (NH), 3051, 2986, 1422, 1339 (SO₂), 1265, 1153 (SO₂), 896 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.79 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.31 (dd, J = 8.0 Hz, 1.5, 2H, Ph), 7.04-6.99 (m, 3H, Ph), 6.70 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 5.79 (t, J = 2.5 Hz, 1H, =CH), 4.80 (s, 1H, NH), 3.12-3.04 (m, 2H, CH₂O), 2.56-2.50 (m, 1H), 2.48-2.41 (m, 1H), 2.01-1.79 (m, 3H), 1.86 (s, 3H, Me), 1.62-1.55 (m, 1H), 1.15-0.89 (m, 4H), 0.40 (t, J = 5.0 Hz, 1H, OH); ¹³C NMR (100.6 MHz, C₆D₆) δ 144.3 (=C), 142.3 (*ipso*-C₆H₄SO₂), 127.4 (*m*-C₆H₄SO₂), 127.2 (=CH), 73.4 (CN), 62.1 (CH₂O), 38.4 (CH₂), 36.0 (CH₂), 32.8 (CH₂), 30.2 (CH₂), 21.0 (Me), 20.6 (CH₂); MS (CI, NH₃) *m/z* 403 [(M + NH₄)⁺, 50], 386 (15), 312 (20), 215 (100); HRMS (CI, NH₃) *m/z*: [M + NH₄]⁺ calcd for C₂₂H₂₇NO₃S, 403.2055; found, 403.2051.

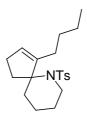
Using general procedure C, sulfonamido alcohol **17a** (60 mg, 0.2 mmol), PPh₃ (54 mg, 0.2 mmol) and DIAD (38 μ L, 0.2 mmol) in THF (2 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (8:1) as eluent gave aza-spirocycle **19a** (37 mg, 65%) as a colourless oil, $R_{\rm F}$ (8:1 petrol-EtOAc) 0.3; IR (CHCl₃) 2960, 2931, 2860, 1334 (SO₂), 1154 (SO₂), 1092, 754, 725 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.26 (d, J = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 5.48 (br t, J = 2.0 Hz, 2H, =CH), 3.55-3.50 (m, 1H, CH_AH_BN), 3.41-3.35 (m, 1H, CH_AH_BN), 2.56-2.49 (m, 2H), 2.41 (s, 3H, Me), 2.20-2.12 (m, 1H), 1.98-1.92 (m, 1H), 1.89-1.70 (m, 4H), 1.44-1.33 (m, 3H), 1.27-1.19 (m, 3H), 0.88 (t, J = 7.5 Hz, 3H, Me); ¹³C NMR (100.6 MHz, CDCl₃) δ 146.0 (=C), 142.5 (*ipso*-C₆H₄SO₂), 138.6 (*ipso*-C₆H₄Me), 129.2 (*o*-C₆H₄SO₂), 127.0 (*m*-C₆H₄Me), 125.4 (=CH), 80.4 (CN), 49.4 (CH₂N), 39.1 (CH₂), 37.4 (CH₂), 29.9 (CH₂), 29.4 (CH₂), 26.3 (CH₂), 23.2 (CH₂), 22.9 (CH₂), 21.6 (Me), 14.1 (Me); MS (CI, NH₃) *m/z* 334 [(M + H)⁺, 100], 178 (12); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂₇NO₂S (M + H)⁺ 334.1839, found 334.1834.


6-[(4-Methylphenyl)sulfonyl]-1-[(trimethylsilyl)methyl]-6-azaspiro[4.4]non-1-ene 19b

Using general procedure C, sulfonamido alcohol **17b** (73 mg, 0.2 mmol), PPh₃ (60 mg, 0.2 mmol) and DIAD (45 μ L, 0.2 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (20:1) as eluent gave aza-spirocycle **19b** (53 mg, 76 %) as a white solid, mp 60-61 °C; *R*_F(20:1 petrol-EtOAc) 0.2; IR (CHCl₃) 3020,

2956, 1456, 1334 (SO₂), 1250, 1153 (SO₂),1095, 862, 671 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.82 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₆SO₂), 6.82 (d, *J* = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 5.46 (app. quintet, J = 2.0 Hz, 1H, =CH), 3.37-3.32 (m, 1H, CH_AH_BN), 3.27 (m, 1H, CH_AH_BN), 2.64-2.48 (m, 2H), 2.11-2.02 (br m, 1H), 1.92 (s, 3H, Me), 1.69 (dq, *J* = 16.0, 2.0 Hz, 1H, CH_AH_BSi), 1.61-1.54 (m, 2H, CH and CH_AH_BSi), 1.33-1.23 (m, 4H), 0.11 (s, 9H, SiMe₃); ¹³C NMR (100.6 MHz, C₆D₆) δ 143.8 (=C), 142.1 (*ipso*-C₆H₄SO₂), 140.0 (*ipso*-C₆H₄Me), 129.3 (*o*-C₆H₄SO₂), 127.6 (*m*-C₆H₄SO₂), 125.0 (=CH), 81.5 (CN), 49.4 (CH₂N), 38.4 (CH₂), 36.3 (CH₂), 29.6 (CH₂), 23.2 (CH₂), 21.0 (Me), 14.9 (CH₂Si), -0.6 (SiMe₃); MS (CI, NH₃) *m/z* 364 [(M + H)⁺, 100], 226 (17), 90 (6); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂₉NO₂SSi (M + H)⁺ 364.1767, found 354.1763.

6-[(4-Methylphenyl)sulfonyl]-1-phenyl-6-azaspiro[4.4]non-1-ene 19c


Using general procedure C, sulfonamido alcohol **17c** (40 mg, 0.1 mmol), PPh₃ (34 mg, 0.1 mmol) and DIAD (30 µL, 0.1 mmol) in THF (4 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (8:1) as eluent gave aza-spirocycle **19c** (23 mg, 61%) as a white solid, mp 108-110 °C; $R_F(8:1 \text{ petrol-EtOAc})$ 0.2; IR (CHCl₃) 2977, 2878, 1495, 1339 (SO₂), 1155 (SO₂), 1094 cm ⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.36-7.33 (m, 2H, Ph), 7.20-7.18 (m, 3H, Ph), 7.11 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 6.19 (t, J = 2.5 Hz, 1H, =CH), 3.67-3.63 (td, J = 8.5, 2.5 Hz, 1H, CH_AH_BN), 3.37-3.31 (m, 1H, CH_AH_BN), 2.79-2.67 (m, 2H), 2.37-2.26 (m, 2H), 2.36 (s, 3H, Me), 2.29-1.94 (m, 4H); ¹³C NMR (100.6 MHz, CDCl₃) 144.5 (=C), 142.5 (*ipso*-C₆H₄SO₂), 137.9 (*ipso*-C₆H₄Me), 135.7 (*ipso*-Ph), 130.7 (=CH), 129.1 (o-C₆H₄SO₂), 127.9 (CH, Ph), 127.1 (CH, Ph), 127.0 (CH, Ph), 126.7 (m-C₆H₄SO₂), 79.7 (CN), 48.8 (CH₂N), 39.1 (CH₂), 38.9 (CH₂), 29.5 (CH₂), 23.3

(CH₂), 21.4 (Me); MS (CI, NH₃) m/z 354 [(M + H)⁺, 100], 198 (6); HRMS (CI, NH₃) m/z calcd for C₂₁H₂₃NO₂S (M + H)⁺ 354.1528, found 354.1525.

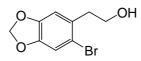
1-sec-Butyl-6-[(4-methylphenyl)sulfonyl]-6-azaspiro[4.4]non-1-ene 19d

Using general procedure C, sulfonamido alcohol **17d** (36 mg, 0.1 mmol), PPh₃ (31 mg, 0.1 mmol) and DIAD (24 μ L, 0.1 mmol) in THF (2 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (8:1) as eluent gave aza-spirocycle **19d** (24 mg, 71%) as a colourless oil, $R_{\rm F}$ (8:1 petrol-EtOAc) 0.3; IR (CHCl₃) 2964, 1456, 1336 (SO₂), 1153 (SO₂), 787, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) (~50:50 mixture of diastereoisomers) δ 7.75-7.72 (m, 2H, *o*-C₆H₄SO₂), 7.28-7.26 (m, 2H, *m*-C₆H₄SO₂), 5.55-5.52 (m, 1H, =CH), 3.42-3.33 (m, 2H, CH₂N), 2.55-2.44 (m, 2H), 2.42 (s, 3H, Me), 2.22-2.07 (m, 2H), 2.04-1.90 (m, 1H), 1.86-1.74 (m, 2H), 1.61-1.49 (m, 1H), 1.44-1.27 (m, 3H), 1.23 and 1.07 (d, *J* = 7.0 Hz, 3H, CH*Me*), 0.96 and 0.89 (t, *J* = 7.5 Hz, 3H, CH₂*Me*); ¹³C NMR (100.6 MHz, CDCl₃) (~50:50 mixture of diastereoisomers) δ 153.2 and 152.2 (=C), 142.6 (*ipso*-C₆H₄SO₂), 138.6 (*ipso*-C₆H₄Me), 129.4 (*o*-C₆H₄SO₂), 127.2 and 127.1 (*m*-C₆H₄SO₂), 124.7 and 124.4 (=CH), 81.3 (CN), 49.3 (CH₂N), 39.2 and 38.9 (CH₂), 36.6 (CH₂), 32.4 and 32.3 (CH), 31.6 (CH₂), 29.8 and 29.1 (CH₂), 23.3 (CH₂), 22.6 and 22.1 (Me), 21.6 and 21.4 (Me), 12.3 and 11.8 (Me); MS (CI, NH₃) *m/z* 334 [(M + H)⁺, 100], 178 (10); HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂₇NO₂S (M + H)⁺ 334.1841, found 334.1841.

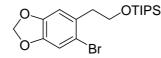
Using general procedure C, PPh₃ (46 mg, 0.2 mmol), DIAD (34 μ L, 0.2 mmol) and sulfonamido alcohol **18a** (53 mg, 0.1 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (8:2) as eluent gave aza-spirocycle **20a** (40 mg, 79%) as a colourless oil, $R_F(8:2 \text{ petrol-Et}_2O)$ 0.2; IR (CH₂Cl₂) 3082, 3037, 2937, 1341 (SO₂), 1265, 1160 (SO₂) cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.74 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 6.79 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 5.41 (app. quintet, J = 2.0 Hz, 1H, =CH), 3.86 (dtd, J = 12.0, 4.5, 1.5 Hz, 1H, CH_AH_BN), 2.75-2.66 (m, 1H), 2.51 (td, J = 12.0, 3.0 Hz, 1H, CH_AH_BN), 2.13-1.98 (m, 2H), 1.93-1.78 (m, 2H), 1.90 (s, 3H, Me), 1.75-1.54 (m, 4H), 1.52-1.42 (m, 2H), 1.36-1.22 (m, 3H), 1.14-1.05 (m, 1H), 1.02-0.98 (m, 1H), 1.01 (t, J = 7.5 Hz, 3H, Me); ¹³C NMR (100.6 MHz, C₆D₆) δ 150.0 (=C), 142.4 (*ipso*-C₆H₄SO₂), 138.8 (*ipso*-C₆H₄Me), 129.2 (o-C₆H₄SO₂), 128.1 (m-C₆H₄SO₂), 123.0 (=CH), 75.4 (CN), 46.3 (CH₂N), 37.8 (CH₂), 31.5 (CH₂), 30.1 (CH₂), 29.7 (CH₂), 28.1 (CH₂), 25.8 (CH₂), 23.7 (CH₂), 21.1 (Me), 21.0 (CH₂), 14.5 (CH₂); MS (CI, NH₃) *m/z* 348 [(M + H)⁺, 100], 192 (15); HRMS (CI, NH₃) *m/z*: [M + H]⁺ calcd for C₂₀H₂₉NO₂S, 348.1997; found, 348.1993.

6-[(4-Methylphenyl)sulfonyl]-1-[(trimethylsilyl)methyl]-6-azaspiro[4.5]dec-1-ene 20b

Using general procedure C, PPh₃ (35 mg, 0.1 mmol), DEAD (17 μ L, 0.1 mmol) and sulfonamido alcohol **18b** (44 mg, 0.1 mmol) in THF (2 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (9:1) as eluent gave aza-spirocycle **20b** (36


mg, 87%) as a white solid, mp 64-66 °C, $R_F(9:1 \text{ petrol-Et}_2O)$ 0.1; IR (Nujol mull) 1345 (SO₂), 1247, 1161 (SO₂), 1092, 861 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.76 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 6.80 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 5.38-5.36 (br m, 1H, =CH), 3.84-3.81 (m, 1H, CH_AH_BN), 2.54-2.48 (m, 1H, CH_AH_BN), 2.24-2.18 (m, 1H), 2.15-2.06 (m, 1H), 2.01-1.93 (m, 1H), 1.92 (s, 3H, Me), 1.74-1.64 (m, 2H), 1.61-1.55 (m, 2H), 1.36-1.21 (m, 3H), 1.14-1.02 (m, 1H, CH_AH_BSi), 0.97 (br d, J = 13.0 Hz, 1H, CH_AH_BSi), 0.19 (s, 9H, SiMe₃); ¹³C NMR (100.6 MHz, C₆D₆) δ 146.6 (=C), 142.4 (*ipso*-C₆H₄SO₂), 138.8 (*ipso*-C₆H₄Me), 129.3 (o-C₆H₄SO₂), 128.2 (m-C₆H₄SO₂), 123.1 (=CH), 75.9 (CN), 46.4 (CH₂N), 37.6 (CH₂), 29.7 (CH₂), 29.3 (CH₂), 25.7 (CH₂), 21.1 (Me), 21.0 (CH₂), 16.8 (CH₂Si), -0.2 (SiMe₃); MS (CI, NH₃) m/z 378 [(M + H)⁺, 100]; HRMS (CI, NH₃) m/z: [M + H]⁺ calcd for C₂₀H₃₁NO₂SSi, 378.1923; found, 378.1916.

6-[(4-Methylphenyl)sulfonyl]-1-phenyl-6-azaspiro[4.5]dec-1-ene 20c


Using general procedure C, PPh₃ (51 mg, 0.2 mmol), DIAD (37 µL, 0.2 mmol) and sulfonamido alcohol **18c** (62 mg, 0.2 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (8:2) as eluent gave aza-spirocycle **20c** (45 mg, 76%) as a white solid, mp 109-110 °C, $R_F(8:2 \text{ petrol-Et}_2O)$ 0.1; IR (CH₂Cl₂) 3073, 3004, 2966, 1342 (SO₂), 1266, 1161 (SO₂) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.0, 1.0Hz, 2H, *o*-Ph), 7.49 (d, J = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.30 (dd, J = 8.0, 7.5 Hz, 2H, *m*-Ph), 7.23 (tt, J = 7.5, 1.0 Hz, 1H, *p*-Ph), 7.19 (d, J = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 6.19 (t, J = 2.5 Hz, 1H, =CH), 3.75 (dtd, J = 12.0, 3.5, 1.5 Hz, 1H, CH_AH_BN), 2.90 (td, J = 12.0, 3.0 Hz, 1H, CH_AH_BN), 2.46 (dddd, J = 17.5, 9.0, 3.5, 3.0 Hz, 1H), 2.40 (s, 3H, Me), 2.39-2.07 (m, 4H), 1.79-1.66 (m, 2H), 1.64-1.52 (m, 2H), 1.44-1.40 (m, 1H); ¹³C NMR (100.6 MHz, C₆D₆) δ 147.4 (=C), 143.0 (*ipso*-C₆H₄SO₂), 136.9 and 135.9 (*ipso*-C₆H₄Me and *ipso*-Ph), 129.1, (*o*-C₆H₄SO₂), 128.0, 127.8 and 127.6 (m-C₆H₄SO₂, m-Ph, and o-Ph), 126.6 and 126.5 (=CH and p-Ph), 74.1 (CN), 46.2 (CH₂N), 36.6 (CH₂), 32.0 (CH₂), 29.3 (CH₂), 25.4 (CH₂), 21.5 (Me), 20.9 (CH₂); MS (CI, NH₃) m/z 368 [(M + H)⁺, 100], 212 (15); HRMS (CI, NH₃) m/z: [M + H]⁺ calcd for C₂₂H₂₅NO₂S, 368.1684; found, 368.1684.

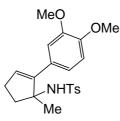
2-(6-Bromo-1,3-benzodioxol-5-yl)ethanol⁴

Br₂ (0.7 mL, 14.4 mmol) was added dropwise to a stirred solution of 2-(1,3-benzodioxol-5-yl)-1ethanol (1.7 g, 10.3 mmol), in CH₂Cl₂ (20 mL) ar rt under N₂. After stirring at rt for 30 min, saturated Na₂SO_{3(aq)} (20 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (3:2) as eluent gave alcohol 2-(6-Bromo-1,3benzodioxol-5-yl)ethanol (2.1 g, 82%) as a white solid, mp 79-80 °C; R_F (2:1 petrol-EtOAc) 0.3; ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 1H, CH, Ar), 6.78 (s, 1H, CH, Ar), 5.96 (s, 2H, OCH₂O), 3.86 (t, *J* = 6.5 Hz, 2H, CH₂O), 2.94 (t, *J* = 6.5 Hz, 2H, CH₂), 1.49 (s, 1H, OH); Spectroscopic data consistent with that reported in the literature.⁴

[2-(6-Bromo-1,3-benzodioxol-5-yl)-ethoxy]-triisopropyl-silane 27

TIPSCl (0.6 mL, 2.9 mmol) was added dropwise to a stirred solution of 2-(6-Bromo-1,3benzodioxol-5-yl)ethanol (650 mg, 2.7 mmol) and imidazole (380 mg, 5.6 mmol) in DMF (10 mL) at rt under N₂. The resulting solution was stirred at rt for 72 h. Water (10 mL) and EtOAc (10 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 10 mL) and the combined organic extracts were washed with water (3 x 20 mL) and brine (10mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (99:1) as eluent gave aryl bromide **27** (960 mg, 90%) as a colourless oil, R_F (99:1 petrol-EtOAc) 0.2; IR (CHCl₃) 3020, 2943, 2868, 1504, 1477, 1217, 1109, 1045, 937, 881, 862, 783, 675 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 1H, CH, Ar), 6.80 (s, 1H, CH, Ar), 5.94 (s, 2H, OCH₂O), 3.85 (t, *J* = 7.0 Hz, 2H, CH₂OH), 2.92 (t, *J* = 7.0 Hz, 2H, ArCH₂), 1.12-1.01 (m, 21H, C*H*Me and CH*Me*); ¹³C NMR (100.6 MHz, CDCl₃) δ 147.0 (*ipso*-C₆H₂O), 146.8 (*ipso*-C₆H₂O), 131.4 (*ipso*-C₆H₂CH₂), 114.5 (*ipso*-C₆H₂Br), 112.5 (CH, Ar), 111.1 (CH, Ar), 101.5 (OCH₂O), 62.8 (CH₂O), 39.6 (ArCH₂), 17.9 (CH*Me*₂), 11.9 (SiCH); MS (CI, NH₃) *m/z* 401 [(M + H)⁺, 12] 376 (56), 374 (55), 359 (34), 357 (33), 244 (16), 242 (16), 229 (98), 227 (100); HRMS (CI, NH₃) *m/z* calcd for C₁₈H₂₉O₃⁷⁹BrSi (M + H)⁺ 401.1148, found 401.1145.

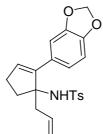
N-(1-Methyl-2-phenyl-2-cyclopenten-1-yl)-4-methylbenzenesulfonamide 24a


Using general procedure A, methoxy aziridine *cis*-**2** (105 mg, 0.4 mmol) and phenyllithium (0.6 mL of a 1.70 M solution in dibutylether, 0.9 mmol) in Et₂O (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (1:1) as eluent gave allylic sulfonamide **24a** (83 mg, 69%) as a pale yellow solid, mp 104-108 °C; R_F (1:1 petrol-Et₂O) 0.3; IR (CHCl₃) 3369 (NH), 3024, 1599, 1495, 1331 (SO₂), 1215, 1153 (SO₂), 1090, 974, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.29-7.26 (m, 2H, m-C₆H₄SO₂), 7.17-7.13 (m, 5H, Ph), 5.96 (s, 1H, =CH), 4.89 (s, 1H, NH), 2.41-2.17 (m, 3H), 2.38 (s, 3H, Me), 1.92-1.84 (m, 1H), 1.41 (s, 3H, Me); ¹³C NMR (400 MHz, CDCl₃) δ 146.3 (=C), 142.7 (*ipso*-C₆H₄SO₂), 139.5 (*ipso*-C₆H₄Me), 134.5 (*ipso*-Ph), 131.2 (=CH), 129.2 (o-C₆H₄SO₂), 127.9 (CH, Ph), 127.6 (CH, Ph), 127.0 (CH, Ph), 126.9 (m-C₆H₄SO₂), 69.2 (CN), 40.2 (CH₂), 29.1 (CH₂), 24.6 (Me), 21.2 (Me); MS (CI, NH₃) m/z 328 [(M + H)⁺, 9], 312 (59),

189 (7), 157 (100); HRMS (CI, NH₃) m/z calcd for C₁₉H₂₁NO₂S (M + H)⁺ 328.1371, found 328.1368.

n-Butyllithium (0.6 mL of a 1.54 M solution in hexanes, 0.9 mmol) was added dropwise to a stirred solution of bromobenzene (94 μ L, 0.9 mmol) in THF (3 mL) at -78 °C under N₂. The resulting solution was stirred at -78 °C for 1 h. Then, this solution was added *via* canula to a stirred solution of methoxy aziridine *cis*-2 (100 mg, 0.4 mmol) in Et₂O (5 mL) at -78 °C under N₂. After 5 min, the reaction mixture was allowed to warm to rt and stirred at rt for 1 h. Saturated NH₄Cl_(aq) (5 mL) was added and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-Et₂O (2:1) as eluent gave allylic sulfonamide 24a (54 mg, 46%) as a white solid.

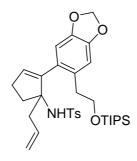
N-{[2-(3,4-Dimethoxybenzene)]-1-methyl-2-phenyl-2-cyclopenten-1-yl}-4-


methylbenzenesulfonamide 24b

n-Butyllithium (0.6 mL of a 1.54 M solution in hexanes, 0.9 mmol) was added dropwise to a stirred solution of 4-bromoveratrole **25** (0.1 mL, 0.9 mmol) in THF (3 mL) at -78 °C under N₂. The resulting solution was stirred at -78 °C for 1 h. Then, this solution was added *via* canula to a stirred solution of methoxy aziridine *cis*-**2** (100 mg, 0.4 mmol) in Et₂O (5 mL) at -78 °C under N₂. After 5 min, the reaction mixture was allowed to warm to rt and stirred at rt for 1 h. Saturated NH₄Cl_(aq) (5 mL) was added and the layers were separated. The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under

reduced pressure to give the crude product. Purification by flash column chromatography on silica with CH₂Cl₂-acetone (99.5:0.5) as eluent gave allylic sulfonamide **24b** (64 mg, 46%) as a white solid, mp 104-108 °C; $R_{\rm F}$ (99.5:0.5 CH₂Cl₂-acetone) 0.2; IR (CHCl₃) 3367 (NH), 2937, 2839, 1601, 1514, 1464, 1406, 1325 (SO₂), 1151 (SO₂), 1090, 1026, 874, 658 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.23 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 6.95-6.93 (m, 2H, Ar), 6.74 (d, J = 9.0 Hz, 1H, Ar), 5.96 (t, J = 2.5 Hz, 1H,=CH), 5.01 (s, 1H, NH), 3.86 (s, 3H, OMe), 3.78 (s, 3H, OMe), 2.47-2.23 (m, 3H), 2.40 (s, 3H, Me), 1.92 (ddd, J = 13.0, 7.5, 5.5 Hz, 1H), 1.51 (s, 3H, Me); ¹³C NMR (400 MHz, CDCl₃) δ 148.4 (2 x *ipso*-C₆H₄SO₂), 127.5 (*ipso*-Ar), 126.9 (m-C₆H₄SO₂), 119.5 (m-C₆H₃OMe), 110.7 (o-C₆H₃OMe), 110.4 (o-C₆H₃OMe), 69.4 (CN), 55.8 (OMe), 55.7 (OMe), 40.4 (CH₂), 29.0 (CH₂), 24.9 (Me), 21.4 (Me); MS (CI, NH₃) m/z 405 [(M + NH₄)⁺, 13], 387 (36), 217 (100); HRMS (CI, NH₃) m/z calcd for C₂₁H₂₅NO₄S (M + NH₄)⁺ 405.1848, found 405.1848.

N-(1-Allyl-2-1,3-benzodioxol-5-yl-cyclopent-2-enyl)-4-methyl-enzenesulfonamide 15e

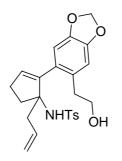


Using general procedure D, methoxy aziridine *cis*-13 (101 mg, 0.3 mmol), aryl bromide 26 (0.1 mL, 1.0 mmol) and *n*-butyllithium (0.7 mL of a 1.40 M solution in hexanes, 1.0 mmol) in Et₂O (8 mL) gave the crude product. Purification by flash column chromatography on silica with CH₂Cl₂ as eluent gave allylic sulfonamide 15e (83 mg, 64%) as a white solid, mp 115-116 °C; $R_{\rm F}$ (CH₂Cl₂) 0.3; IR (CHCl₃) 3367 (NH), 3032, 2894, 1504, 1439, 1331 (SO₂), 1154 (SO₂), 1093, 984, 937, 813, 574 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.26 (d, *J* = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 6.91 (dd, *J* = 8.0, 1.5 Hz, 1H, *p*-C₆H₃O), 6.87 (d, *J* = 1.5 Hz, 1H, *o*-C₆H₃O), 6.71 (d, *J* = 8.0 Hz, 1H, *m*-C₆H₃O), 6.06 (t, *J* = 2.5 Hz, 1H, =CH), 5.97 (s,

2H, OCH₂O), 5.55 (ddt, J = 16.0, 9.0, 5.5 Hz, 1H, CH=CH₂), 5.10 (d, J = 5.5 Hz, 1H, CH=CH_AH_B), 5.08 (d, J = 16.0 Hz, 1H, CH=CH_AH_B), 5.00 (s, 1H, NH), 2.71 (dd, J = 14.0, 9.0 Hz, 1H), 2.57-2.49 (m, 2H), 2.44 (s, 3H, Me), 2.41-2.37 (m, 1H), 2.31-2.23 (m, 1H), 2.21 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 147.3 (*ipso*-C₆H₃O), 146.7 (*ipso*-C₆H₃O), 143.2 (=C), 142.9 (*ipso*-C₆H₄SO₂), 139.5 (*ipso*-C₆H₄Me), 132.8 (=CH), 132.7 (=CH), 129.3 (*o*-C₆H₄SO₂), 129.1 (*ipso*-Ar), 127.0 (*m*-C₆H₄SO₂), 120.5 (*p*-C₆H₃O), 119.3 (=CH₂), 107.9 (CH, C₆H₃O), 107.6 (CH, C₆H₃O), 100.9 (OCH₂O), 72.0 (CN), 42.8 (CH₂), 35.7 (CH₂), 29.7 (CH₂), 21.4 (Me); MS (CI, NH₃) *m/z* 398 [(M + H)⁺, 23] 356 (49), 227 (100), 201 (11); HRMS (CI, NH₃) *m/z* calcd for C₂₂H₂₃NO₄S (M + H)⁺ 398.1426, found 398.1421.

Using general procedure D, methoxy aziridine *cis*-13 (104 mg, 0.3 mmol), aryl bromide 26 (0.1 mL, 1.0 mmol) and *n*-butyllithium (0.7 mL of a 1.40 M solution in hexanes, 1.0 mmol) in TBME (8 mL) gave the crude product. Purification by flash column chromatography on silica with CH_2Cl_2 as eluent gave allylic sulfonamide 15e (73 mg, 54%) as a white solid.

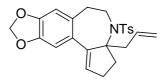
N-{1-Allyl-2-[6-(2-triisopropylsilanyloxy-ethyl)-1,3-benzodioxol-5-yl]-cyclopent-2-enyl}-4methyl-benzenesulfonamide 15f



Using general procedure D, methoxy aziridine *cis*-13 (406 mg, 1.3 mmol), aryl bromide 27 (1.6 g, 4.0 mmol) and *n*-butyllithium (1.6 mL of a 2.52 M solution in hexanes, 4.0 mmol) in Et₂O (20 mL) gave the crude product. Purification by flash column chromatography on silica with CH₂Cl₂ as eluent gave allylic sulfonamide 15f (262 mg, 43%) as a white solid, mp 138-140 °C; $R_{\rm F}$ (CH₂Cl₂) 0.3; IR (CHCl₃) 3357 (NH), 2945, 2867, 1731, 1484, 1329 (SO₂), 1153 (SO₂), 1094, 909, 714, 680 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 7.28 (d,

J = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 6.82 (s, 1H, CH, Ar), 6.76 (s, 1H, CH, Ar), 5.95 (d, *J* = 1.5 Hz, 1H, OCH_ACH_BO), 5.94 (d, *J* = 1.5 Hz, 1H, OCH_ACH_BO), 5.74 (t, *J* = 2.0 Hz, 1H, =CH), 5.66-5.55 (m, 1H, =CHCH₂), 5.13-5.06 (m, 2H, =CH₂), 4.53 (s, 1H, NH), 3.74 (t, *J* = 7.5 Hz, CH₂O), 2.79-2.67 (m, 2H, CH₂), 2.56 (dd, *J* = 14.5, 8.0 Hz, 1H), 2.52-2.37 (m, 1H), 2.42 (s, 3H, Me), 2.34-2.26 (m, 3H), 2.14-2.09 (m, 1H), 1.10-0.90 (m, 21H, CHMe and CHMe); ¹³C NMR (100.6 MHz, C₆D₆) δ 147.0 (*ipso*-C₆H₂O), 145.7 (*ipso*-C₆H₂O), 142.9 (*ipso*-C₆H₄SO₂), 142.9 (=C), 140.3 (*ipso*-C₆H₄Me), 133.7 (=CH), 132.9 (=CH), 131.6 (*ipso*-Ar), 129.5 (*o*-C₆H₄SO₂), 127.5 (*ipso*-Ar), 126.7 (*m*-C₆H₄SO₂), 119.3 (=CH₂), 110.1 (CH, Ar), 109.1 (CH, Ar), 101.0 (OCH₂O), 72.7 (CN), 65.2 (CH₂O), 44.2 (CH₂), 36.8 (CH₂), 33.7 (CH₂), 30.5 (CH₂), 21.5 (Ar*Me*), 17.9 (3 x CH*Me*₂); MS (CI, NH₃) *m/z* 598 [(M + H)⁺, 3] 556 (93), 427 (15), 383 (19), 253 (100), 211 (10), 189 (20), 171 (6), 108 (10); HRMS (CI, NH₃) *m/z* calcd for C₃₃H₄₈NO₅SiS (M + H)⁺ 599.3101, found 599.3086.

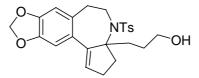
Using general procedure D, methoxy aziridine *cis*-**13** (144 mg, 0.5 mmol), aryl bromide **27** (564 mg, 1.4 mmol) and *n*-butyllithium (1.0 mL of a 1.40 M solution in hexanes, 1.4 mmol) in TBME (10 mL) gave the crude product. Purification by flash column chromatography on silica with CH_2Cl_2 as eluent gave allylic sulfonamide **15f** (103 mg, 37%) as a white solid.


N-{1-Allyl-2-[6-(2-hydroxy-ethyl)-1,3-benzodioxol-5-yl]-cyclopent-2-enyl}-4-methylbenzenesulfonamide

TBAF (0.4 mL of a 1.0 M solution in THF, 0.4 mmol) was added to a stirred solution of allylic sulfonamide **15f** (43 mg, 0.1 mmol) in THF (4 mL) at rt under N_2 . The resulting mixture was

heated at reflux for 1 h then cooled to rt. Water (5 mL) and EtOAc (5 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (3:2) as eluent gave N-{1-Allyl-2-[6-(2-hydroxy-ethyl)-1,3-benzodioxol-5-yl]-cyclopent-2envl}-4-methyl-benzenesulfonamide (32 mg, 100%) as a white foam, $R_{\rm F}$ (3:2 petrol-EtOAc) 0.2; IR (CHCl₃) 3619 (OH), 3355 (NH), 2928, 1601, 1374, 1327 (SO₂), 1153 (SO₂), 1043, 937, 752 cm⁻¹: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.0 Hz, 2H, o-C₆H₄SO₂), 7.23 (d, J = 8.0 Hz, 2H, m-C₆H₄SO₂), 6.80 (s, 1H, CH, Ar), 6.64 (s, 1H, CH, Ar), 5.96-5.94 (m, 2H, OCH₂O), 5.87 (s, 1H, NH), 5.70 (t, J = 2.0 Hz, 1H, =CH), 5.64 (m, 1H, CH=CH₂), 5.12 (d, J = 16.0 Hz, 1H, CH=CH_A H_B), 5.06 (d, J = 10.0 Hz, 1H, CH=C H_A H_B), 3.93-3.88 (m, 1H, C H_A H_B O), 3.85-3.79 (m, 1H, CH_AH_BO), 3.02 (ddd, J = 14.5, 9.0, 6.5 Hz, 1H, CHAr), 2.68-2.62 (m, 2H), 2.44-2.12 (5H), 2.41 (s, 3H, Me); ¹³C NMR (100.6 MHz, CDCl₃) δ 147.2 (*ipso*-C₆H₂O), 145.6 (*ipso*-C₆H₂O), 142.6 (=C), 142.4 (*ipso*-C₆H₄SO₂), 140.7 (*ipso*-C₆H₄Me), 134.7 (=CH), 133.0 (=CH), 131.8 (ipso-Ar), 129.4 (o-C₆H₄SO₂), 128.4 (ipso-Ar), 126.6 (m-C₆H₄SO₂), 119.1 (=CH₂), 109.0 (CH, Ar), 108.9 (CH, Ar), 101.0 (OCH₂O), 72.7 (C-N), 63.6 (CH₂O), 43.4 (CH₂), 35.4 (CH₂), 34.9 (CH₂), 30.7 (CH₂), 21.5 (Me); MS (CI, NH₃) m/z 442 [(M + H)⁺, 23] 286 (13), 271 (100), 246 (13), 189 (42): HRMS (CI, NH₃) m/z calcd for C₂₄H₂₇NO₅S (M + NH₄)⁺ 459.1954, found 459.1956.

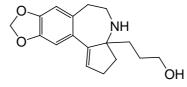
3a-Allyl-4-[(4-methylphenyl)sulfonyl]-2,3,3a,4,5,6-hexahydrocyclopenta[*a*][1,3]dioxolo[4,5*h*][3]benzazepine 28



DIAD (0.2 mL, 0.9 mmol) was added to a stirred solution of the sulfonamido alcohol (342 mg, 0.8 mmol) and PPh₃ (244 mg, 0.9 mmol) in toluene (10 mL) at 0 $^{\circ}$ C under N₂. After being

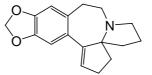
allowed to warm to rt, the resulting solution was stirred for 14 h. Then, the solvent was evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (6:1) as eluent gave bicyclic sulfonamide 28 (328 mg, 100%) as a white foam, $R_{\rm F}(6:1 \text{ petrol-EtOAc}) 0.2$; IR (CHCl₃) 2899, 2254, 1483, 1320 (SO₂), 1247, 1153 (SO₂), 1043, 936 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H, $o-C_6H_4SO_2$), 7.29 (d, J = 8.0 Hz, 2H, $m-C_6H_4SO_2$), 6.63 (s, 1H, CH, Ar), 6.48 (s, 1H, CH, Ar), 5.96 (t, J = 2.5 Hz, 1H, =CH), 5.93 (d, J = 1.5 Hz, 1H, OCH_AH_BO), 5.91 (d, J = 1.5 Hz, 1H, OCH_AH_BO), 5.47 (dddd, J = 17.0, 10.0, 8.5, 6.0 Hz, 1H, $CH=CH_2$), 4.99 (d, J = 17.5 Hz, 1H, CH=CH_A H_B), 4.96 (d, J = 10.5 Hz, 1H, CH=C H_A H_B), 3.70-3.68 (m, 2H), 3.33 (dd, J = 13.5, 8.5Hz, 1H), 2.90 (dt, J = 18.0, 7.5 Hz, 1H, CH_AH_BN), 2.80 (dt, $J = 18.0, 3.0, 1H, CH_AH_BN$), 2.62 $(ddd, J = 14.5, 9.0, 4.5 Hz, 1H), 2.50-2.45 (m, 3H), 2.43 (s, 3H, Me), 2.31-2.23 (m, 1H); {}^{13}C$ NMR (400 MHz, CDCl₃) δ 147.4 (ipso-C₆H₂O), 145.8 (ipso-C₆H₂O), 145.0 (=C), 142.9 (ipso-C₆H₄SO₂), 139.5 (*ipso*-C₆H₄Me), 134.0 (=CH), 133.8 (=CH), 129.5 (*ipso*-Ar), 129.5 (*o*-C₆H₄SO₂), 127.4 (*ipso*-Ar), 127.2 (*m*-C₆H₄SO₂), 118.3 (=CH₂), 110.5 (CH, Ar), 109.0 (CH, Ar), 101.0 (OCH₂O), 80.2 (C-N), 44.1 (CH₂), 43.7 (CH₂), 36.2 (CH₂), 36.1 (CH₂), 31.3 (CH₂), 21.5 (Me); MS (CI, NH₃) m/z 424 [(M + H)⁺, 82] 382 (8), 270 (24), 228 (100), 189 (10), 108 (10); HRMS (CI, NH₃) m/z calcd for C₂₄H₂₅NO₄S (M + H)⁺ 424.1583, found 424.1577.

3-[4-[(4-Methylphenyl)sulfonyl]-2,4,5,6-tetrahydrocyclopenta[a][1,3]dioxolo[4,5-


h][3]benzazepin-3(3*H*)-yl]-1-propanol

Using general procedure B, 9-BBN (3.1 mL of a 0.50 M solution in THF, 1.6 mmol) and bicyclic sulfonamide **28** (328 mg, 0.8 mmol) in THF (5 mL) gave the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (5:4) as eluent gave the bicyclic alcohol (320 mg, 94%) as a white foam, R_F (5:4 petrol-EtOAc) 0.2; IR (CHCl₃) 3623 (OH), 3020, 2930,

1483, 1322 (SO₂), 1154 (SO₂), 1042, 938, 765, 551 cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ 7.85 (d, *J* = 8.0 Hz, 2H, *o*-C₆H₄SO₂), 6.80 (d, *J* = 8.0 Hz, 2H, *m*-C₆H₄SO₂), 6.57 (s, 1H, CH, Ar), 6.23 (s, 1H, CH, Ar), 5.56 (t, *J* = 2.5 Hz, 1H, =CH), 5.29 (d, *J* = 1.0 Hz, 1H, OCH_AH_BO), 5.25 (d, *J* = 1.0 Hz, 1H, OCH_AH_BO), 3.70 (dt, *J* = 15.5, 3.5 Hz, 1H, CH_AH_BN), 3.49 (ddd, *J* = 15.5, 12.0, 1.5 Hz, 1H, CH_AH_BN), 3.29-3.20 (m, 2H, CH₂O), 2.92 (ddd, *J* = 17.5, 12.0, 3.0 Hz, 1H, CHAr), 2.79-2.67 (m, 2H), 2.45-2.35 (m, 2H), 2.22-2.14 (m, 1H), 2.06-1.95 (m, 2H), 1.90 (s, 3H, Me), 1.38-1.26 (m, 2H), 0.99 (br s, 1H, OH); ¹³C NMR (400 MHz, C₆D₆) δ 147.9 (*ipso*-Ar), 146.4 (*ipso*-Ar), 146.3 (=C), 142.4 (*ipso*-C₆H₄SO₂), 140.8 (*ipso*-C₆H₄Me), 133.1 (=CH), 129.9 (*ipso*-Ar), 129.5 (*o*-C₆H₄SO₂), 128.2 (*ipso*-Ar), 127.7 (*m*-C₆H₄SO₂), 110.4 (CH, Ar), 109.5 (CH, Ar), 101.0 (OCH₂O), 81.2 (CN), 62.8 (CH₂O), 44.4 (CH₂N), 37.4 (CH₂), 36.6 (CH₂), 36.2 (CH₂), 31.3 (CH₂), 28.5 (CH₂), 21.1 (Ar*Me*); MS (CI, NH₃) *m/z* calcd for C₂₄H₂₇NO₅S (M + H)⁺ 442.1689, found 442.1691.


3-[2,4,5,6-tetrahydrocyclopenta[a][1,3]dioxolo[4,5-h][3]benzazepin-3(3H)-yl]-1-propanol 29

A solution of naphthalene (94 mg, 0.7 mmol) in THF (3 mL) was added *via* canula to a stirred suspension of Na metal (17 mg, 0.7 mmol) in THF (1 mL) at rt under Ar and stirred for 4 h. The resulting dark green solution was cooled to -78 °C, then a solution of the bicyclic alcohol (54 mg, 0.1 mmol) in THF (2 mL) was added *via* canula. The resulting mixture was stirred at -78 °C for 5 min, MeOH (0.3 mL) was added and the mixture was allowed to warm to rt. Water (2 mL) and CH_2Cl_2 (2 mL) were added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 x 2 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with CH_2Cl_2 -MeOH-NH_{3(aq)} (90:9.5:0.5) as eluent gave bicyclic amino alcohol **29** (21 mg,

60%) as a cloudy oil, $R_F(90:9.5:0.5 \text{ CH}_2\text{Cl}_2\text{-MeOH-NH}_{3(aq)})$ 0.3; IR (CHCl₃) 3604 (OH), 3451 (NH), 3030, 2960, 1731, 1482, 1249, 1045, 909, 849, 746, 665 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.61 (s, 1H, CH, Ar), 6.58 (s, 1H, CH, Ar), 5.94 (d, J = 1.5 Hz, 1H, OCH_AH_BO), 5.92 (d, J = 1.5 Hz, 1H, OCH_AH_BO), 5.64 (t, J = 2.0 Hz, 1H, =CH), 3.65-3.60 (m, 1H), 3.47-3.41 (m, 1H), 3.10-2.90 (m, 3H), 2.69-2.59 (m, 2H), 2.36 (ddt, J = 17.0, 9.5, 3.0 Hz, 1H), 2.22 (ddd, J = 13.5, 9.5, 6.5 Hz, 1H), 1.90-1.66 (m, 3H), 1.63-1.57 (m, 1H), 1.42-1.37 (m, 1H), 1.27-1.24 (m, 1H), 0.90-0.83 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ 151.4 (=C), 146.5 (*ipso*-Ar), 145.8 (*ipso*-Ar), 132.2 (*ipso*-Ar), 130.8 (*ipso*-Ar), 128.5 (=CH), 109.8 (CH, Ar), 109.5 (CH, Ar), 68.0 (CN), 62.8 (CH₂O), 41.1 (CH₂), 39.6 (CH₂), 37.5 (CH₂), 34.1 (CH₂), 29.5 (CH₂), 28.3 (CH₂); MS (CI, NH₃) *m/z* 288 [(M + H)⁺, 100] 228 (9), 102 (31), 85 (13); HRMS (CI, NH₃) *m/z* calcd for C₁₇H₂₁NO₃S (M + H)⁺ 288.1600, found 288.1598.

2,3,5,6,8,9-hexahydro-4H-cyclopenta[a][1,3]dioxolo[4,5-h]pyrrolo[2,1-b][3]benzazepine 21

PPh₃ (16 mg, 0.1 mmol) was added in one portion to stirred solution of bicyclic amino alcohol **30** (15 mg, 0.1 mmol), CBr₄ (20 mg, 0.1 mmol), imidazole (4 mg, 0.1 mmol) and Et₃N (15 µL, 0.1 mmol) in CH₂Cl₂ (2 mL) at rt under Ar. The resulting solution was stirred at rt for 20 h, then water (2 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 2 mL) and the combined organics were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with CH₂Cl₂-MeOH-NH_{3(aq)} (95:4.5:0.5) as eluent gave synthetic target **21** (10 mg, 71%) as a pale yellow oil, R_F (95:4.5:0.5 CH₂Cl₂-MeOH-NH_{3(aq)}) 0.2; IR (CHCl₃) 2937, 1503, 1378, 1219, 1043, 903, 730, 642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.65 (s, 1H, CH, Ar), 6.60 (s, 1H, CH, Ar), 5.92 (d, *J* = 1.5 Hz, 1H, OCH_AH_BO), 5.90 (d, *J* = 1.5 Hz, 1H, OCH_AH_BO), 5.71 (dd, *J* = 2.5, 2.0 Hz, 1H, =CH), 3.44 (ddd, *J* = 15.0, 11.0, 4.0 Hz, 1H), 3.25 (ddd, *J* = 17.0, 11.0, 4.5 Hz,

1H), 3.00 (dt, J = 14.5, 4.5 Hz, 1H), 2.93-2.86 (m, 3H), 2.46-2.39 (m, 1H), 2.24 (dtd, J = 16.0, 8.0, 2.0 Hz, 1H), 1.98-1.94 (m, 2H), 1.83-1.72 (m, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 150.0 (=C), 146.9 (*ipso*-Ar), 145.5 (*ipso*-Ar), 145.5 (*ipso*-Ar), 130.9 (*ipso*-Ar), 129.0 (=CH), 128.9 (*ipso*-Ar), 110.0 (CH, Ar), 109.4 (CH, Ar), 100.9 (OCH₂O), 78.5 (CN), 49.5 (CH₂N), 44.1 (CH₂N), 40.1 (CH₂), 35.2 (CH₂), 32.7 (CH₂), 29.2 (CH₂), 23.9 (CH₂); MS (CI, NH₃) *m/z* 270 [(M + H)⁺, 100]; HRMS (CI, NH₃) *m/z* calcd for C₁₇H₁₉NO₂ (M + H)⁺ 270.1494, found 270.1491.

References

- 1. Burchat, A. F.; Chong, J. M.; Nielsen, N. J. Organomet. Chem. 1997, 542, 281
- 2. Piers, E.; Banville, J.; Lau, C. K.; Nagakura, I. Can. J. Chem. 1982, 60, 2965
- 3. Wolff, S.; Agosta, W. C. J. Org. Chem 1981, 46, 4821
- 4. Tietze, L. F.; Schirok, H.; Wöhrmann, M.; Schrader, K. Eur. J. Org. Chem. 2000, 2433