Supporting information to la060027h:

Photolabile Carboxylic Acid Protected

Terpolymers for Surface Patterning.

Part 2: Photocleavage and Film Patterning

M. Millaruelo,⁺ L. M. Eng,[§] M. Mertig,[†] B. Pilch,⁺ U. Oertel,⁺J. Opitz,[†] B. Sieczkowska,⁺F. Simon⁺, B. Voit^{+*}

⁺Leibniz Institute of Polymer Research Dresden, Hohe Strasse, 6, D-01069 Dresden, Germany; fax: +49 351 4658565; e-mail: voit@ipfdd.de

[§]Institute of Applied Photophysics, Dresden University of Technology, D-01062 Dresden, Germany

[†]BioNanotechnology and Structure Formation Group, Max Bergmann Center of Biomaterials, Dresden University of Technology, D-01062 Dresden, Germany

^{*} Corresponding author e-mail: : <u>voit@ipfdd.de</u>. Tel: +49 351 4658591. Fax: +49 351 4658565.

Contrast values of pictures exhibited in Figure 9 of this manuscript have been calculated following the expression below:

Contrast=averaged intensity of protected areas/averaged intensity of unprotected areas

The values obtained for both images are: for (a) 0.19 ± 0.5 for (b) 0.32 ± 0.7

In Figure S1 we can see an image's intensity distribution of both pictures obtained from the fluorescence microscopy images.

Figure S1. Image intensity distribution in a 3D topographical picture. The maximum height is used as pixel maximum brightness, for example, pixels with grey scale value 255 in an 8-bit image. Less bright pixels have been accordingly scaled to a lower height.