SUPPLEMENTARY INFORMATION

Ruthenium Induced C-N Bond Activation of an N-Heterocyclic Carbene: Isolation of Cand N-Bound Tautomers

Suzanne Burling, Mary F. Mahon, Rachael E. Powell, Michael K. Whittlesey* and Jonathan M.

J. Williams

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

General Comments. All manipulations were carried out using standard Schlenk, high vacuum and glovebox techniques. Solvents were purified using an MBraun SPS solvent system (THF, CH₂Cl₂, hexane) or by drying over calcium hydride (CHCl₃). Deuterated solvents (Aldrich) were vacuum transferred from potassium (C₆D₆, THF-*d*₈) or calcium hydride (CDCl₃). Ru(PPh₃)₃(CO)HCl, I[′]Pr₂Me₂ and IEt₂Me₂ were prepared according to the literature.^{1,2} NMR spectra were recorded on Bruker Avance 300 and 400 MHz NMR spectrometers, and referenced for ¹H and ¹³C{¹H} spectra as follows: C₆D₆ (δ 7.15, δ 128.0), THF (δ 3.58), CDCl₃ (δ 7.24; δ 77.7). ³¹P{¹H} NMR chemical shifts were referenced externally to 85% H₃PO₄ (δ 0.0). 2D experiments (¹H COSY, ¹H-X (X = ¹³C, ³¹P) HMQC/HMBC) were performed using standard Bruker pulse sequences. IR spectra were recorded as nujol mulls or in C₆D₆ on a Nicolet Protégé 460 FTIR spectrometer. Elemental analyses were performed by Elemental Microanalysis Ltd, Okehampton, Devon, UK.

Ru(**I**ⁱ**Pr**₂**Me**₂)'(**PPh**₃)₂(**CO**)**H** (**3**). Anal. Found (calcd) for C₄₈H₅₀N₂OP₂Ru: C, 68.57 (69.13); H, 6.40 (6.04); N, 3.25 (3.36). ¹H NMR (C₆D₆, 298 K): δ 7.70-7.66 (m, 6H, PPh₃), 7.37-7.32 (m, 6H, PPh₃), 7.02-6.96 (m, 18H, PPh₃), 5.50 (sept, J_{HH} =7.1 Hz, 1H, CH), 4.28 (m, 1H,

CH), 1.99 (m, 1H, CH), 1.76 (s, 3H, CH₃), 1.66 (s, 3H, CH₃), 1.37 (d, $J_{HH} = 7.1$ Hz, 3H, CH₃), 1.28 (d, 6.0 Hz, 3H, CH₃), 0.54 (d, $J_{HH} = 7.1$ Hz, 3H, CH₃), 0.49 (m, 1H, CH), -7.72 (dd, $J_{HP} =$ 104.8 Hz, $J_{HP} = 28.0$ Hz, 1H, Ru-H). ³¹P{¹H} (C₆D₆, 298 K): δ 56.5 (d, $J_{PP} = 16.7$ Hz, PPh₃), 35.8 (d, $J_{PP} = 16.7$ Hz, PPh₃). ¹³C{¹H} (C₆D₆, 298 K): δ 207.4 (dd, $J_{CP} = 5.5$ Hz, $J_{CP} = 13.8$ Hz, Ru-CO), 187.8 (dd, $J_{CP} = 10.1$ Hz, $J_{CP} = 82.7$ Hz, Ru- $C_{HPr2Me2}$), 140.3 (dd, $J_{CP} = 34.9$ Hz, $J_{CP} =$ 1.8 Hz, PPh₃), 140.0 (dd, $J_{CP} = 23.0$ Hz, $J_{CP} = 1.8$ Hz, PPh₃), 135.5 (d, $J_{CP} = 11.0$ Hz, PPh₃), 134.8 (d, $J_{CP} = 11.0$ Hz, PPh₃), 129.4-129.0 (m, PPh₃), 128.4-128.1 (m, PPh₃), 124.0 (s, im *C*), 123.2 (s, im *C*), 59.1-58.8 (m, CH), 54.0 (s, CH), 24.5 (t, $J_{CP} = 7.4$ Hz, CH₂), 23.9 (s, CH₃), 22.4 (s, CH₃), 21.4 (s, CH₃), 11.3 (s, CH₃), 10.0 (s, CH₃). IR (C₆D₆, cm⁻¹): 1884 (v_{CO}).

 $Ru(C-I^{i}PrHMe_{2})(PPh_{3})_{2}(CO)HCl$ (4). THF (20 mL) was added to $I^{i}Pr_{2}Me_{2}$ (125 mg, 0.69 mmol) and Ru(PPh₃)₃(CO)HCl (600 mg, 0.63 mmol) in an ampoule under argon. The mixture was heated at 50 °C with stirring for 6 days. The resulting precipitate was removed by filtration (found to be IⁱPr₂Me₂H⁺Cl⁻) and the filtrate was reduced *in vacuo*. The residue was washed with hexane (2 x 10 mL) and the resulting solid dissolved in chloroform and layered with hexane, affording Ru(C-IⁱPrHMe₂)(PPh₃)₂(CO)HCl (4) as colorless prisms. Yield: 162 mg (31%). Anal. Found (calcd) for C₄₅H₄₅ClN₂OP₂Ru(CHCl₃): C, 58.34 (58.30); H, 5.06 (4.89); N, 2.93 (2.96). ¹H NMR (CDCl₃, 298 K): δ 9.73 (s, 1H, NH), 7.48-7.43 (m, 12H, PPh₃), 7.26-7.18 (m, 18H, PPh₃), 5.43 (sept, $J_{HH} = 7.1$ Hz, 1H, CH), 1.98 (s, 3H, NCCH₃), 1.51 (s, 3H, NCCH₃), 0.51 (d, $J_{\rm HH} = 7.1$ Hz, 6H, CH(CH₃)₂), -14.78 (t, 1H, $J_{\rm HP} = 18.1$ Hz, Ru-H). ³¹P{¹H} NMR (CDCl₃, 298 K): δ 48.1. ¹³C{¹H} NMR (CDCl₃, 298 K): δ 205.5 (t, J_{CP} = 14.7 Hz, Ru-CO), 180.6 (t, $J_{CP} = 15.6$ Hz, Ru- $C_{IiPrHMe2}$), 136.7 ('vt', $|J_{CP} + J_{CP}| = 20.2$ Hz, PPh₃), 134.7 ('vt', $|J_{CP} + J_{CP}| = 20.2$ J_{CP} = 5.5 Hz, PPh₃), 129.3 (s, PPh₃), 127.7 ('vt', $|J_{CP} + J_{CP}|$ = 4.6 Hz, PPh₃), 126.1 (s, im C), 123.8 (s, im C), 52.2 (s, CH), 21.5 (s, CH₃), 11.1 (s, CH₃), 9.9 (s, CH₃). IR (C₆D₆, cm⁻¹): 1925 $(v_{\rm CO})$.

Ru(*N*-**I**[†]**PrHMe**₂)(**PPh**₃)₂(**CO**)**HCl** (5). THF (10 mL) was added to I[†]Pr₂Me₂ (57 mg, 0.32 mmol) and Ru(PPh₃)₃(CO)HCl (150 mg, 0.16 mmol) in an ampoule under argon. The mixture was heated at 70 °C with stirring for 5 days. During this time a precipitate appeared. The mixture was filtered and the solid washed with hexane (2 x 5 mL). Recrystallisation from CHCl₃/hexane afforded Ru(*N*-I[†]PrHMe₂)(PPh₃)₂(CO)HCl (**5**) as a cream crystallisation from CHCl₃/hexane afforded Ru(*N*-I[†]PrHMe₂)(PPh₃)₂(CO)HCl (**5**) as a cream crystalline solid. Yield: 63.1 mg (49%). Anal. Found (calcd) for C₄₅H₄₅ClN₂OP₂Ru(CHCl₃): C, 58.13 (58.30); H, 4.87 (4.89); N, 2.98 (2.96). ¹H NMR (CDCl₃, 298 K): δ 7.98 (s, 1H, CH), 7.57-7.53 (m, 12H, PPh₃), 7.25-7.19 (m, 18H, PPh₃), 3.64 (sept, *J*_{HH} = 6.8 Hz, 1H, *CH*), 1.65 (s, 3H, NCC*H*₃), 1.40 (s, 3H, NCC*H*₃), 1.06 (d, *J*_{HH} = 6.8 Hz, 6H, CH(C*H*₃)₂), -13.41 (t, 1H, *J*_{HP} = 20.0 Hz, Ru-*H*). ³¹P{¹H} NMR (CDCl₃, 298 K): δ 205.4 (t, *J*_{CP} = 16.1 Hz, Ru-CO), 136.5 (s, im *C*-H), 135.8 ('vt', |*J*_{CP} + *J*_{CP}| = 20.1 Hz, PPh₃), 135.0 ('vt', |*J*_{CP} + *J*_{CP}| = 6.0 Hz, PPh₃), 133.9 (s, im *C*), 129.6 (s, PPh₃), 128.1 ('vt', |*J*_{CP} + *J*_{CP}| = 4.0 Hz, PPh₃), 122.3 (s, im *C*), 50.0 (s, *C*H), 23.6 (s, *C*H₃), 14.4 (s, im *C*H₃), 9.6 (s, im *C*H₃). IR (C₆D₆, cm⁻¹): 1912 (v_{CO}).

Ru(IEt₂Me₂)(PPh₃)₂(CO)HCl (6). Ru(PPh₃)₃(CO)HCl (200 mg, 0.21 mmol) and IEt₂Me₂ (39.5 mg, 0.26 mmol) were charged to an ampoule and suspended in THF (10 mL). The reaction was heated at reflux with stirring overnight. During this time an off-white solid precipitated. The solid was filtered, washed with ethanol (2 x 5 mL) and hexane (1 x 5 mL) and the residue dissolved in chloroform and layered with hexane, affording **6** as colorless crystals. Yield: 119.0 mg (67%). Anal. Found (calcd) for C₄₆H₄₇N₂OP₂ClRu(CHCl₃): C, 58.56 (58.70); H, 5.18 (5.03); N, 3.00 (2.91). ¹H NMR (C₆D₆, 298 K): δ 7.95-7.91 (m, 12H, PPh₃), 7.04-6.96 (m, 18H, PPh₃), 3.56 (m, 4H, CH₂), 1.42 (s, 3H, NCCH₃), 1.38 (s, 3H, NCCH₃), 0.77 (t, J_{HH} = 7.1 Hz, 3H, CH₂CH₃), 0.53 (t, J_{HH} = 7.1 Hz, 3H, CH₂CH₃), -14.31 (t, J_{HP} = 19.8 Hz, 1H, RuH). ³¹P{¹H} NMR (C₆D₆, 298 K): δ 45.3. ¹³C{¹H} NMR (CDCl₃, 298 K): δ 204.7 (t, 16.1 Hz, Ru-CO), 181.0 (t, 14.6 Hz, C_{IE12Me2}), 137.3 ('vt', |J_{CP} + J_{CP}| = 19.8 Hz, PPh₃), 134.7 ('<u>vt', |J_{CP} + J_{CP}|</u> = 5.9 Hz, PPh₃), 128.6 (s, PPh₃), 127.8 ('vt', $|J_{CP} + J_{CP}| = 4.4$ Hz, PPh₃), 126.3 (s, im *C*), 124.7 (s, im *C*), 43.8 (s, *C*H₂), 42.4 (s, *C*H₂), 16.3 (s, *C*H₃), 14.6 (s, *C*H₃), 9.8 (s, *C*H₃), 9.6 (s, *C*H₃). IR (C₆D₆, cm⁻¹): 1919 (v_{CO}).

References

- 1. Ahmad, N.; Levinson, J.J.; Robinson, S.D.; Uttley, M.F. Inorg. Synth. 1974, 15, 48.
- 2. Kühn, N.; Kratz, T. Synthesis 1993, 561.