Studies toward Soraphen A: an aldol metathesis avenue to the macrocyclic framework

Guillaume Vincent,^a Darren J. Mansfield,^b Jean-Pierre Vors^b and Marco A. Ciufolini*^{a,c}

^aLaboratoire de Synthèse et méthodologie Organique (LSMO), CNRS UMR 5181, Université Claude Bernard-Lyon I and Ecole Supérieure de Chimie, Physique et Electronique de Lyon, 43, Bld du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

^bBayer CropScience SA, 14-20 rue Pierre Baizet,69009 Lyon, France

^cDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada

ol060882s

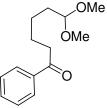
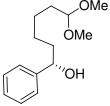
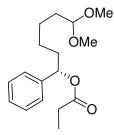

Supporting Information

Table of Contents

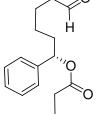
Subject	page			
Experimental Protocols	3			
Synthesis of Fragment 2	3			
preparation of compound 5	3			
preparation of compound 6	3 3 3			
preparation of compound 7	3			
preparation of compound 8	4			
preparation of compound 9	4			
preparation of compound 2	5			
determination of C-17 absolute				
configuration and enantiomeric excess	5			
determination of C-11 / C-12 relative				
configuration and diastereomeric excess	6			
determination of C-11 / C-12 absolute				
configuration and enantiomeric excess	7			
Synthesis of fragment 3	8			
preparation of compound 13	8			
preparation of compound 14	8			
determination of the relative				
configuration of 14	8			
preparation of compound 15	9			
preparation of compounds 16 and 36	9			
preparation of compound 17	10			
preparation of compound 18	11			
Assembly of the soraphen A framework	11			
preparation of compound 21	11			
preparation of compound 22	12			
Olefin isomerization during metathesis	12			
characterization of compound 23	12			
characterization of compound 33	12			
Cross-metathesis avenue to seco-soraphen A	12			
preparation of compound 37	12			
preparation of compound 38	13			
Synthesis of compounds $26 - 28$	13			
preparation of intermediates	13			
preparation of compound 26	14			
preparation of compound 27	15			
preparation of compound 28	15			
Index of hardcopy ¹ H and ¹³ C NMR spectra	16			
spectra	17			


Experimental protocols : Proton and ¹³C NMR spectra were obtained from CDCl₃ as solvent. Chemical shifts are reported in parts per million (ppm) on the δ scale and coupling constants, *J*, are in hertz (Hz). Proton NMR spectra were recorded at 300 or 500 MHz, as specified, ¹³C NMR spectra were recorded at 75 or 125 MHz, as specified. FT-IR spectra (cm-1) were recorded neat. Mass spectra (m/z) were measured in the chemical ionization (CI, isobutene as the reagent gas), electrospray (ESI), electronic impact (EI) or liquid secondary mass spectroscopy (LSIMS) mode, as specified. All reactions were performed under dry Ar over dried flasks equipped with TeflonTM stirbars. All flasks were fitted with rubber septa for the introduction of substrates, reagents, and solvents via syringe. Commercial reagents were used without further purification, except THF (freshly distilled from Na /benzophenone under Ar) and CH₂Cl₂ (freshly distilled from CaH₂ under Ar).

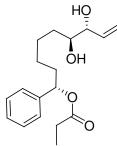
*Synthesis of fragment 2.


Compound 5: Ozone was bubbled to a solution of 5.18 g of 1phenylcyclohexene **4** (32.8 mmol) in 150 mL of dichloromethane and 150 mL of methanol at -78° C until the apparition of a blue color (3 hours). Oxygen was then bubbled until the blue color disappeared (20 min), argon was bubbled 20 min and 12mL of dimethyl sulfide (164 mmol) and 312 mg of *p*TsOH (1.6 mmol) were then added. The reaction was stirred 12 hrs at

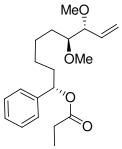
RT and concentrated under vacuum. The crude was then diluted with 200 mL of CH_2Cl_2 and 200 mL of a saturated aqueous solution of NaHCO₃. The organic phase was separated and the aqueous phase was extracted with 200 mL of CH_2Cl_2 . The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded the desired product **5** as a colorless oil (6.46 g, 83%). ¹H NMR (**300 MHz, CDCl₃**): 7.97-7.93 (m, 2H), 7.58-7.43 (m, 3H), 4.38 (t, *J* = 5.6 Hz, 1H), 3.32 (s, 6H), 2.98 (t, *J* = 7.3 Hz, 2H), 1.85-1.62 (m, 4H), 1.48-1.41 (m, 2H).


Compound 6: To a solution of 5.20 g of **5** (22.1 mmol) in 70 mL of THF at -30°C were added 5 mL of a 1M solution of (R)-2-methyl-CBS-oxazaborolidine (5 mmol) in THF, then dropwise 22.1 mL of a 2M solution of BH₃.DMS (44.1 mmol) in THF at -30°C. The reaction mixture was then stirred 2 hrs at -10°C and quenched with 10 mL of methanol. The reaction mixture was stirred 15 min at RT and a saturated aqueous solution of

NH₄Cl (80 mL) was added. The organic phase was separated and the aqueous phase was extracted with 100 mL of EtOAc. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 2/8) afforded the desired product as a colorless oil (4.90 g, 93%) with a diastereomeric excess of 70% determined by the Mosher's method (see compounds **a** and **b**). ¹H NMR (300 MHz, CDCl₃): 7.35 -7.28 (m, 5H), 4.67 (m, 1H), 4.33 (t, J = 5.6 Hz, 1H), 3.29 (s, 6H), 1.81-1.62 (m, 2H), 1.61-1.54 (m, 2H), 1.53-1.33 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): 145.4, 128.7, 127.8, 126.3, 104.7, 74.7, 52.9, 39.4, 32.7, 26.0, 24.8. IR (cm⁻¹): 3420, 2937, 1453, 1126, 1050, 701. HRMS (EI): calculated 237.1491, found 237.1493 (M⁺-H). $[\alpha]_D^{22}$ -22.6 (c 0.19, CH₂Cl₂).


Compound 7: To a solution of 4.80 g of alcohol **6** (20.2 mmol) and 101 mg of DMAP (1.01 mmol) in 60 mL of CH_2Cl_2 at 0°C were added 8.4 mL of Et_3N (61 mmol) and 3.6 mL of propionyl chloride (41 mmol). The reaction was stirred 12 hrs at RT and a saturated aqueous solution of NaHCO₃ (40 mL) was added. The organic phase was separated and the

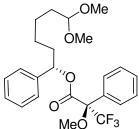
aqueous phase was extracted with 40 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded the desired product as a colorless oil (5,32 g, 89%). ¹H NMR (300 MHz, CDCl₃): 7.33-7.29 (m, 5H), 5.73 (dd, J = 7.5, 6.4 Hz, 1H), 4.31 (t, J = 5.6 Hz, 1H), 3.29 (s, 6H), 2.34 (dq, J = 7.5 Hz, 3.0 Hz, 2H), 1.95-1.87 (m, 1H), 1.86-1.78 (m, 1H), 1.65-1.55 (m, 2H), 1.53-1.24 (m, 4H), 1.12 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 174.2, 141.4, 129.0, 128.3, 127.0, 104.8, 76.2, 53.1, 36.8, 32.8, 28.3, 25.9, 24.8, 9.5. IR (cm⁻¹): 3418, 2938, 2858, 1737, 1454, 1385, 1189, 1127, 1051, 701. MS (ESI): 317.1 (M+Na⁺). HRMS (EI): calculated 293.1753, found 293.1751 (M⁺-H). [α]_D²² -48.0 (*c* 1.12, CH₂Cl₂).


Compound 8: A solution of 2.10 g of acetal **7** (7.15 mmol) in 15 mL of CHCl₃, 4 mL of TFA and 4 mL of water was stirred 3 hrs at RT. The mixture was then diluted with 20 mL of water and 20 mL of CH₂Cl₂. The organic phase was separated and the aqueous phase was extracted with 30 mL of CH₂Cl₂. The organic phase was then washed with 30 mL of a saturated aqueous solution of NaHCO₃. The combined extracts were dried with Na₂SO₄ and concentrated. The desired product was obtained as a colorless oil (1.65 g,

91%) and engaged immediately in the next step. ¹H NMR (300 MHz, CDCl₃): 9.74 (s, 1H), 7.36 -7.27 (m, 5H), 5.74 (dd, J = 7.5, 6.0 Hz, 1H), 2.43-2.31 (m, 4H), 1.97-1.87 (m, 1H), 1.86-1.75 (m, 1H), 1.70-1.59 (m, 2H), 1.43-1.24 (m, 2H), 1.13 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 202.2, 173.6, 140.5, 128.3, 127.7, 126.3, 75.4, 43.5, 36.0, 27.7, 24.9, 21.6, 8.9. IR (cm⁻¹): 2914, 2847, 1704, 1455, 1277, 1185, 1079. [α]_D²² -54.6 (c 1.2, CH₂Cl₂).

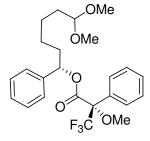
Compound 9: To a solution of 3.80 g of allyl (cyclohexanol) dimethylsilane (19.2 mmol) in 50 mL of THF at -78° C were added 19.2 mL of a 1M solution of potassium *tert*-butoxide (19.2 mmol) in THF and 7.8 mL of a 2,4 M solution of butyllithium (19.2 mmol) in hexane. The reaction was stirred 1 hr at -40° C and cooled to -78° C, 7.20 g of (+)-DIP chloride (22.4 mmol) were then added. The reaction was stirred 1 hr at -78° C and 2.9 mL boron trifluoride, etherate (23 mmol) were added. After 5 min, 1.65 g of aldehyde **8** (6.60 mmol) in 5 mL of THF were added and

the reaction was stirred 8 hrs at -78°C and then let warmed overnight to RT. At his point 30 mL of methanol, 15 mL of 30% hydrogen peroxide in water, 12 g of KHCO₃ and 6 g of potassium fluoride were added. The reaction was stirred 20 hrs at RT and 50 mL of a saturated aqueous solution of $Na_2S_2O_3$ was added very carefully at 0°C. The mixture was diluted with 100 mL of AcOEt and 100 mL of a saturated aqueous solution of NaHCO₃. The organic phase was separated and the aqueous phase was extracted with 150 mL of AcOEt. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9 to 3:7) afforded the desired product as a colorless oil (1.02g, 51%) with a diastereomeric excess of 70% determined by the Mosher's method (see compounds d and f). Separation was effected at the next step. ¹H NMR (300 **MHz, CDCl₃**): 7.36-7.26 (m, 5H), 5.87 (ddd, J = 17.1, 10.4, 6.4 Hz, 1H), 5.73 (dd, J = 7.6, 6.1 Hz, 1H), 5.20-5.32 (m, 2H), 4.04 (dd, J = 6.4, 3.6 Hz, 1H), 3.65-3.59 (m, 1H), 2.34 (qd, J = 7.5, 2.8 Hz, 2H), 1.97-1.82 (m, 1H), 1.81-1.70 (m, 1H), 1.56-1.46 (m, 1H), 1.42-1.22 (m, 5H), 1.12 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 174.4, 141.2, 136.5, 128.8, 128.2, 126.8, 117.9, 76.4, 76.1, 74.3, 36.7, 32.2, 28.2, 25.9, 25.8, 9.5. **IR** (cm⁻¹): 3381, 2937, 2859, 1731, 1455, 1185, 1080, 997, 699. MS (ESI): 329.1 (M+Na⁺). HRMS (CI): calculated 307.1909, found 307.1908 (M+H⁺). $[\alpha]_{D}^{22}$ -45.1 (*c* 0.64, CH₂Cl₂).


Compound 2: A solution of 200 mg of diol **9** (0.65 mmol), 979 mg of proton sponge[®] (4.57mmol) and 677 mg of trimethyloxonium tetrafluoroborate (4.57 mmol) in 5 mL of CH_2Cl_2 was stirred 12 hrs at RT; 10 mL of a 1N aqueous solution of hydrochloric acid and 5 mL of CH_2Cl_2 were added. The organic phase was separated and the aqueous phase was extracted with 10 mL of CH_2Cl_2 . The combined extracts were dried with Na₂SO₄ concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded the dimethylated product **2** as a

red oil (110 mg, 50%) with a diastereomeric excess of 90% and a mixture of the two monomethylated products as a red oil (65 mg, 31%).

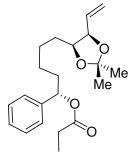
The monomethylated products could be methylated using the same procedure with 215 mg of proton sponge (1 mmol), 149 mg of trimethyloxonium tetrafluoroborate (1 mmol) in 3 mL of CH₂Cl₂. The pure dimethylated product **2** was obtained as a red oil (40 mg, 60%) with a diastereomeric excess of 90%. The overall yield of **2** is 70% (90% de). ¹H NMR (**300 MHz, CDCl₃**): 7.35-7.23 (m, 5H), 5.80-5.68 (m, 2H), 5.32-5.21 (m, 2H), 3.55 (ddd, J = 7.6, 3.8, 0.8Hz, 1H), 3.39 (s, 3H), 3.28 (s, 3H), 3.18-3.12 (m, 1H), 2.33 (qd, J = 7.6, 2.8 Hz, 2H), 1.99-1.85 (m, 1H), 1.82-1.70 (m, 1H), 1.46-1.25 (m, 6H), 1.12 (t, J = 7.6 Hz, 3H). ¹³C NMR (**75 MHz, CDCl₃**): 174.1, 141.3, 135.6, 128.8, 128.2, 127.0, 119.2, 84.7, 83.6, 76.2, 58.9, 57.1, 36.7, 30.5, 28.2, 26.0, 9.5. **IR (cm⁻¹):** 2937, 2862, 1735, 1455, 1183, 1002, 997, 699, 637. **MS (ESI):** 357.1 (M+Na⁺). **HRMS (CI):** calculated 335.2222, found 335.2222 (M+H⁺). **[\alpha]**_D²² -56.2 (c 0.60, CH₂Cl₂).


*Determination of the absolute configuration and enantioselectivity at C-17

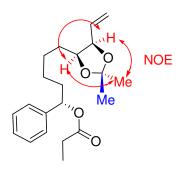
According to the method of Mosher as in Dale, J. A.; Mosher, H. S. A. J. Am. Chem. Soc. 1973, 95, 512.

Compound a: A solution of 21 mg of alcool **6** (0.088 mmol), 62 mg of (R)-(+)-alpha-methoxy-alpha-(trifluoromethyl)-phenylacetic acid (0.264 mmol), 55 mg of DCC (0.264 mmol) and 6 mg of DMAP (0.044 mmol) in 0.8 mL of CH_2Cl_2 was stirred 24 hrs at RT. The crude was then diluted with 5 mL of CH_2Cl_2 and 5 mL of a saturated aqueous solution of NaHCO₃. The organic phase was separated and the aqueous phase was extracted with 5 mL of CH_2Cl_2 . The combined extracts were

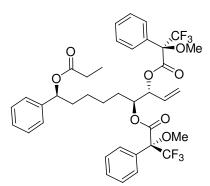
dried with Na₂SO₄ concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded the desired product as a colorless oil (32 mg, 83%). ¹H NMR (300 MHz, CDCl₃): 7.38-7.19 (m, 10H), 5.88 (dd, J = 7.9, 6.0 Hz, 1H), 4.31 (t, J = 5.6 Hz, 1H), 3.53 (s, 3H), 3.29 (s, 6H), 2.05-1.95 (m, 1H), 1.88-1.75 (m, 1H), 1.62-1.52 (m, 2H), 1.43-1.29 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): 166.0, 139.3, 129.6, 128.6, 128.5, 128.4, 127.5, 126.9, 104.5, 79.0, 55.7, 52.9, 52.8, 36.1, 32.4, 25.5, 24.3. ¹⁹F NMR (300 MHz, CDCl₃): -71.71 (s, 4F), -71.96 (s, 96F). Diastereomeric excess: 92%. MS (ESI): 477.0 (M+Na⁺). $[\alpha]_D^{22}$ -5.5 (*c* 1.30, CH₂Cl₂).


Compound b: This compound was prepared with the same procedure as compound **a** with 21 mg of alcohol **6** (0.088 mmol), 62 mg of (S)-(-)-alpha-methoxy-alpha-(trifluoromethyl)-phenylacetic acid (0.26 mmol), 54.5 mg of DCC (0.26 mmol) and 5 mg of DMAP (0.04 mmol) in 1 mL of CH₂Cl₂. The product was obtained as a colourless oil (28.5 mg, 71%). ¹HNMR (300 MHz, CDCl₃): 7.45-7.28 (m, 10H), 5.95 (dd, *J* = 8.2, 5.7, Hz, 1H), 4.28 (t, *J* = 5.7 Hz, 1H), 3.44 (s, 3H), 3.28 (s, 6H), 2.02 –1.91 (m, 1H), 1.84-1.72 (m, 1H), 1.55-1.46 (m, 2H), 1.39-1.11 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): 166.0, 139.1, 132.4, 129.5, 128.6, 128.5, 128.4, 128.2, 127.3, 126.9, 104.3, 78.5, 55.4, 52.7, 52.5, 35.7, 32.2, 25.0, 24.0. ¹⁹F NMR (300 MHz, CDCl₃): -71.67 (s, 4F), -71.71 (s, 96F). Diastereomeric excess: 92% MS (ESI): 477.0 (M+Na⁺). [α]_D²² -73.4 (*c* 1.09, CH₂Cl₂).

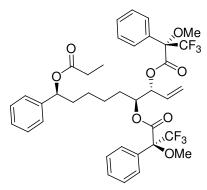
 $\Delta \delta H^{S,\mathsf{R}} = \delta^{S} - \delta^{\mathsf{R}} < \mathbf{0}$


The absolute configuration at C17 is (S) and the enantiomeric excess is 92%.

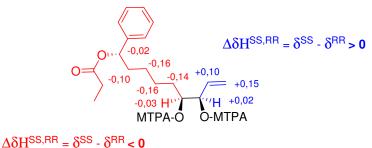
*Determination of the relative configuration between C11 and C12.


Compound c: A solution of 20 mg of diol **9** (0.065 mmol), 12 μ L of 2,2dimethoxypropane (0.098 mmol) and pyridiniumparatoluensulfonate. (0.006 mmol) in 1 mL of CH₂Cl₂ was stirred 12 hrs at RT. The crude was then diluted with 5 mL of CH₂Cl₂ and 5 mL of a saturated aqueous solution of NaHCO₃. The organic phase was separated and the aqueous phase was extracted with 5 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded the desired product as a colorless oil (22.5 mg, 95%). ¹HNMR (300 MHz, CDCl₃): 7.36-7.24

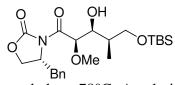
(m, 5H), 5.84-5.71 (m, 2H), 5.31-5.18 (m, 2H), 4.45 (t, J = 7.2 Hz, 1H), 4.13-4.05 (m, 1H), 2.34 (qd, J = 7.5, 2.6 Hz, 2H), 1.96-1.83 (m, 1H), 1.82-1.68 (m, 1H), 1.55-1.21 (m, 6H), 1.47 (s, 3H), 1.35 (s, 3H), 1.12 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 174.2, 141.3, 134.9, 128.8, 128.2, 126.8, 118.6, 108.9, 80.9, 80.2, 76.1, 36.7, 30.7, 28.7, 28.2, 26.4, 26.0, 25.9, 9.5. IR (cm⁻¹): 2915, 2848, 1736, , 1462, 1367, 1259, , 1081, 1016, 796, 638. HRMS (EI): calculated 346.2144, found 346.2141 (M⁺). [α]_D²² -47.1 (*c* 0.37, CH₂Cl₂).


NOE demonstrates the anti relationship between substituents at C11 and C12.

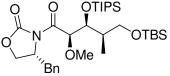
According to the method of Mosher for 1,2 anti diol as in Ichikawa, A.; Takahashi, H.; Ooi, T.; Kuzumi, T. *Biosci. Biotech. Biochem.* **1997**, *61*, 881. .


Compound d: This compound was prepared with the same procedure as compound **a** with 14 mg of diol **9** (0.045 mmol), 64.2 mg of (R)-(+)-alpha-methoxy-alpha-(trifluoromethyl)-phenylacetic acid (0.27 mmol), 55.7 mg of DCC (0.27 mmol) and 6 mg of DMAP (0.044 mmol) in 1 mL of CH₂Cl₂. The product was obtained as a colourless oil (25 mg, 75%). ¹HNMR (**300 MHz, CDCl₃**): 7.48-7.27 (m, 15H), 5.80 (ddd, J = 17.0, 10.0, 6.4 Hz, 0.15H), 5.74-5.52 (m, 2.85H), 5.46 (d, J = 17.0 Hz, 0.15H), 5.40 (d, J = 10.0 Hz, 0.15H), 5.32-5.21 (m, 2.70H), 3.48 (s, 0.5H), 3.45 (s, 2.5H), 3.42-3.39 (br, 3H),

2.34 (qd, J = 7.5, 2.6 Hz, 2H), 1.91-1.78 (m, 1H), 1.77-1.66 (m, 1H), 1.45-1.15 (m, 6H), 1.13 (t, J = 7.5 Hz, 3H).¹³C NMR (75 MHz, CDCl₃): 174.1, 166.5, 165.8, 146.5, 132.4, 132.2, 130.2, 130.0, 128.9, 128.8, 128.3, 127.8, 127.6, 126.8, 122.1, 85.2, 77.2, 76.6, 75.9, 55.8, 36.5, 29.8, 29.5, 28.2, 25.5, 9.5. ¹⁹F NMR (300 MHz, CDCl₃): -71.71 (s, 15F), -71.86 (s, 85F), -72.04 (s, 15F), -72.06 (s, 85F). Diasteromeric excess: 70% MS (ESI): 761.1 (M+Na⁺). $[\alpha]_D^{22} = +10.4$ (c = 0.64, CH₂Cl₂).


Compound e: This compound was prepared with the same procedure as compound **a** with 12.2 mg of diol **9** (0.04 mmol), 56 mg of (S)-(-)-alpha-methoxy-alpha-(trifluoromethyl)-phenylacetic acid (0.24 mmol), 49 mg of DCC (0.24 mmol) and 2.5 mg of DMAP (0.02 mmol) in 1 mL of CH₂Cl₂. The product was obtained as a colorless oil (22.4 mg, 76%). ¹HNMR (**300 MHz, CDCl₃**): 7.55-7.25 (m, 15H), 5.80 (ddd, J = 17.7, 10.3, 7.5Hz, 1H), 5.67 (dd, J = 7.2, 6.4 Hz, 1H), 5.61-5.57 (m, 1H), 5.45 (d, J = 17.7 Hz, 1H), 5.40 (d, J = 10.3 Hz, 1H), 5.35-5.22 (m, 1H), 3.48 (s, 2.55H), 3.46 (s, 0.45H),

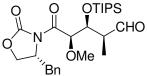
3.41 (s, 3H), 2.35 (qd, J = 7.5, 3.0 Hz, 2H), 1.84-1.26 (m, 8H), 1.13 (t, J = 7.5 Hz, 3H). ¹³C **NMR (75 MHz, CDCl₃):** 173.8, 169.9, 165,6, 140.8, 138.8, 131.9, 131.8, 130.1, 129.6, 128.5, 128.4, 128.3, 127.8, 127.3 127.2, 126.4, 122.6, 77.1, 75.8, 75.5, 55.4, 36.0, 29.4, 27.8, 25.0, 24.6, 9.1. ¹⁹F **NMR (300 MHz, CDCl₃):** -71.60 (85F), -71.77 (15F), -71.93 (85F), -71.96 (15F). **Diastereomeric excess:** 70% **MS (ESI):** 761.1 (M+Na⁺). $[\alpha]_D^{22}$ -59.3 (*c* 0.91, CH₂Cl₂).


The absolute config. at C11 and C12 are (S) and (R) and the enantiomeric excess is 70%.

*Synthesis of fragment 3

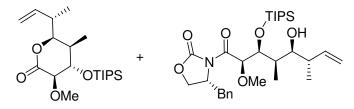
Compound 13: To a solution of 7.39 g of imide **12** (29.7 mmol) in 80 mL of CH_2Cl_2 at -78°C were added 29 mL of a 1M solution of dibutylboron triflate (29.0 mmol) in CH_2Cl_2 and 8.1 mL of Et₃N (58.0 mmol). The mixture was stirred 30 min at 0°C then

cooled to -78°C. A solution of 9.10 g of aldehyde 19 (44.5 mmol) in 10 mL of CH₂Cl₂ was then added and the reaction was stirred 4 hrs at 0°C. The reaction mixture was then hydrolysed with 50 mL of a 2:1 mixture of methanol and phosphate buffer pH 7 and then 50 mL of a 2:1 mixture of methanol and 30% hydrogen peroxide at 0°C. After stirring 1 hr at 0°C, the mixture was concentrated. The crude was then diluted with 100 mL of CH₂Cl₂ and 100 mL of a saturated aqueous solution of NaHCO₃. The organic phase was separated and the aqueous phase was extracted with 80 mL of CH₂Cl₂. The combined extracts were dried with and concentrated. Silica gel chromatography of the Na_2SO_4 residue (ethyl acetate/cyclohexane, 3:7) afforded a 3:1 mixture of the desired product 13 and imide 12 as a yellow oil (13.5 g). This mixture was used in the next step. A purification of 50 mg of this mixture on a preparative TLC (ethyl acetate/cyclohexane, 3:7) afforded pure 13. ¹H **NMR (300 MHz, CDCl₃):** 7.36-7.21 (m, 5H), 5.10 (d, J = 2.7 Hz, 1H), 4.74-4.66 (m, 1H), 4.22-4.12 (m, 2H), 3.89-3.83 (m, 1H), 3.71 (dd, J = 9.8, 6.9 Hz, 1H), 3.50 (dd, J = 9.8, 5.6 Hz, 1H), 3.47 (s, 3H), 3.38 (dd, J = 13.3, 3.2 Hz, 1H), 2.85 (dd, J = 13.3, 9.6 Hz, 1H), 2.68 (d, J = 8.6 Hz, 1H), 2.03-1.95 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): 171.0, 153.2, 135.1, 129.4, 129.0, 127.4, 81.0, 73.6, 66.9, 66.3, 55.8, 39.4, 37.7, 25.9, 18.3, 12.2, -5.2. IR (cm⁻¹): 2928, 2856, 1782, 1709, 1389, 1250, 1097, 836, 776, 701. MS (ESI): 474.2 (M+Na⁺), 925.0 (2M+Na⁺). HRMS (CI): calculated 452.2468, found 452.2470 (M+H⁺). **[α]**_D²² -10.7 (*c* 1.49, CH₂Cl₂).


Compound 14: To 13,5 g of the 3:1 mixture of aldolised product **13** and imide **12** in 150 mL of CH_2Cl_2 were added at 0°C: 9.5 mL of Et_3N (68 mmol) and 12 mL of TIPS triflate (45 mmol). The reaction was stirred 3 hrs at 0°C and a saturated aqueous solution

of NaHCO₃ (100 mL) was added. The organic phase was separated and the aqueous phase was extracted with 100 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded the desired product **14** as a pale yellow oil (9.91 g, 53% on 2 steps). ¹H NMR (**300 MHz, CDCl₃**): 7.35-7.21 (m, 5H), 5.18 (d, J = 6.8 Hz, 1H), 4.63-4.56 (m, 1H), 4.31 (dd, J = 7.2, 2.6, 1H), 4.22-4.12 (m, 2H), 3.66 (dd, J = 9.8, 6.8 Hz, 1H), 3.45-3.38 (m, 2H), 3.40 (s, 3H), 2.76 (dd, J = 13.2, 9.8 Hz, 1H), 1.58-1.50 (m, 1H), 1.10-1.04 (br, 21H), 0.91 (d, J = 7.1 Hz, 3H), 0.87 (s, 9H), 0.00 (s, 6H). ¹³C NMR (**75** MHz, CDCl₃): 172.7, 153.4, 135.5, 129.8, 129.4, 127.8, 74.1, 66.8, 65.9, 58.1, 56.6, 40.4, 38.2, 26.3, 18.7, 13.7, 11.5, -5.0. IR (cm⁻¹): 2941, 2865, 1788, 1705, 1464, 1385, 1110,835,679. MS (ESI): 630.3 (M+Na⁺). HRMS (CI): calculated 608.3803, found 608.3800 (M+H⁺). [α]_D²² -23.8 (c 1.85, CH₂Cl₂).

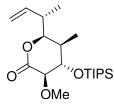
CH₃ Compound f: To a solution of 20 mg of 14 (0.0344mmol) in 0.5 mL of THF were added 0.5 mL of HF•pyridine. The reaction was stirred 2 hrs at RT and diluted with 3 mL of water and 3 mL of AcOEt. The organic phase was separated and the aqueous phase was extracted with 3 mL of EtOAc. The combined extracts were washed with 5 mL of a saturated aqueous solution of NaHCO₃, dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 7:3) afforded as a colorless oil the lactone **f** (3.7 mg,.72%). ¹H NMR (300 **MHz, CDCl₃**): 4.31 (dd, J = 11.6, 4.9 Hz, 1H), 3.86 (dd, J = 11.6, 9.0 Hz, 1H), 3.71 (s, 3H), 3.66 (d, J = 9.0 Hz, 1H), 3.57 (t, J = 9.0 Hz, 1H), 2.62-2.57 (br, 1H), 2.20-2.09 (m, 1H), 1.12 (d, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 171.0, 82.8, 74.5, 71.1, 61.0, 35.8, 14.5.



The coupling constants H4-H5 (9.0 Hz) and H5-H6 (9.0 Hz) demonstrate that H4, H5 and H6 are axial.

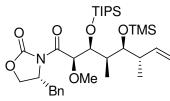
Compound 15: A suspension of 5.03 g of **14** (8.3 mmol), 8.9 g of PCC (41 mmol), 5 g of MgSO₄ and 5 g of celite in 50 mL of CH_2Cl_2 was stirred 3 days at RT. The suspension was then filtered on a pad of celite with AcOEt (150 mL). The filtrate was then concentrated.

Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 2:8) afforded the desired product **15** as a pale yellow oil (3.35 g, 82%). ¹H NMR (**300 MHz, CDCl₃**): 9.99 (s, 1H), 7.35-7.20 (m, 5H), 4.92 (d, J = 2.5 Hz, 1H), 4.66-4.63 (q, J = 2.5 Hz, 1H), 4.63-4.56 (m, 1H), 4.29-4.15 (m, 2H), 3.35-3.30 (m, 1H), 3.31 (s, 3H), 2.87 (dd, J = 13.3, 9.5 Hz, 1H), 2.59 (qd, J = 7.0, 1.8 Hz, 1H), 1.11 (d, J = 7.0 Hz, 3H), 1.10-1.05 (br, 21H). ¹³C NMR (**75 MHz, CDCl₃**): 202.1, 169.5, 153.3, 134.8, 129.4, 129.4, 127.6, 80.5, 75.1, 67.0, 58.5, 56.0, 50.6, 37.5, 18.1, 12.9, 9.8. **IR (cm⁻¹):** 2946, 2867, 1780, 1719, 1455, 1389, 1196, 1110, 998, 882, 702, 676. **MS (CI) :** 492 (M+H⁺). **HRMS (CI):** calculated 492.2781, found 492.2789 (M+H⁺). **[\alpha]**_D²² + 47.7 (*c* 0.78, CH₂Cl₂).

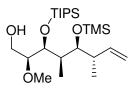

Lactone 36 and alcohol 16: To 25 mL of THF at -78°C were added: 10.2 mL of a 1M solution of potassium *tert*-butoxide (10.2 mmol) and 4.2 mL of a 2.4 M solution of butyllithium (10.2 mmol) and an excess of *trans*-2-butene. The mixture

was stirred 1 hr at -40°C, cooled to -78°C and 2.11 mL of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was added (10.3 mmol). The mixture was stirred 1 hr at -78°C and 1.3 mL of boron trifluoride-etherate (10.3 mmol) were added. After 10 min of stirring, 1192 mg of aldehyde **15** (2.4 mmol) in 3 mL of THF were added. The reaction was stirred 5 hrs at -78°C and then diluted with 30 mL of a saturated aqueous solution of NaHCO₃ and 20 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with 30 mL of EtOAc. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9 to 3:7) afforded as a colorless oil a mixture of the lactone **36** and 2 diastereoisomers in a 9:1:1 ratio (174 mg, 20%) and a 9:1 mixture of alcohol **16** with a diastereoisomer and unknown impurities (670 mg). Mixture of lactone **36** and diastereoisomers and mixture of alcohol **16** with one diastereoisomer were used as it is in the next steps. Separations were effected at the next steps.

9:1:1 mixture of lactone 36 and diastereoisomers:

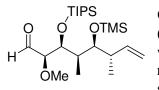

¹**H NMR (300 MHz, CDCl₃):** 5.90 (ddd, *J* = 17.3, 10.4, 7.2 Hz, 0.9H), 5.80 (ddd, *J* = 17.0, 10.2, 8.8 Hz, 0.1H), 5.63 (ddd, *J* = 17.3, 10.2, 9.0 Hz, 0.1H), 5.15 (d, *J* = 17.3 Hz, 1H), 5.10 (d, *J* = 10.4 Hz, 1H), 4.23 (dd, *J* = 9.8, 1.5 Hz, 1H), 3.76 (d, *J* = 5.0 Hz, 1H), 3.73 (dd, *J* = 5.0, 14.5 Hz, 14.5

0.9 Hz, 1H), 3.56 (s, 3H) 2.51-2.42 (m, 1H), 2.12-2.07 (m,1H), 1.14-1.02 (br, 21H), 0.99 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 7.5 Hz, 3H). See full characterisation of pure **36** below:


Compound 36: To a solution of 9 mg of the 9:1 mixture of alcohol **16** with a diastereoisomer and unknown impurities at -78°C in 0.5 Ml of THF were added 18 μ L of a 2M solution of LDA in THF (0.036 mmol). The reaction was stirred 1 hr at -78°C. The mixture was diluted with 3 mL of a saturated aqueous solution of NaHCO₃ and 3 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with 3 mL of EtOAc. The

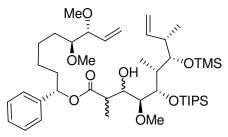
combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil the desired lactone **M1** (8 mg, 40% on 2 steps) without any diastereoisomers. ¹H NMR (**300** MHz, CDCl₃): 5.90 (ddd, J = 17.3, 10.4, 7.2 Hz, 1H), 5.15 (d, J = 17.3 Hz, 1H), 5.10 (d, J = 10.4 Hz, 1H), 4.23 (dd, J = 9.8, 1.5 Hz, 1H), 3.76 (d, J = 5.0 Hz, 1H), 3.73 (dd, J = 5.0, 0.9 Hz, 1H), 3.56 (s, 3H) 2.51-2.42 (m, 1H), 2.12-2.07 (m,1H), 1.14-1.02 (br, 21H), 0.99 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): 171.1, 139.8, 115.5, 83.6, 80.5, 77.5, 59.7, 40.3, 38.2, 17.9, 17.8, 17.7, 15.2, 12.1, 10.9. IR (cm⁻¹): 2939, 2865, 1760, 1462, 1196, 1100, 993, 680. MS (ESI): 370.9 (M+Na⁺), 763.0 (2M+Na⁺). HRMS (CI): calculated 371.2618, found 371.2617 (M+H⁺). [α]_D²² + 26.1 (c 0.60, CH₂Cl₂).

Compound 17: To a solution of the 670 mg of alcohol **16** with impurities in 15 mL of CH_2Cl_2 were added at 0°C: 1.03 µL of Et_3N (7.4 mmol) and 638 µL of TMS triflate (3.3 mmol). The reaction was stirred 3 hrs at RT and then diluted with 10 mL of a saturated aqueous solution of NaHCO₃ and 10 mL of CH_2Cl_2 .

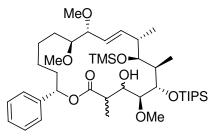

The organic phase was separated and the aqueous phase was extracted with 10 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a pale yellow oil a 9:1 mixture of the desired compound **17** and a diastereoisomer (635 mg, 42% on 2 steps). Separation was effected at the next step. ¹H NMR (**300** MHz, CDCl₃): 7.38-7.21 (m, 5H), 5.90 (ddd, J = 17.3, 10.2, 7.2 Hz, 0.1H), 5.72 (ddd, J = 17.3, 10.2, 9.0 Hz, 0.9H), 5.28 (d, J = 9.0 Hz, 1H), 5.06 (dd, J = 17.3, 2.6 Hz, 1H), 4.98 (dd, J = 10.2, 2.6 Hz, 1H), 4.58-4.49 (m, 1H), 4.26 (d, J = 8.3 Hz, 1H), 4.18-4.15 (m, 2H), 3.62 (d, J = 9.8 Hz, 1H), 3.45 (dd, J = 13.2, 3.0 Hz, 1H), 3.38 (s, 3H), 2.73 (dd, J = 13.2, 10.2 Hz, 1H), 2.50-2.39 (m, 1H), 1.34-1.24 (m, 1H), 1.15-1.15 (br, 21H), 1.05 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.12 (m, 9H). ¹³C NMR (**75** MHz, CDCl₃): 172.7, 153.1, 139.6, 135.3, 129.5, 129.2, 127.5, 115.6, 78.2, 74.4, 66.5, 57.2, 56.4, 40.8, 40.1, 37.9, 19.6, 18.7, 13.9, 11.6, 1.0. IR (cm⁻¹): 2968, 2864, 1777, 1701, 1455, 1294, 1192, 1106, 878, 833. MS (ESI): 642.3 (M+Na⁺), 1261.3 (2M+Na⁺). HRMS (LSIMS): calculated 620.3803, found 620.3808 (M+H⁺). [α] $_{D}^{22}$ -29.4 (*c* 1.55, CH₂Cl₂).

To a solution of 600 mg (0.97 mmol) of **17** in 6 mL of THF at 0°C were added 2.4 mL of a 2M solution of lithium borohydryde in THF (4.85 mmol). The reaction was stirred 3 hrs at RT and then diluted with 10 mL of a saturated aqueous solution of NaHCO₃ and 10 mL of Et₂O. The organic phase was separated and the aqueous phase was extracted with

10 mL of Et₂O. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a pale yellow oil the desired alcohol (270 mg, 62%). ¹H NMR (300 MHz, CDCl₃): 5.85 (ddd, J = 16.8, 10.9,

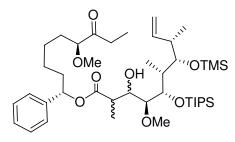

8.4 Hz, 1H), 5.06-4.99 (m, 2H), 4.08 (dd, J = 7.2, 2.0 Hz, 1H), 3.85 (dd, J = 12.3, 3.4 Hz, 1H), 3.66 (dd, J = 9.0, 2.0 Hz, 1H), 3.54 (dd, J = 12.3, 3.8 Hz, 1H), 3.38 (s, 3H), 2.24 (dt, J = 7.2, 3.4 Hz, 1H), 2.52-2.42 (m, 1H), 1.80-1.63 (m, 2H), 1.11-1.08 (br, 21H), 1.04 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.13 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): 140.4, 115.3, 84.7, 78.4, 72.2, 59.6, 57.2, 40.9, 39.3, 19.3, 18.7, 13.7, 11.2, 1.1. IR (cm⁻¹): 3288, 2944, 2865, 1463, 1384, 1249, 1142, 1041, 800. [α]_D²² +11.5 (c 0.29, CH₂Cl₂).

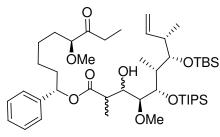
Compound 18: To a solution of 130 mg of the preceding alcohol (0.29 mmol) and 153 μ L of pyridine (1.9 mmol) in 2 mL of CH₂Cl₂ were added 246 mg of Dess-Martin periodinane (0.58 mmol). The reaction was stirred 2 hrs and diluted with 2 mL of a saturated aqueous solution of Na₂S₂O₃, 2 mL of a saturated aqueous solution of NaHCO₃


and 4ml of CH₂Cl₂. The organic phase was separated and the aqueous phase was extracted with 4 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil the desired compound **18** (69 mg, 54%). ¹H NMR (**300** MHz, CDCl₃): 9.53 (d, J = 3.0 Hz, 1H), 5.75 (ddd, J = 17.2, 10.3, 9.0 Hz, 1H), 5.00-4.89 (m, 2H), 4.19 (dd, J = 7.2, 2.6 Hz, 1H), 3.66 (dd, J = 8.3, 2.6 Hz, 1H), 3.60 (dd, J = 7.2, 3.4 Hz, 1H), 3.33 (s, 3H), 2.47-2.36 (m, 1H), 1.61-1.51 (m, 1H), 1.11-1.07 (br, 21 H), 1.00 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): 201.3, 140.4, 115.3, 89.5, 77.3, 72.5, 57.9, 41.4, 40.0, 19.1, 18.6, 13.5, 10.8, 1.1. IR (cm⁻¹): 2995, 2895, 1690, 1125,1105, 884. MS (ESI): 445.0 (M+H⁺). [α]_D²² +15.4 (c 0.35, CH₂Cl₂).

*<u>Assembly of the Soraphen A framework</u>

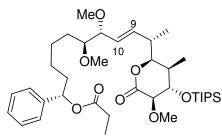
Compound 21: To a solution of 83 mg of ester **2** (0.25 mmol) in 0.5 mL of THF at -78° C were added dropwise 150 µL of a 2M solution of LDA (0.30 mmol) in THF. The reaction was stirred 35 min at -78° C and 65 mg of aldehyde **18** (0.146 mmol) in 0.3 mL of THF was added dropwise and the reaction was stirred 4 hrs at -78° C. The mixture was diluted with 3 mL of a saturated aqueous


solution of NaHCO₃ and 3 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with 3 mL of EtOAc. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil a 3:1 mixture of 2 diastereoisomers of the desired compound **21** (76.1 mg, 67%). ¹**H NMR (500 MHz, CDCl₃):** 7.35-7.26 (m, 5H), 5.88-5.67 (m, 3H), 5.29 (dd, J = 10.5, 1.3 Hz, 1H), 5.23 (dd, J = 17.3, 1.3 Hz, 1H), 5.08-5.01 (m, 2H), 4.14-4.07 (m, 1H), 3.71-3.49 (m, 3H), 3.46 (s, 1H), 3.40-3.37 (br, 5H) 3.28 (s, 3H), 3.17-3.12 (m, 1H), 3.08 (d, J = 7.9 Hz, 0.75H), 2.98 (d, J = 9.3 Hz, 0.25H), 2.71-2.58 (m, 2H), 2.49-2.41 (m, 0.75H), 2.28-2.23 (m, 0.25H), 2.00-1.85 (m, 1H), 1.84-1.70 (m, 1H), 1.70-1.57 (m, 1H), 1.47-1.24 (m, 3H), 1.21-1.15 (m, 3H), 1.13-1.08 (m, 21H), 1.07-1.01 (m, 3H), 0.95-0.89 (m, 5.25H), 0.77 (d, J = 6.8 Hz, 0.75H), 0.14 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): 174.3, 140.7, 140.4, 140.0, 139.8, 135.4, 128.6, 128.4, 126.6, 119.0, 115.8, 115.5, 84.8, 83.5, 82.9, 82.1, 78.7, 76.1, 72.2, 71.9, 71.7, 61.0, 60.9, 58.5, 56.8, 45.3, 44.8, 41.1, 39.9, 36.3, 30.4, 26.4, 25.7, 25.6, 19.8, 19.6, 18.7, 18.6, 14.6, 14.4, 14.1, 13.7, 12.4, 11.2, 11.0, 1.2. IR (cm⁻¹): 2938, 2860, 1731, 1456, 1249, 1098, 882, 837.


Compound 22: To a solution of 14 mg of the diene **21** (0.017 mmol) in 1 mL of degassed toluene were added 3.0 mg of Grubbs-Hoveyda II catalyst **24** (0.005mmol). The reaction was stirred 15 hrs at 80°C and the solvent was then evaporated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 2:8) afforded as a colorless oil the desired compound **22** as a mixture of diastereoisomers (4

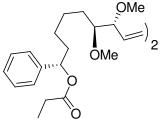
mg, 30%) and the isomerised compound **23** (6 mg, 43%). ¹H NMR (**300** MHz, CDCl₃):7.36-7.28 (m, 5H), 5.89 (dd, J = 16.0, 7.5 Hz, 1H), 5.71 (dd, J = 10.5, 2.8 Hz, 1H), 5.28 (dd, J = 16.0, 5.3 Hz, 1H), 4.14-4.03 (m, 1H), 3.94-3.78 (m, 1H), 3.77-3.53 (m, 1H), 3.45-3.31 (m, 10H), 3.28-3.16 (m, 1H), 3.15-3.07 (m, 1H), 2.63-2.55 (m, 2H), 2.03-1.84 (m, 2H), 1.73-1.30 (m, 8H), 1.30-1.25 (m, 3H), 1.16-1.04 (br, 21H), 0.96 (d, J = 6.8 Hz, 3 H), 0.95 (d, J = 6.8 Hz, 3H), 0.13 (s, 9H). MS (ESI): 773.4 (M+Na⁺). HRMS (ESI): calculated 773.4814, found 773.4807 (M+Na⁺).

*Olefin isomerization during metathesis


Compound 23: ¹H NMR (300 MHz, CDCl₃): 7.37-7.27 (m, 5H), 5.98-5.62 (m, 2H), 5.10-4.96 (m, 2H), 4.24-3.92 (m, 1H), 3.78-2.98 (m, 11 H), 2.78-2.55 (m, 2H), 2.54-2.42 (m, 2H), 2.00-1.86 (m, 1H), 1.85-1.70 (m, 1H), 1.70-0.86 (m, 40H), 0.16-.0.13 (br, 9H). **MS (ESI):** 787.4 (M+Na⁺).

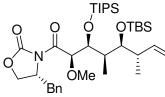
(**ESI**): $829.4 (M+Na^{+})$.

Compound 33: ¹H NMR (**300** MHz, CDCl₃): 7.35-7.26 (m, 5H), 5.96-5.83 (m, 1H), 5.76-5.67 (m, 1H), 5.06-4.99 (m, 2H), 4.13-3.94 (m, 1H), 3.71-3.54 (m, 3H), 3.49-3.46 (m, 2H), 3.39-3.34 (m, 3H), 3.32-3.23 (m, 2H), 3.09-2.98 (m, 1H), 2.67-2.60 (m, 2H), 2.50-2.38 (m, 2H), 2.01-1.86 (m, 1H), 1.85-1.76 (m, 1H), 1.70-0.86 (m, 36H), 1.06 (d, *J* = 7.5 Hz, 3H), 0.93-0.88 (br, 12 H), 0.07 (s, 6H). **MS**

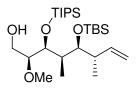

*Cross-metathesis avenue to seco-Soraphen A.

Compound 37: To a solution of 35 mg of **36** (0.094 mmol) and 63 mg of **F** (0.188 mmol) in 1 mL of degassed toluene were added 19 mg of Grubbs-Hoveyda II catalyst (0.062 mmol) in 3 portions. The reaction was stirred 30 hrs at 80°C and the solvent was then evaporated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 2:8) afforded as a colorless oil the desired compound **37**

(17.3 mg, 26%) and the homocoupling compound **38** (20 mg, 33%). ¹H NMR (500 MHz, **CDCl₃**): 7.32-7.26 (m, 5H), 5.75-5.71 (m, 2H), 5.48 (dd, J = 15.6, 8.1 Hz, 1H), 4.25-4.22 (d, J = 9.7 Hz, 1H), 3.78-3.69 (m, 2H), 3.57 (s, 3H), 3.54 (dd, J = 8.1, 4.1 Hz, 1H), 3.39 (s, 3H), 3.26 (s, 3H), 3.16-3.13 (m, 1H), 2.58-2.45 (m, 1H), 2.34 (dd, J = 7.5, 3.0 Hz, 2H), 2.15-2.03

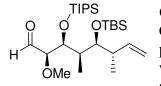

(m, 1H), 1.98-1.84 (m, 1H), 1.83-1.72 (m, 1H), 1.45-1.19 (m, 6H), 1.12 (t, J = 7.5 Hz, 3H), 1.08-1.03 (m, 21 H), 1.00 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): 174.1, 171.5, 141.4, 137.2, 128.8, 128.5, 128.1, 126.9, 84.7, 84.0, 80.8, 78.0, 76.2, 60.1, 59.1, 56.9, 40.7, 37.8, 36.8, 33.0, 31.1, 28.2, 26.1, 25.9, 18.3, 16.3, 12.6, 9.5. IR (cm⁻¹): 2938, 2865, 1780, 1701, 1465, 1385, 1195, 1111, 1029, 918, 833. MS (ES): 699.4 (M+Na⁺). HRMS (ESI): calculated 699.4263, found 699.4258 (M+Na⁺). [α] $_{n}^{22}$ -28.6 (*c* 0.35, CH₂Cl₂).

Compound 38: ¹**H NMR (300 MHz, CDCl₃):** 7.32-7.27 (m, 10H), 5.71 (dd, J = 7.7, 6.3 Hz, 2H), 5.60-5.56 (m, 2H), 3.59-3.55 (m, 2H), 3.38 (s, 2H), 3.35 (s, 4H), 3.28 (s, 4H), 3.24 (s, 2H), 3.18-3.14 (m, 2H), 2.33 (dd, J = 7.7, 2.6 Hz, 4H), 1.95-1.82 (m, 2H), 1.81-1.71 (m, 2H), 1.44-1.22 (m, 12 H), 1.12 (t, J = 7.7 Hz, 6H). ¹³C **NMR (75 MHz, CDCl₃):** 173.9, 141.0, 132.0, 128.5, 127.9, 126.6, 84.0, 83.4, 75.9, 58.7, 58.6, 56.8, 56.7, 36.5, 30.6, 28.0, 25.7, 25.6, $M+Na^+$)

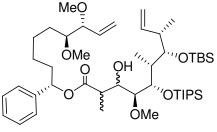

9.2. **MS (ESI):** 663.3 (M+Na⁺).

*Synthesis of compounds 26, 27 and 28.

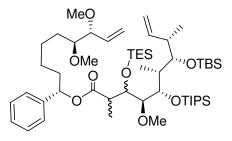
Compound h: The alcohol **16** was obtained from 1000 mg (2.0 mmol) of aldehyde **15** as described before. To a solution **16** in 5 mL of CH_2Cl_2 were added at 0°C: 556 µL of Et_3N (4.0 mmol) and 460 µL of TBS triflate (2.0 mmol). The reaction was stirred 3 hrs at RT and then diluted with 10 mL of a saturated aqueous


solution of NaHCO₃ and 10 mL of CH₂Cl₂. The organic phase was separated and the aqueous phase was extracted with 10 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a pale yellow oil the desired compound **i** (528 mg, 40% on 2 steps) without any diasteroisomers. ¹H NMR (300 MHz, CDCl₃): 7.37-7.23 (m, 5H), 5.81 (ddd, J = 17.3, 10.1, 7.9 Hz, 1H), 5.24 (d, J = 7.9 Hz, 1H), 5.05 (dd, J = 17.3, 2.6 Hz, 1H), 4.93 (dd, J = 10.1, 2.6 Hz, 1H), 4.57-4.51 (m, 1H), 4.21-4.13 (m, 3H), 3.62 (d, J = 9.4 Hz, 1H), 3.45 (dd, J = 13.1, 3.0 Hz, 1H), 3.38 (s, 3H), 2.76 (dd, J = 13.1, 10.1 Hz, 1H), 2.44-2.34 (m, 1H), 1.38-1.28 (m, 1H), 1.14-1.10 (br, 21H), 1.04 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 7.1 Hz, 3H), 0.90 (m, 9H), 0.06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): 172.6, 153.0, 140.1, 135.2, 129.3, 129.0, 127.4, 115.2, 76.5, 66.4, 57.1, 56.4, 41.8, 40.2, 37.8, 26.3, 19.8, 18.5, 13.7, 11.3, -3.0, -3.8. IR (cm⁻¹): 2930, 2862, 1766, 1707, 1456, 1380, 1180, 1111, 1032, 832, 698. MS (ESI): 684.3 (M+Na⁺). HRMS (LSIMS): calculated 662.4272, found 662.4277 (M+H⁺). [α]₀²² -37.7 (*c* 1.47, CH₂Cl₂).

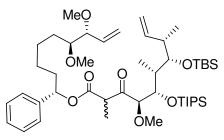
Compound i: To a solution of 267 mg (0.4 mmol) of **h** in 2 mL of THF at 0°C were added 1.6 mL of a 2M solution of lithium borohydryde in THF (3.3 mmol) and 120 μ L (2.8 mmol) of methanol. The reaction was stirred 12 hrs at RT and then diluted with 10 mL of a saturated aqueous solution of NaHCO₃ and 10 mL of Et₂O. The organic phase was


separated and the aqueous phase was extracted with 10 mL of Et₂O. The originite phase was extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a pale yellow oil the desired compound **i** (145 mg, 73%). ¹H NMR (**300 MHz, CDCl₃**): 5.91 (ddd, J = 18.1, 9.4, 8.7 Hz, 1H), 5.04-4.99 (m, 2H), 4,04 (dd, J = 7.2, 1.9 Hz, 1H), 3.88-3.82 (m, 1H), 3.70 (dd, J = 8.7, 1.5 Hz, 1H), 3.59-3.52

(m, 1H), 3.41 (s, 3H), 3.24 (p, J = 3.7 Hz, 1H), 2.49-2.40 (m, 1H), 1.81-1.70 (m, 2H), 1.12-1.10 (br, 21H), 1.05 (d, J = 7.2 Hz, 3H), 0.92-0.89 (br, 9H), 0.89 (d, J = 6.8 Hz, 3H), 0,06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): 140.4, 115.1, 84.7, 76.8, 72.2, 59.6, 57.1, 41.8, 39.1, 26.3, 19.2, 18.5, 13.5, 11.1, -3.1, -3.7. IR (cm⁻¹): 2927, 2863, 1463, 1253, 1034, 835, 773. MS (CI): 489 (M+H⁺). HRMS (CI): calculated 489.3795, found 489.3794 (M+H⁺). $[\alpha]_D^{22} = +6.8$ (c = 0.995, CH₂Cl₂).


Compound j: To a solution of 113 mg of **i** (0.23 mmol) in 1 mL of CH_2Cl_2 were added 0.95 mL of a 0.5 M solution of Dess-Martin periodinane (0.47 mmol). The reaction was stirred 2 hrs and diluted with 2 mL of a saturated aqueous solution of $Na_2S_2O_3$, 2 mL of a saturated aqueous solution of Na_2Cl_2 . The

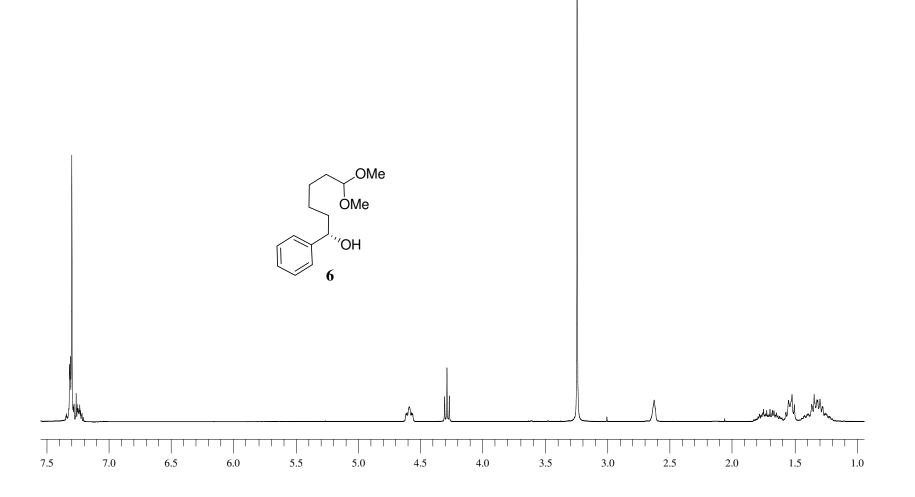
organic phase was separated and the aqueous phase was extracted with 4 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil the desired compound **j** (73 mg, 65%). ¹H NMR (300 MHz, CDCl₃): 9.56 (d, J = 3.4 Hz, 1H), 5.83 (ddd, J = 18.6, 10.4, 8.8 Hz, 1H), 5.05-4.89 (m, 2H), 4.17 (dd, J = 7.4, 2.8 Hz, 1H), 3.69 (dd, J = 8.1, 2.6 Hz, 1H), 3.61 (dd, J = 7.2, 3.2 Hz, 1H), 3.34 (s, 3H), 2.46-2.34 (m, 1H), 1.65-1.57 (m, 1H), 1.13-1.07 (br, 21H), 1.02 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.90 (m, 9H), 0.05 (s, 6H).¹³C NMR (75 MHz, CDCl₃): 201.4, 140.3, 115.0, 89.3, 75.9, 72.6, 57.9, 42.1, 39.9, 26.3, 18.9, 18.4, 13.4, 10.9, -3.1, -3.5. MS (CI): 487 (M+H⁺). HRMS (CI): calculated 487.3630, found 487.3636 (M+H⁺). [α]_D²² +22.6 (*c* 0.87, CH₂Cl₂).

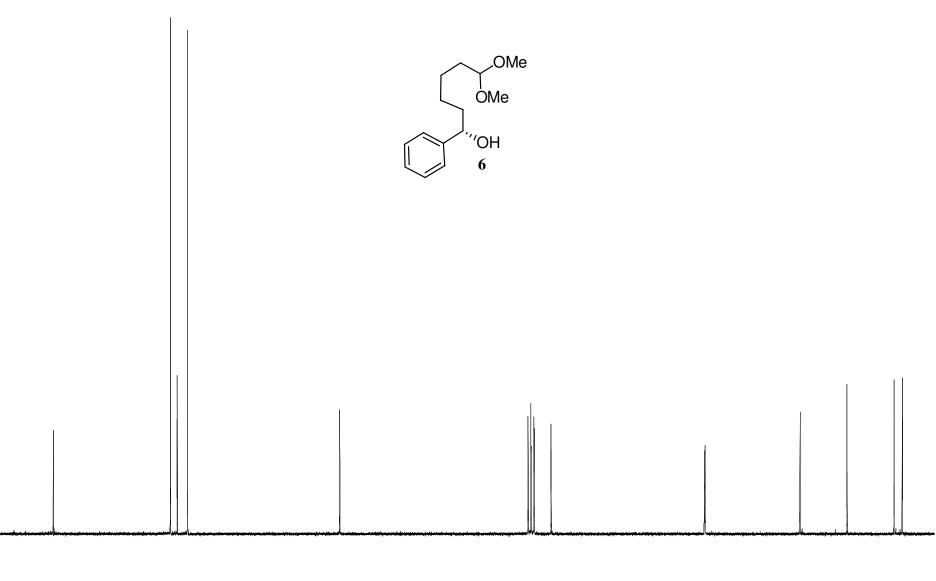

Compound 26: To a solution of 55 mg of ester **2** (0.164 mmol) in 0.5 mL of THF at -78° C were added dropwise 102 µL of a 2M solution of LDA (0.205 mmol) in THF. The reaction was stirred 35 min at -78° C and 40 mg of aldehyde **j** (0.082 mmol) in 0.3 mL of THF were added dropwise and the reaction was stirred 4 hrs at -78° C. The mixture was diluted with 3 mL of a saturated aqueous

solution of NaHCO₃ and 3 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with 3 mL of EtOAc. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil a 3:1 mixture of 2 diastereoisomers of the desired compound **26** (47 mg, 70%). ¹H NMR (**500 MHz, CDCl₃**): 7.33-7.26 (m, 5H), 5.98-5.83 (m, 1H), 5.79-5.67 (m, 2H), 5.30-5.20 (m, 2H), 5.06-4.99 (m, 2H), 4.12-4.02 (m, 1H), 3.70-3.52 (m, 3H), 3.46 (s, 1H), 3.40-3.37 (br, 5H), 3.28 (s, 3H), 3.16-3.13 (m, 1H), 3.07 (d, *J* = 8.1 Hz, 0,75H), 2.98 (d, *J* = 8.6 Hz, 0.25H), 2.71-2.59 (m, 2H), 2.47-2.41 (m, 0.75H), 2.24 (m, 0.25H), 1.96-1.89 (m, 1H), 1.82-1.77 (m, 1H), 1.74-1.65 (m, 1H), 1.45-1.17 (m, 6H), 1.14-1.09 (br, 21H), 1.05 (d, *J* = 7.2 Hz, 3H), 0.94-0.90 (m, 14.25 H), 0.78 (d, J = 6.8 Hz, 0.75H), 0.07 (s, 6H). ¹³C NMR (**125 MHz, CDCl₃**): 174.7, 174.3, 140.9, 140.5, 135.6, 128.9, 128.8, 128.3, 126.9, 119.3, 115.9, 115.7, 85.0, 83.8, 82.5, 77.7, 76.6, 76.4, 72.5, 72.4, 61.2, 58.8, 57.1, 45.5, 42.2, 40.3, 40.2, 36.6, 30.6, 26.8, 25.9, 20.1, 19.1, 18.9, 18.7, 15.0, 14.4, 14.3, 11.5, -2.5, -3.2. IR (cm⁻¹): 2929, 2862, 1732, 1461, 1252, 1173, 1082, 1031, 638. MS (ESI): 843.5 (M+Na⁺). HRMS (LSIMS): calculated 843.5602, found 843.5609 (M+Na⁺).

Compound 27: To a solution of 30 mg of **26** (0.036 mmol) in 0.8 mL of CH_2Cl_2 were added at 0°C, 20 μ L of Et_3N (0.14 mmol) and 16 μ L of TES triflate (0.073 mmol). The reaction was stirred 3 hrs at RT and diluted with 3 mL of a saturated aqueous solution of NaHCO₃ and 4 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with 4 mL of EtOAc. The combined

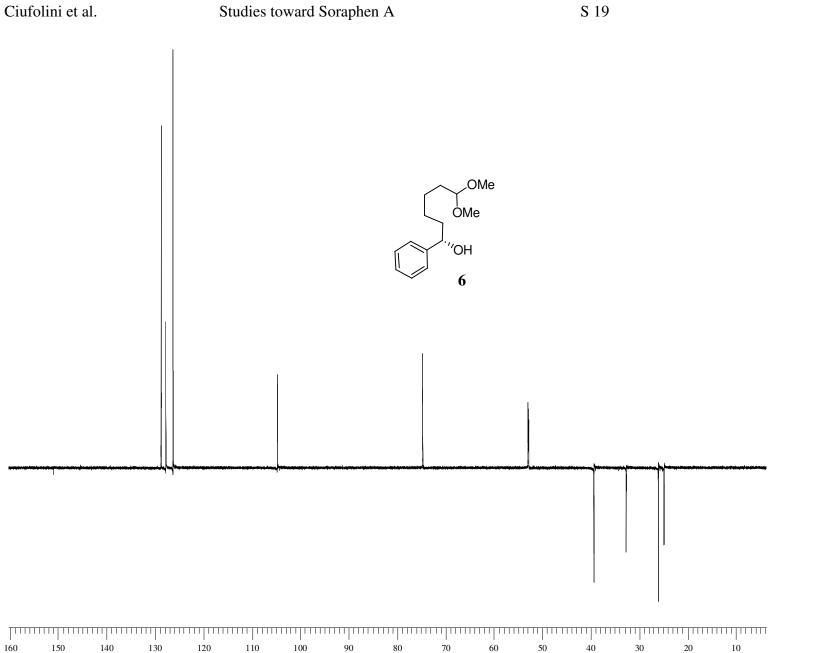
extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil a 3:1 mixture of 2 diastereoisomers of the desired compound **27** (25 mg, 73%). ¹H NMR (500 MHz, CDCl₃): 7.31-7.25 (m, 5H), 6.19-5.96 (m, 1H), 5.79-5.60 (m, 2H), 5.29 (d, J = 10.6 Hz, 1H), 5.23 (d, J = 17.3 Hz, 1H), 5.12-4.98 (m, 2H), 4.23-3.93 (m, 2H), 3.71-3.66 (m, 1H), 3.54 (dt, J = 3.7, 7.5 Hz, 1H), 3.79-3.71 (m, 3H), 3.31-3.31 (m, 6H), 3.15-3.11 (m, 1H), 2.93 (s, 1H), 2.91 (t, J = 7.3 Hz, 0.75H), 2.77 (t, J = 7.3 Hz, 0.25H), 2.62 (t, J = 7.2 Hz, 0.25), 2.53 (t, J = 7.2 Hz, 0.75H), 1.98-1.85 (m, 1H), 1.81-1.71 (m, 1H), 1.44-1.41 (m, 2H), 1.38-1.25 (m, 2H), 1.19 (d, J = 6.8Hz, 2H), 1.12-1.01 (m, 27H), 0.97-0.88 (m, 16H), 0.77 (t, J = 7.9Hz, 6H), 0.64-0.55 (m, 1.5H), 0.50-0.31 (m, 4.5H), 0.06 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): 174.5, 141.0, 140.7, 140.5, 135.6, 128.7, 128.6, 128.2, 128.0, 127.3, 127.1, 119.3, 115.6, 85.0, 83.8, 78.4, 77.9, 76.5, 75.9, 58.8, 57.8, 57.1, 43.8, 41.1, 40.0, 37.1, 36.3, 30.7, 26.7, 25.9, 21.2, 20.8, 19.1, 19.0, 15.1, 14.5, 14.3, 12.6, 7.3, 5.3, 5.1, -2.5, -2.6, -3.0, -3.1. IR (cm⁻¹): 2932, 2863, 1732, 1460, 1252, 1089, 1044, 834. MS (ESI): 957.5 (M+Na⁺, 100%). HRMS (CI): calculated 957.6467, found 957.6465(M+Na⁺).

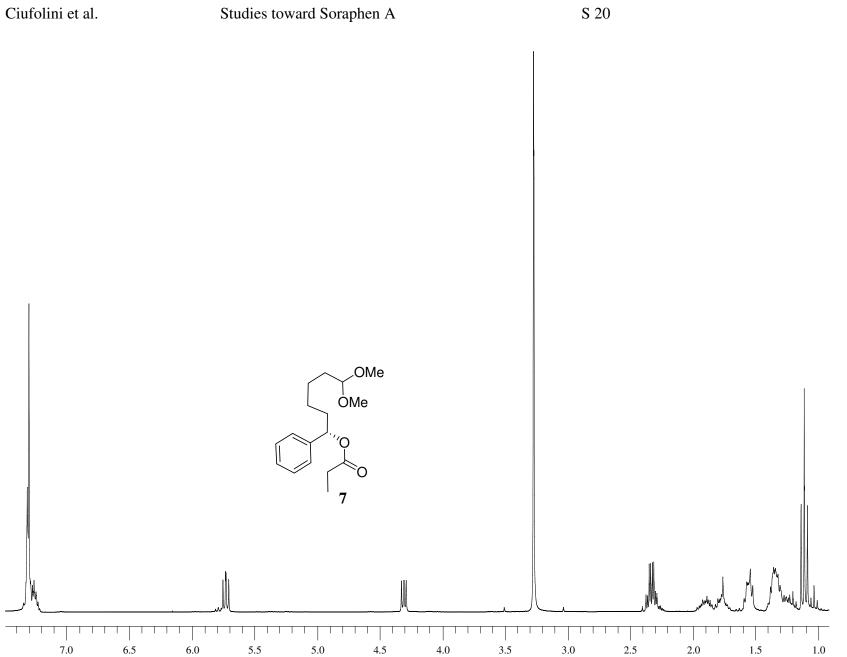

Compound 28: To a solution of 38 mg of **26** (0.046 mmol) in 1 mL of CH_2Cl_2 were added 0.3 mL of a 0.5M solution of Dess-Martin periodinane (0.15 mmol) in CH_2Cl_2 . The reaction was stirred 2 hrs at RT and and diluted with 2 mL of a saturated aqueous solution of $Na_2S_2O_3$, 2 mL of a saturated aqueous solution of $NaHCO_3$ and 4ml of CH_2Cl_2 . The organic phase was separated and

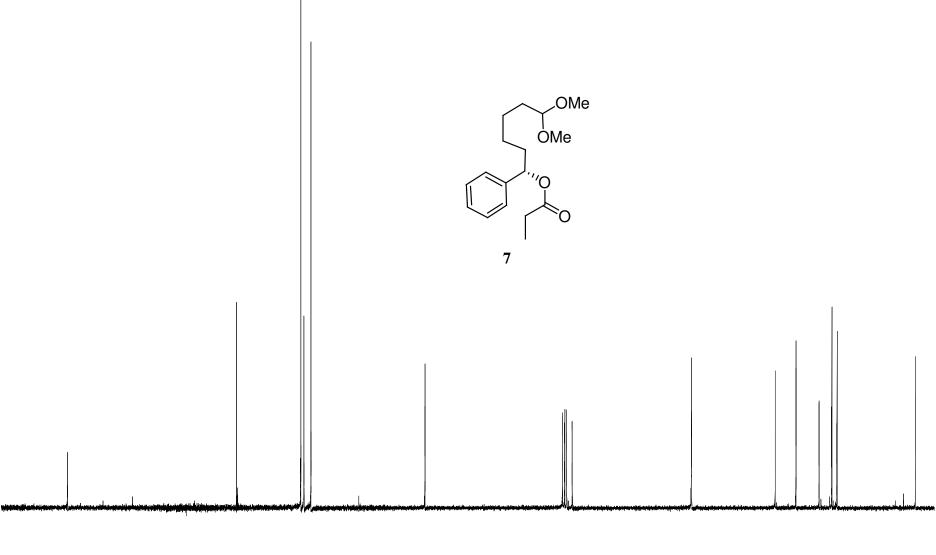

the aqueous phase was extracted with 4 mL of CH₂Cl₂. The combined extracts were dried with Na₂SO₄ and concentrated. Silica gel chromatography of the residue (ethyl acetate/ cyclohexane, 1:9) afforded as a colorless oil a 3:2 mixture of 2 diastereoisomers of the desired compound **28** (27 mg, 72%). ¹H **NMR (500 MHz, CDCl₃):** 7.35-7.26 (m, 5H), 5.93-5.70 (m, 3H), 5.31-5.22 (m, 2H), 5.05-4.72 (m, 2H), 4.17-4.15 (m, 0.6H), 4.05 (d, J = 5.6 Hz, 0.4H), 3.97 (m, 0.6H), 3.86 (q, J = 7.2 Hz, 0.4 H), 3.76 (dd, J = 6.6, 2.8 Hz, 0.4H), 3.69-3.61 (m, 1.6H), 3.56-3.54 (m, 1H), 3.38 (s, 3H), 3.28 (s, 3H), 3.21 (s, 1H), 3.16-3.13 (m, 1H), 3.07 (s, 1H), 2.94 (s, 1H), 2.51-2.44 (m, 0.3H), 2.37-2.32 (m, 0.3H), 2.28-2.22 (m, 0.4H), 1.99-1.89 (m, 1H), 1.86-1.73 (m, 1H), 1.47-1.21 (m, 9H), 1.12-1.01 (m, 23.2H), 0.97 (t, J = 6.6 Hz, 1.8H), 0.91-0.89 (m, 12H), 0.05-0.04 (m, 6H). ¹³C **NMR (125 MHz, CDCl₃):** 175.6, 169.5, 141.0, 140.4, 135.6, 128.9, 128.8, 127.2, 127.1, 126.8, 119.3, 115.4, 91.9, 90.0, 85.0, 83.8, 77.8, 77.6, 76.8, 75.6, 75.4, 58.9, 57.5, 57.1, 56.3, 51.9, 42.8, 41.8, 41.0, 30.6, 26.7, 25.9, 19.1, 19.0, 18.9, 18.8, 14.2, 14.0, 13.8, 11.6, 10.9, -2.6, -3.5. **IR (cm⁻¹):** 2914, 2848, 1699, 1471, 1299, 1109, 1035, 882. **MS (ESI):** 841.4 (M+Na⁺). **HRMS (LSIMS):** calculated 841.5446, found 841.5444 (M+Na⁺).

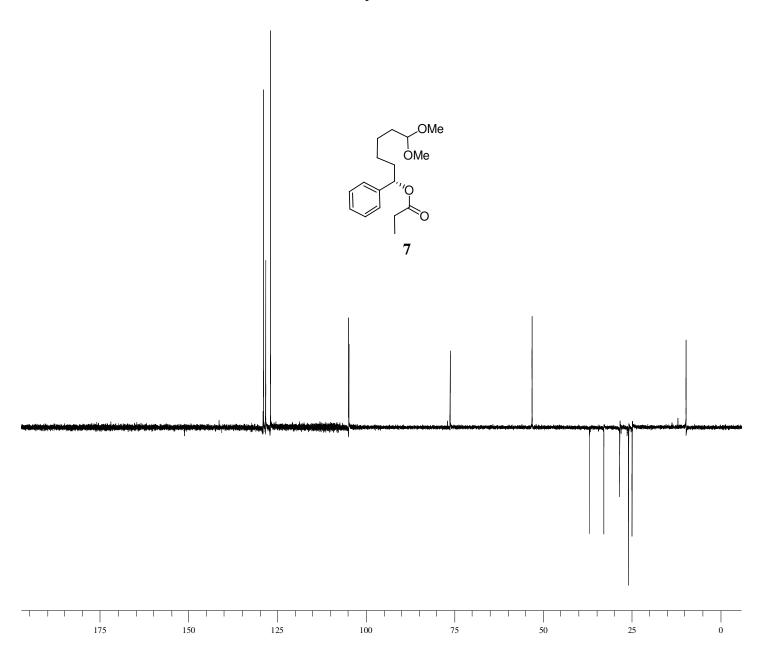
HARDCOPY ¹H and ¹³C NMR SPECTRA

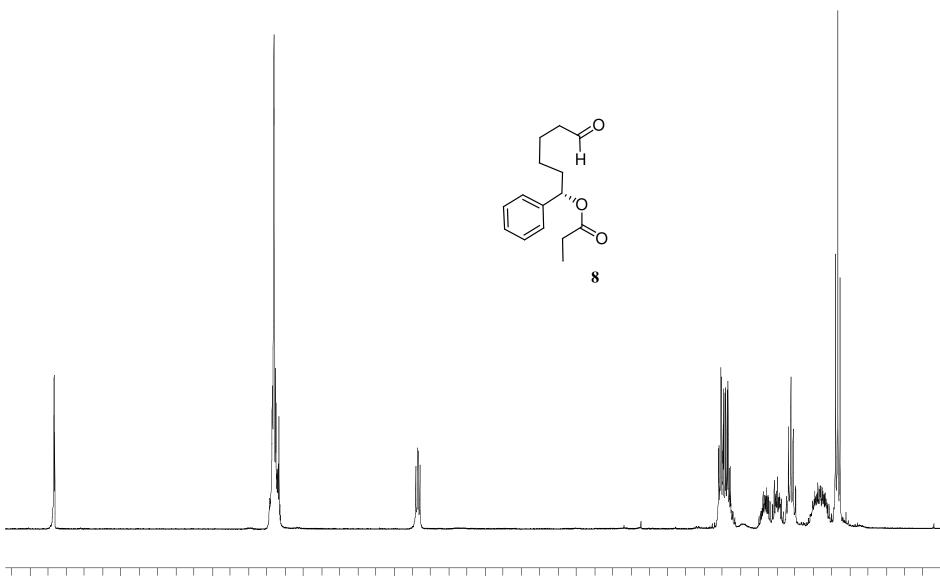
Index

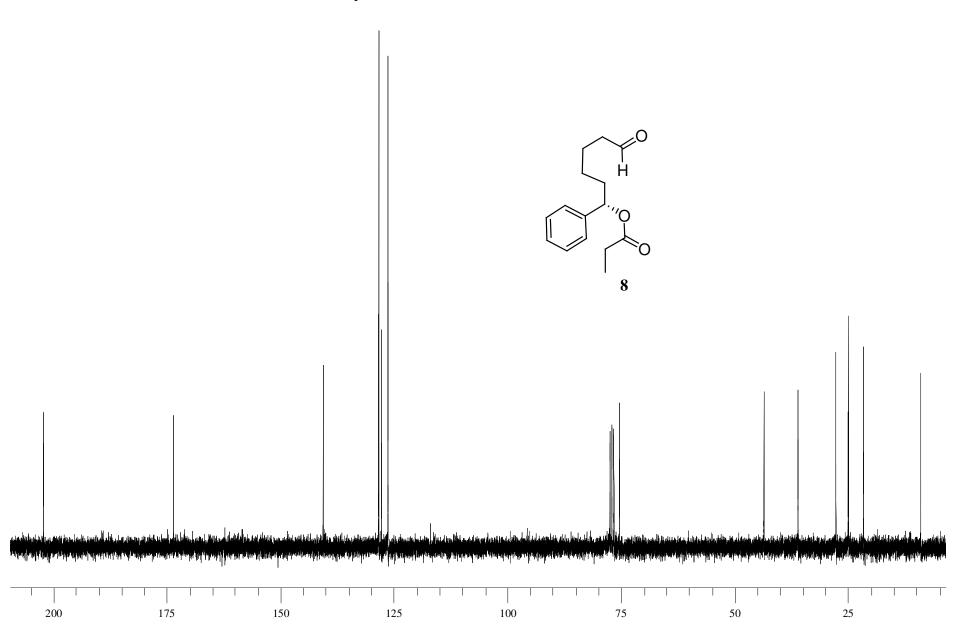

Spectra of	page
compound 6	17
compound 7	20
compound 8	23
compound 9	26
compound 2	29
Mosher esters - determination of C-17 abs. config.	32
Mosher esters - determination of C-11 / C-12 abs. config.	36
Acetonide - determination of C-11 / C-12 rel. config.	39
compound 13	42
compound 14	43
lactone - determination of the rel. config. of 14	46
compound 15	47
compound 36	49
compound 17	52
compound 18	58
compound 21	61
compound 22	64
compound 23	65
compound 37	66
compound 38	69
intermediates for compounds $26 - 28$	72
compound 26	81
compound 27	84
compound 28	87

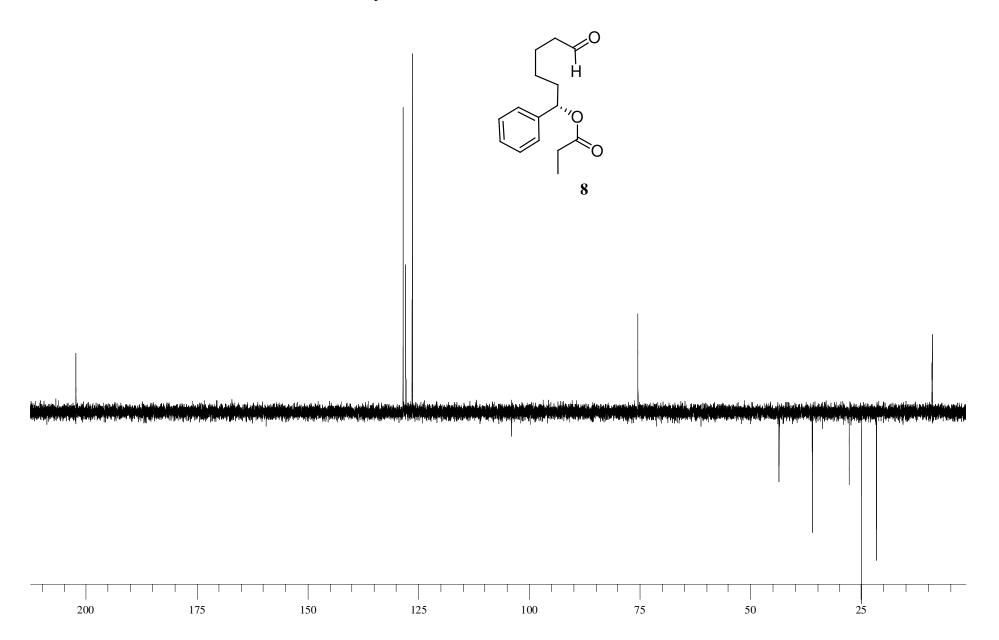


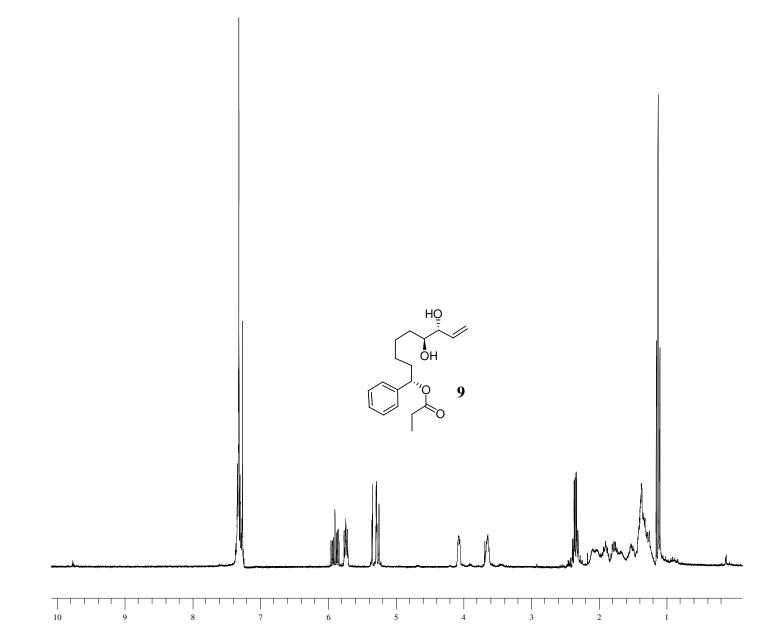


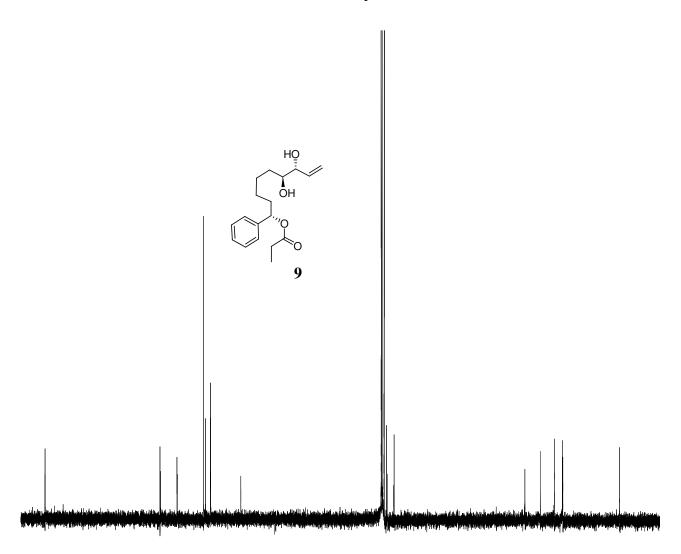


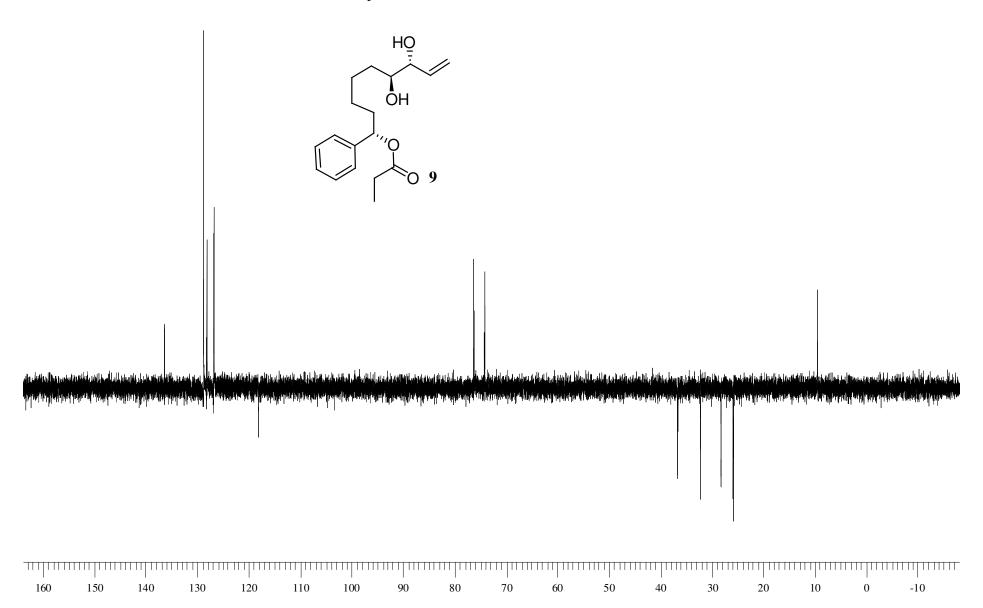

Ciufolini et al.

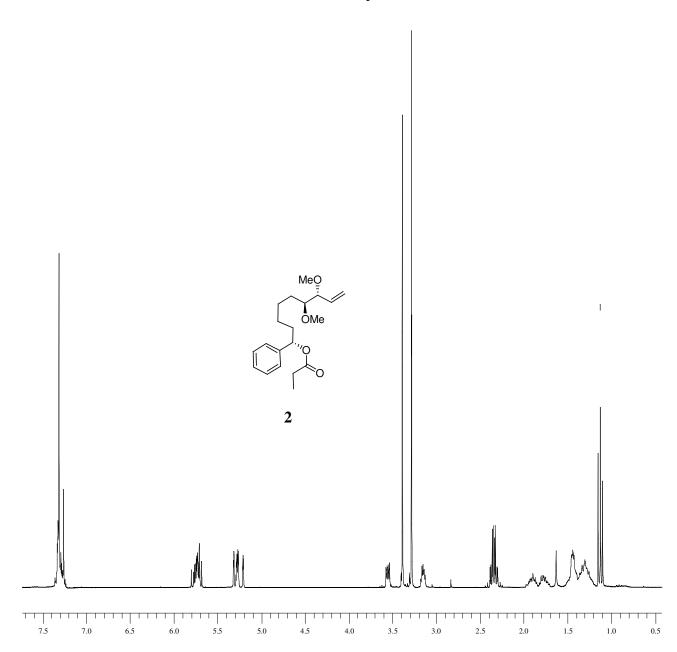


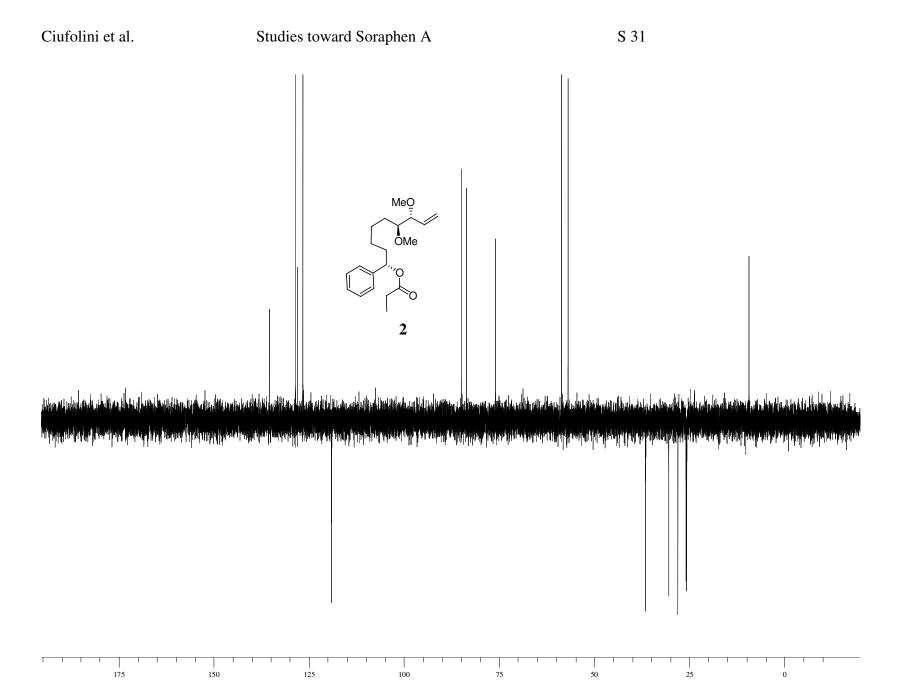


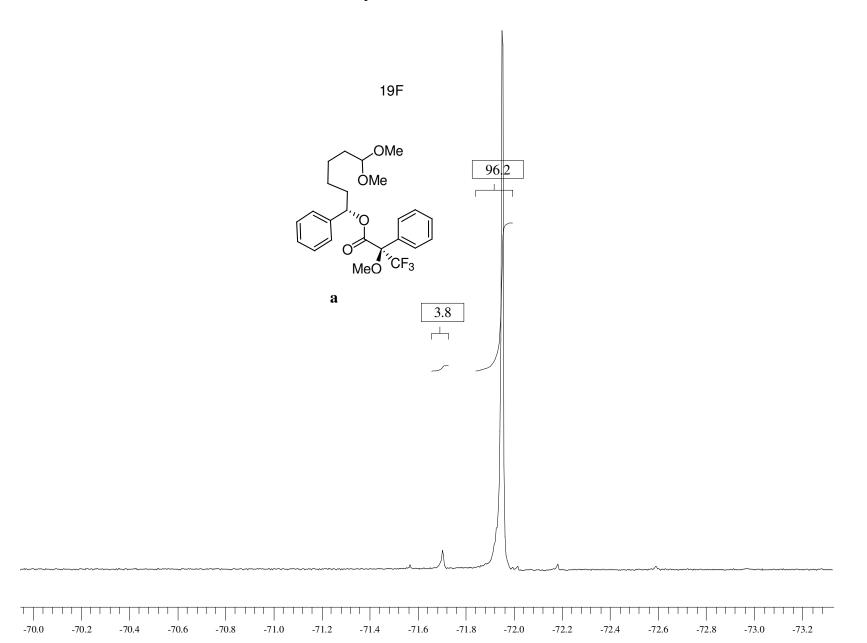


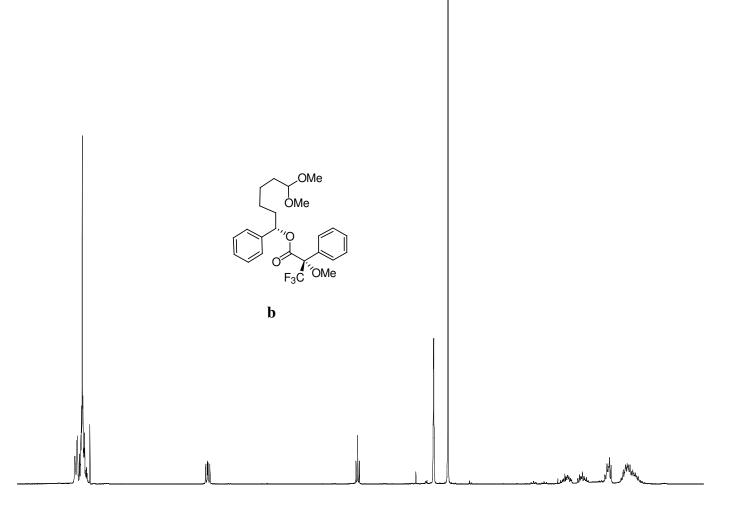


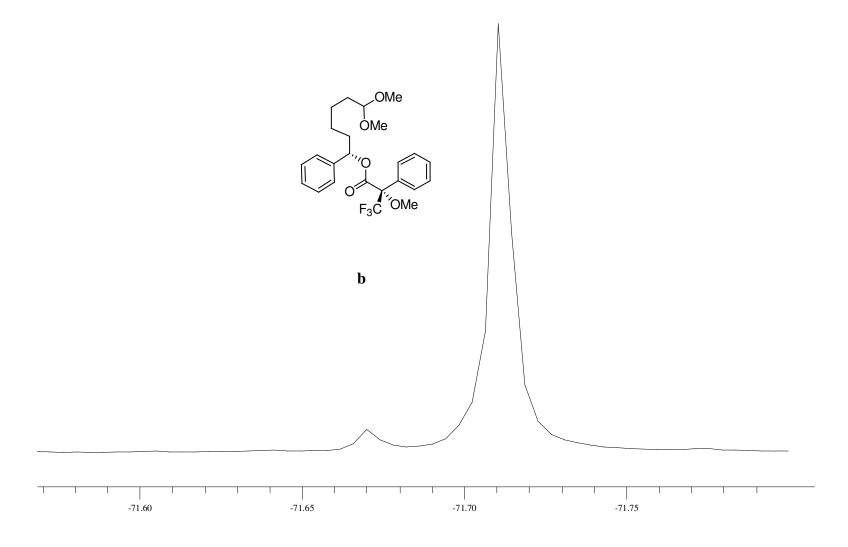


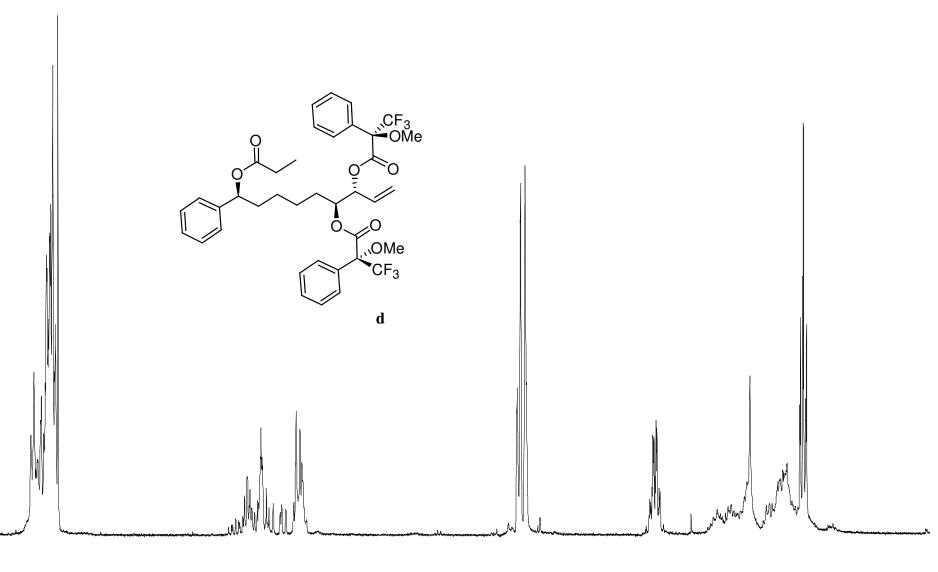


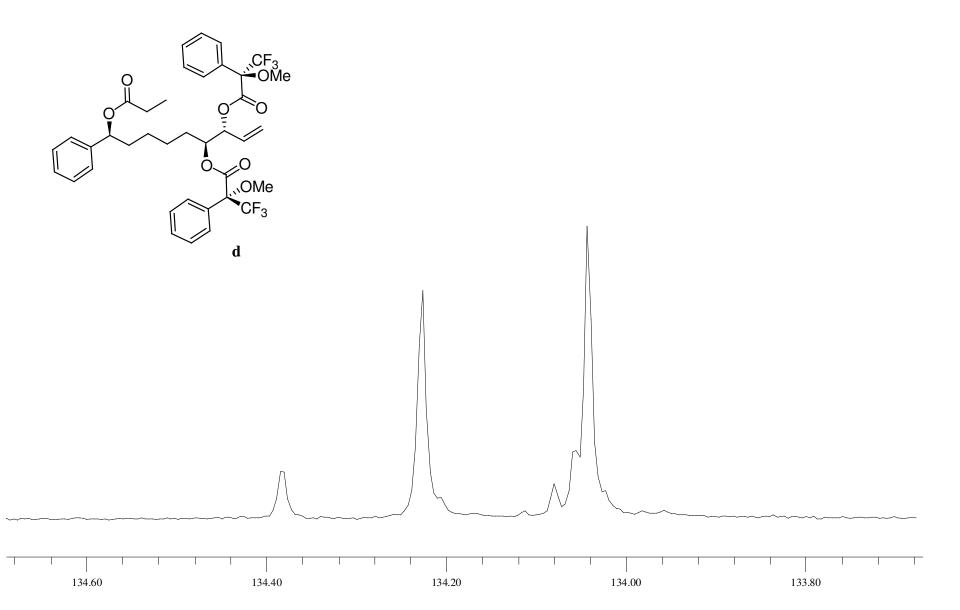

ппп																	пппп	птпт
1	1	1	1	1	1	1	1	1		1	1		1			1		1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

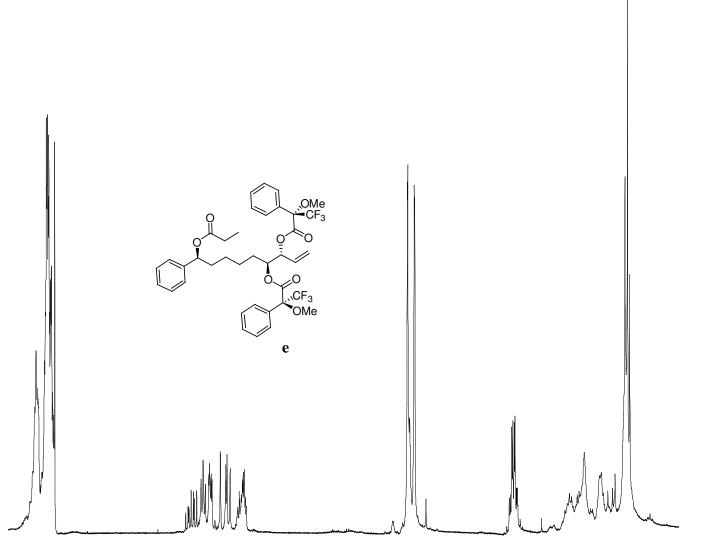


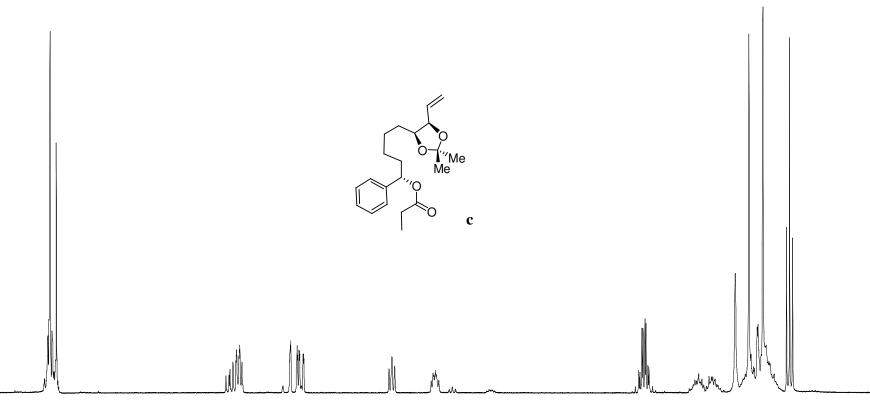


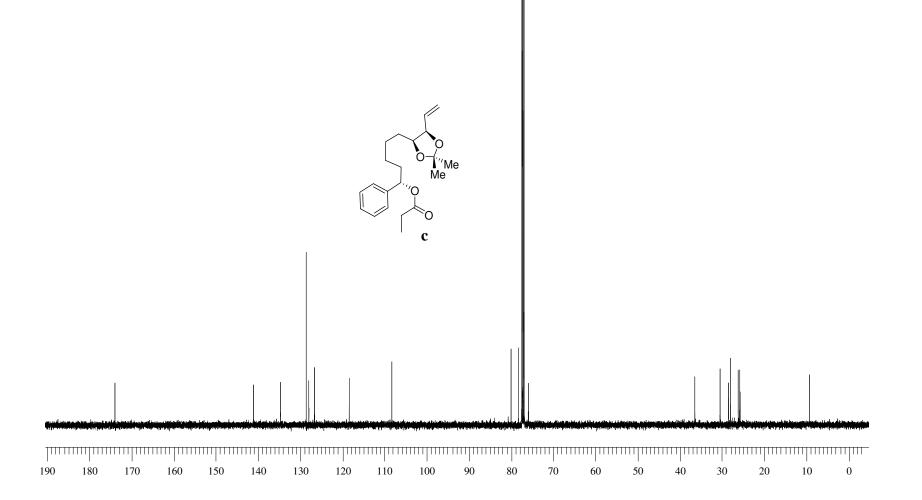

MeQ OMe \sim - W.Jr

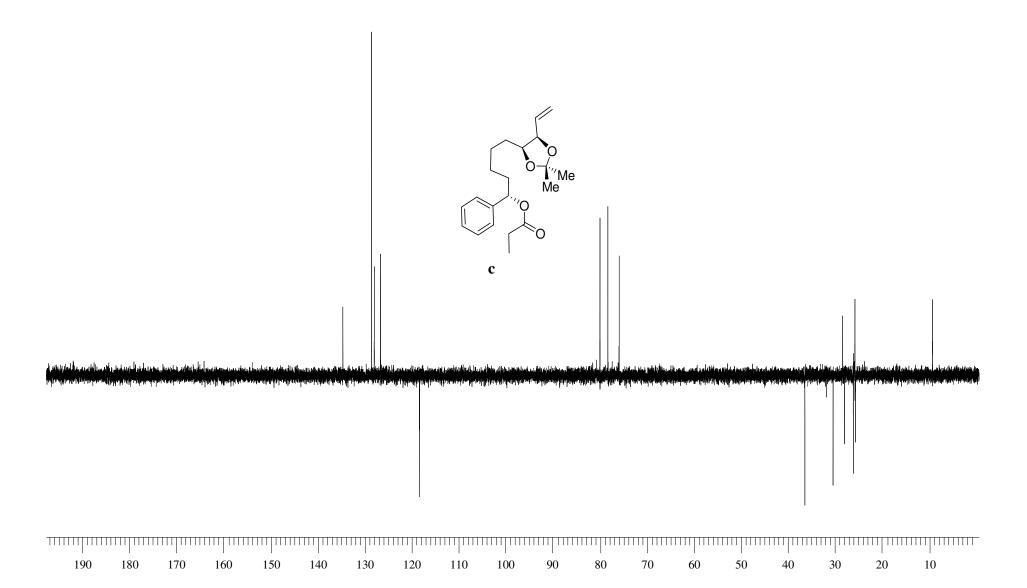


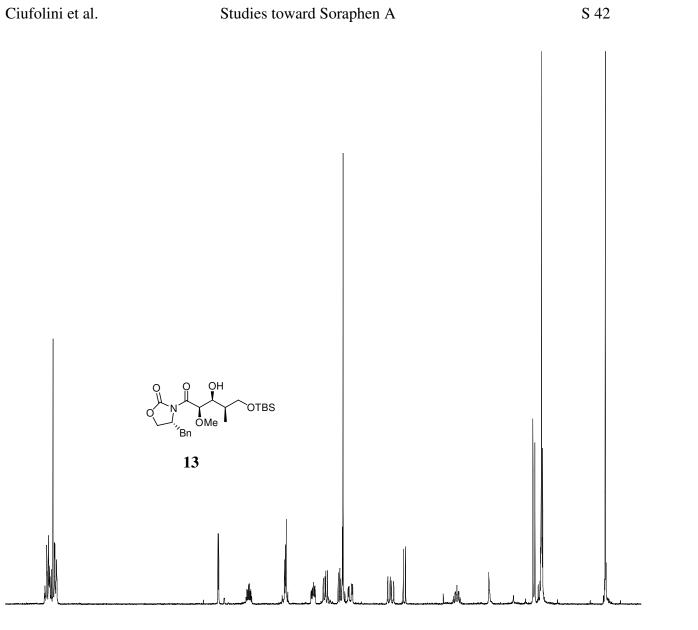


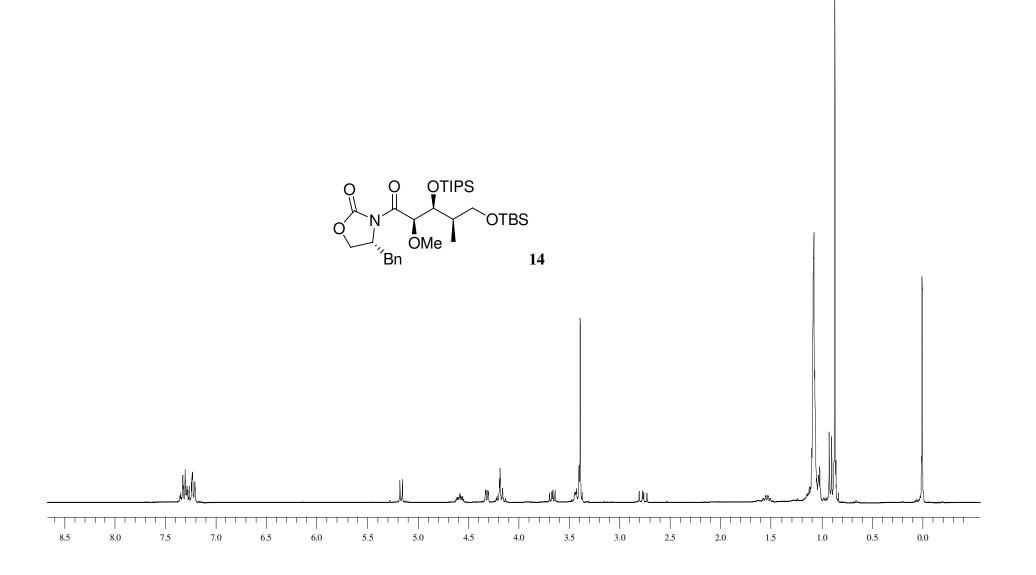


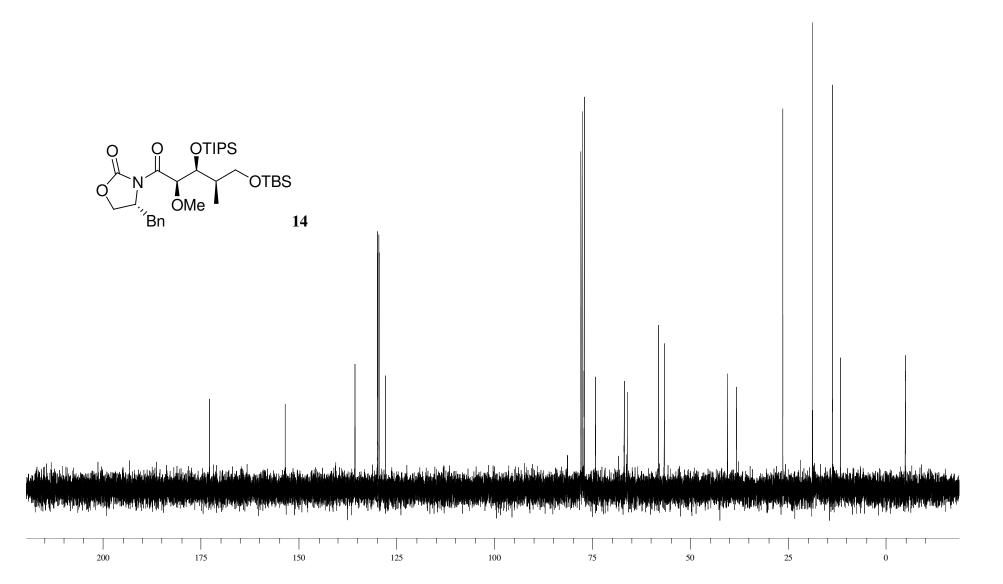

5.5 2.0 0.5 7.5 7.0 6.5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 1.5 1.0

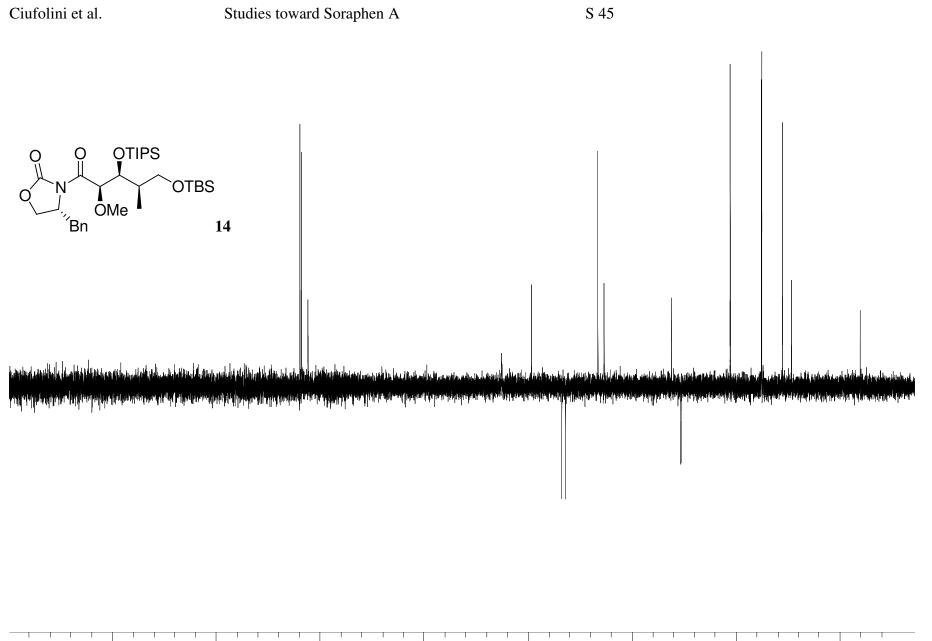


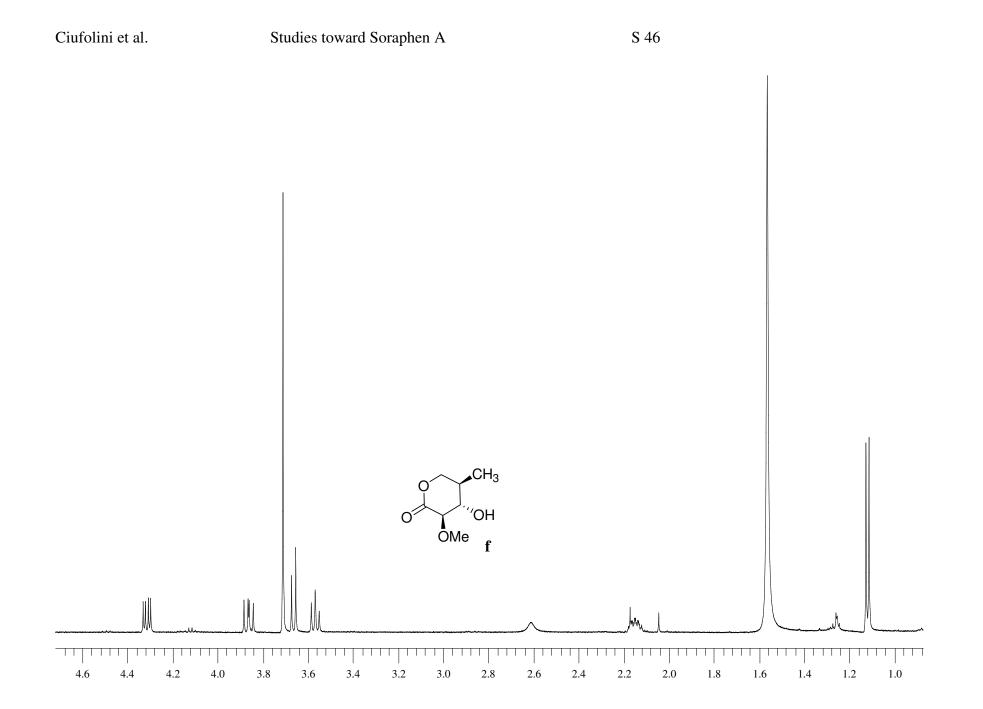


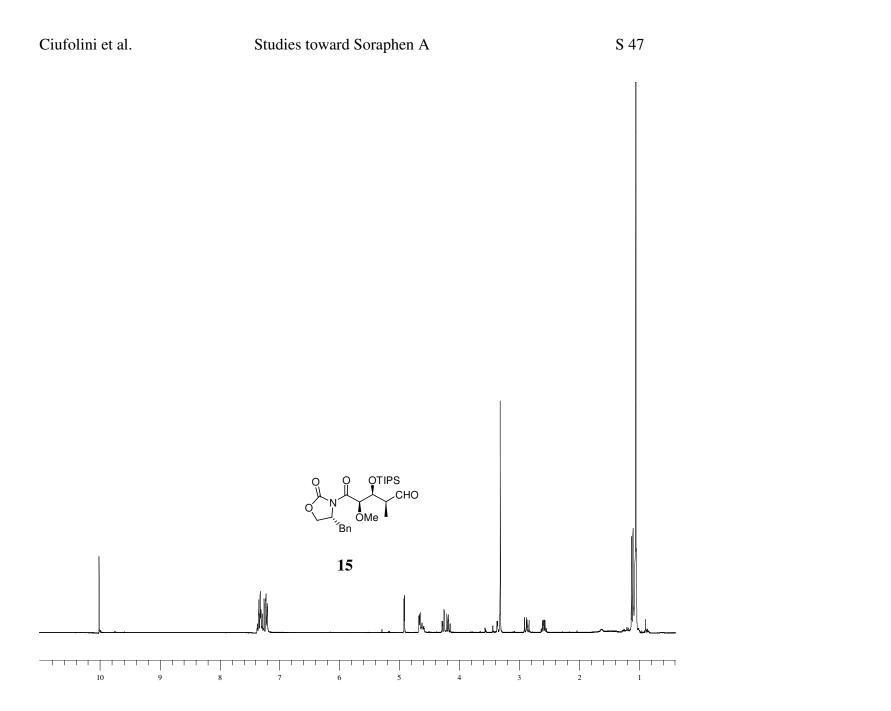

.... 7.5 1.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

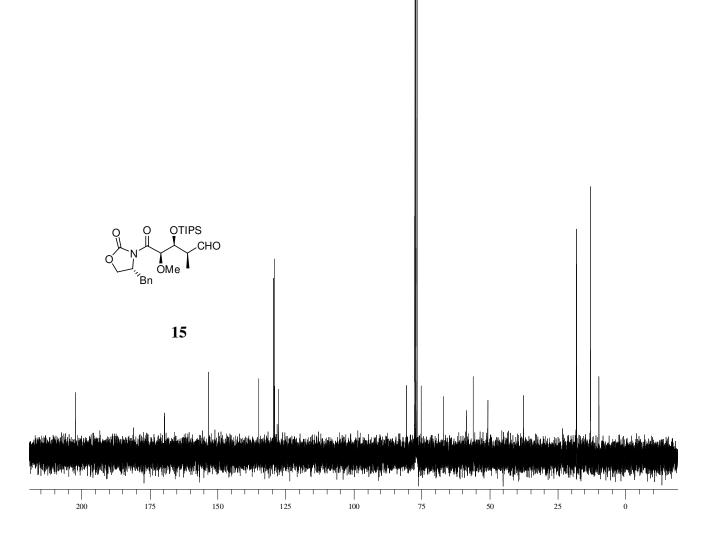

| 8.0 | | | | |7.5 3.5 5.5 4.0 2.5 7.0 6.5 5.0 4.5 3.0 2.0 1.5 0.5 6.0 1.0

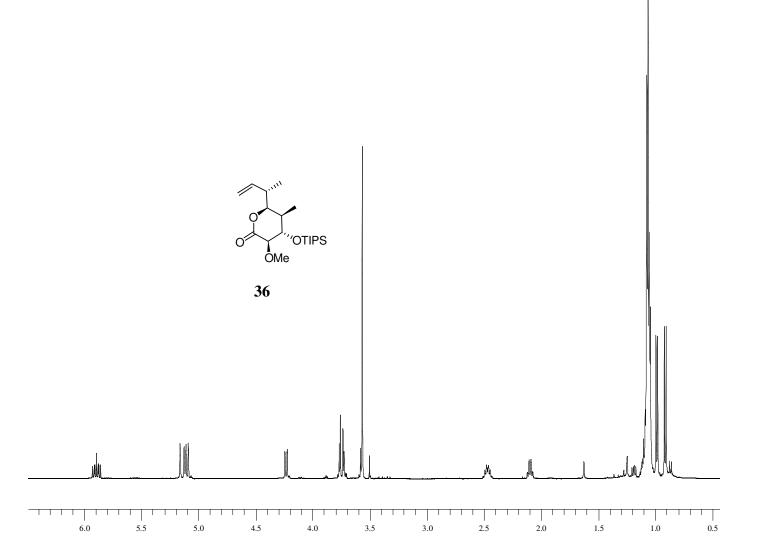


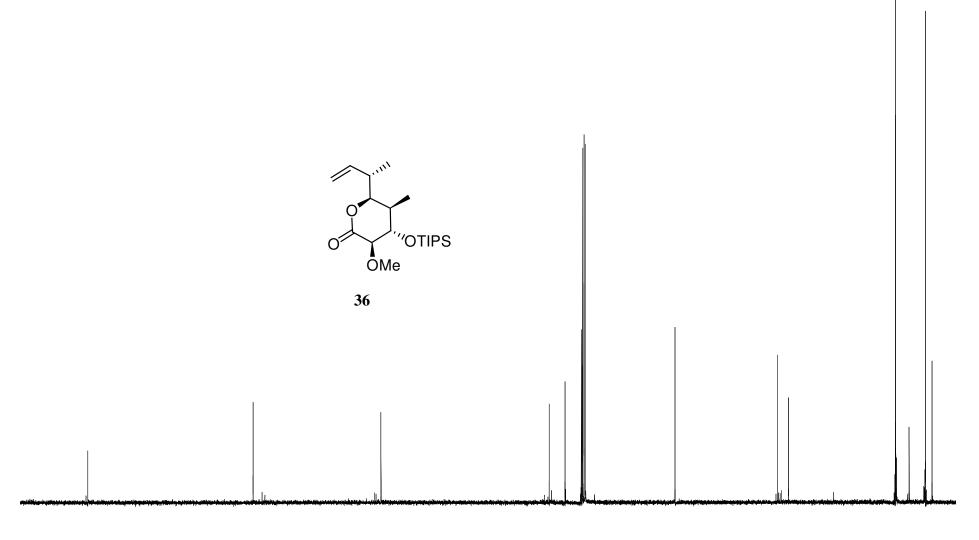


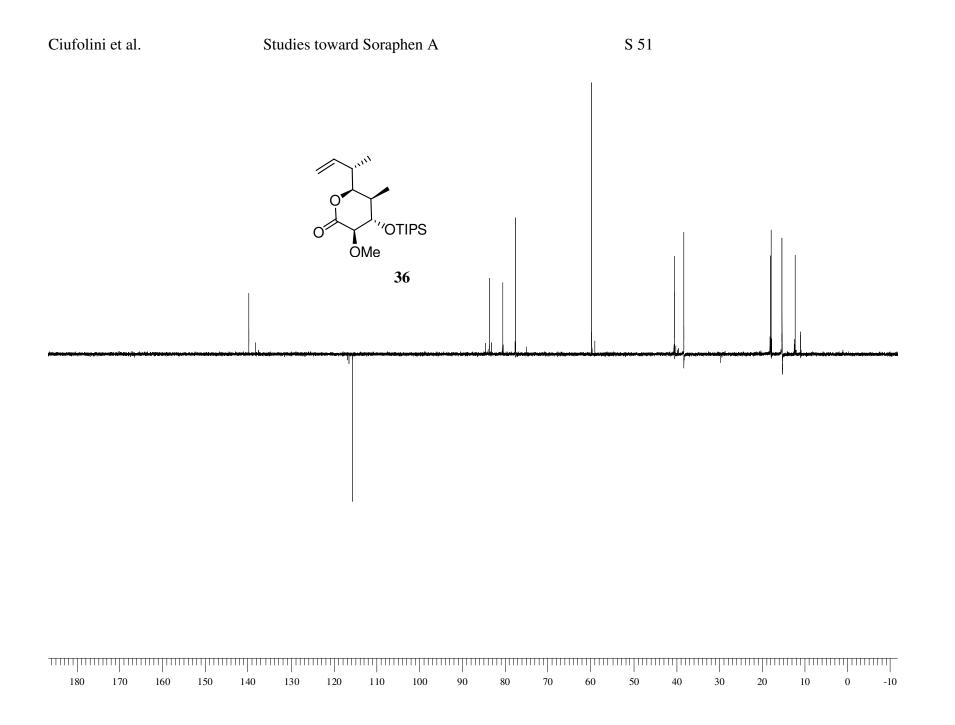


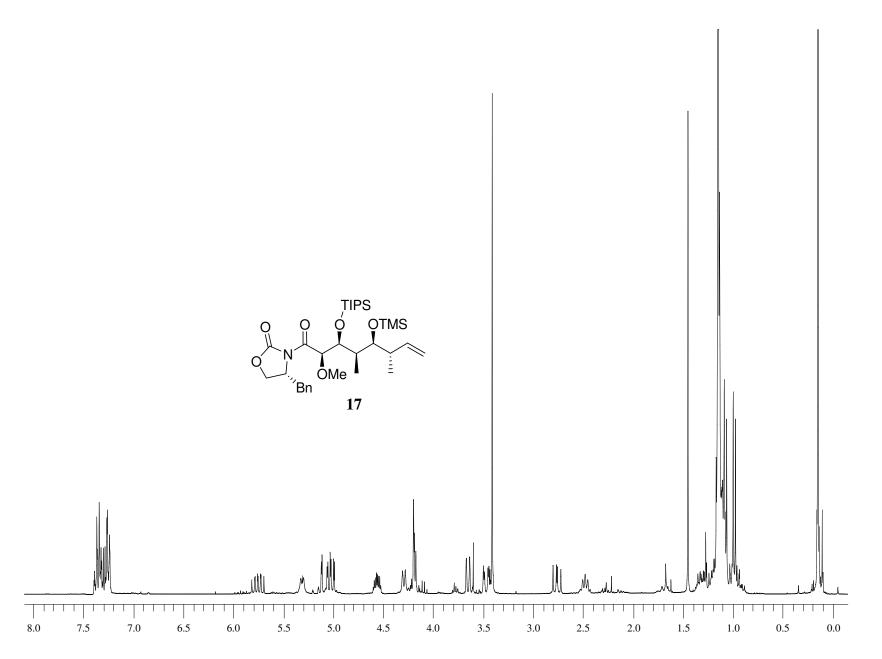

-----.... 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

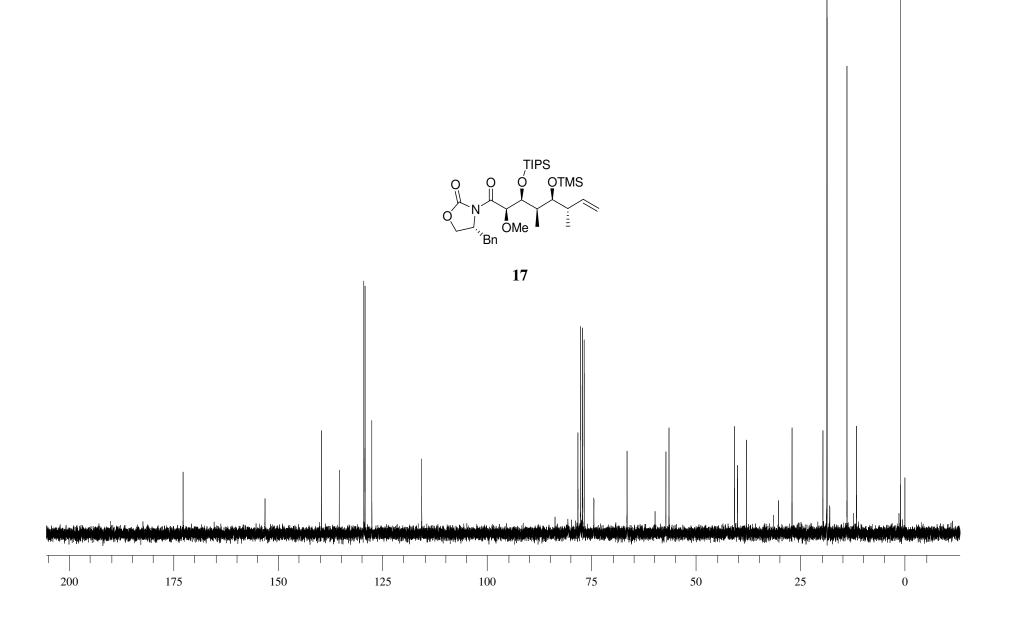


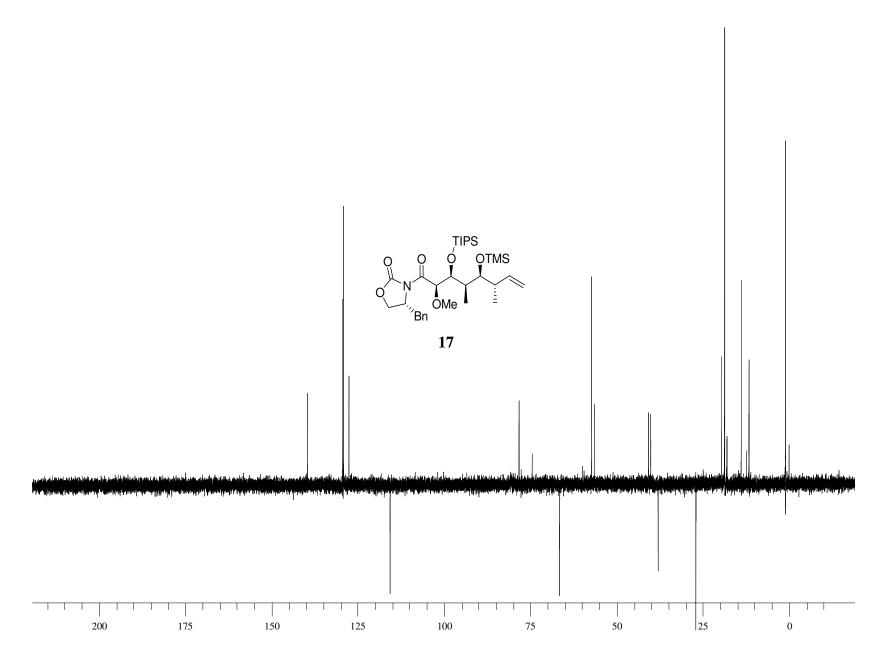


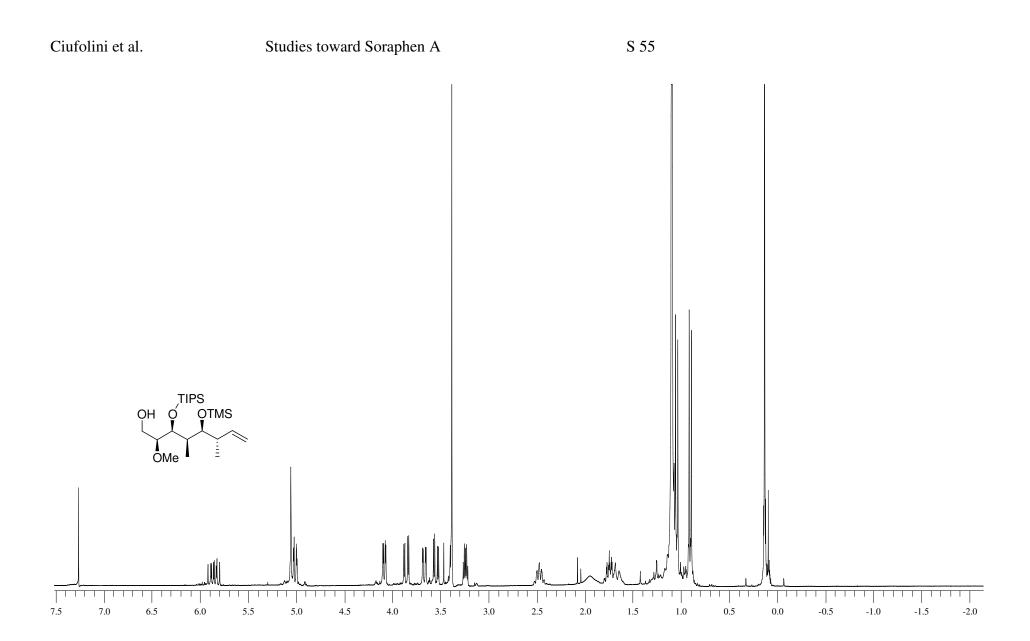


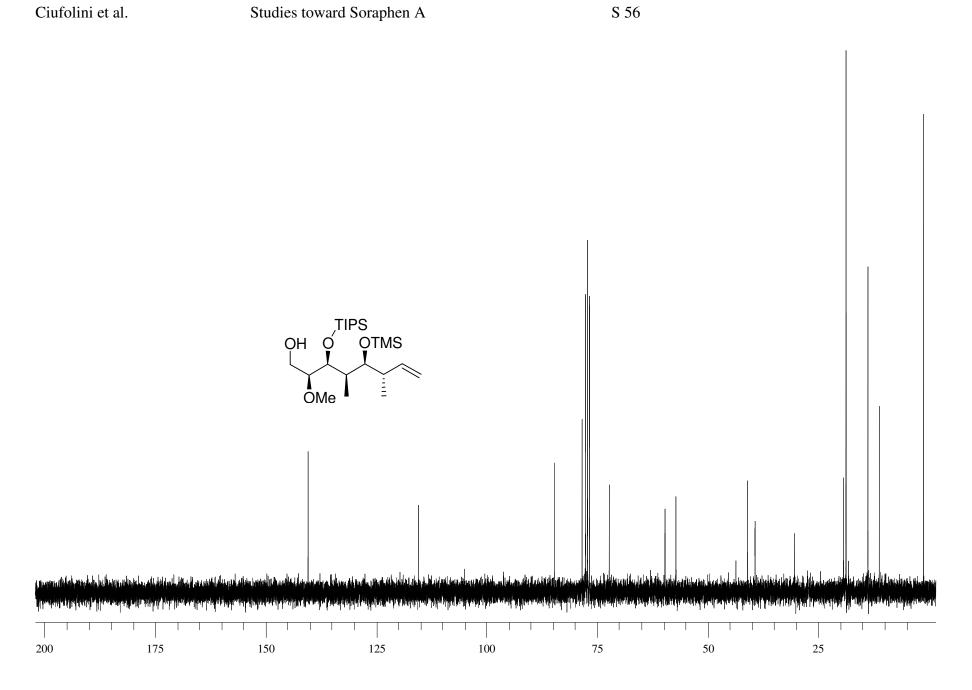


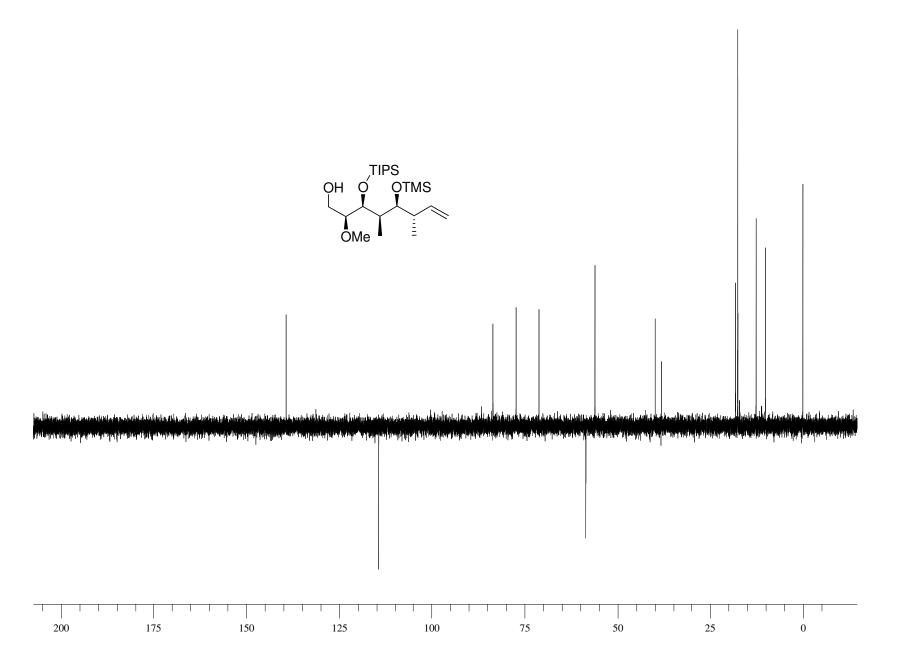


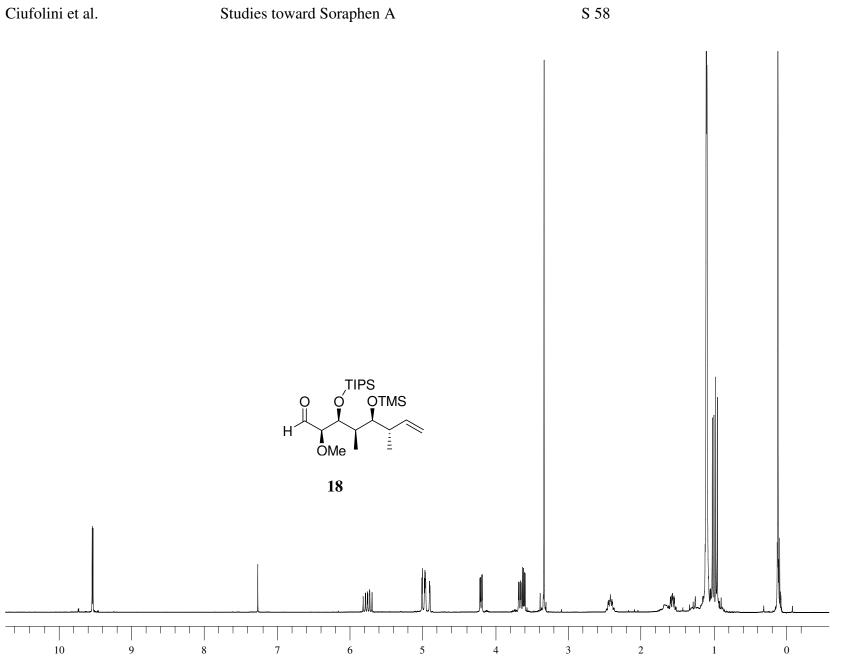


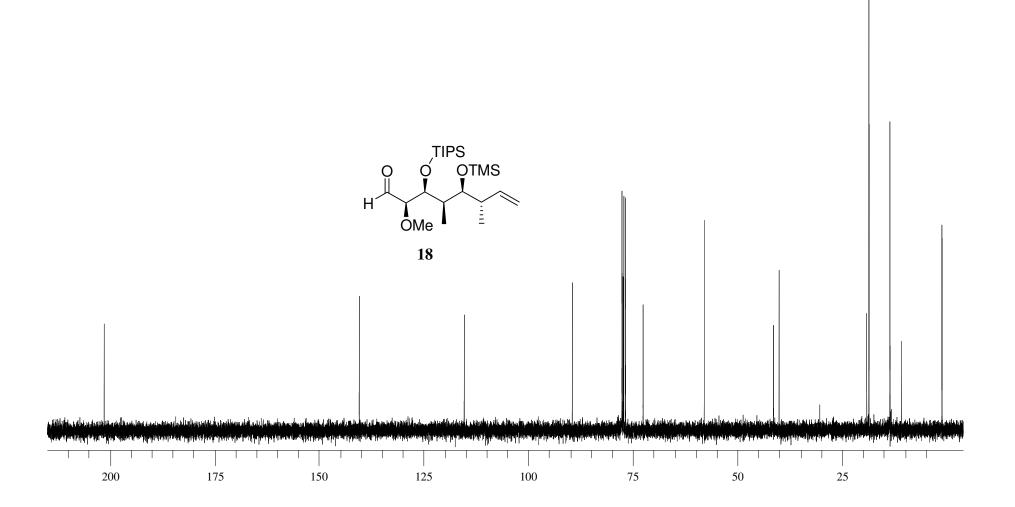


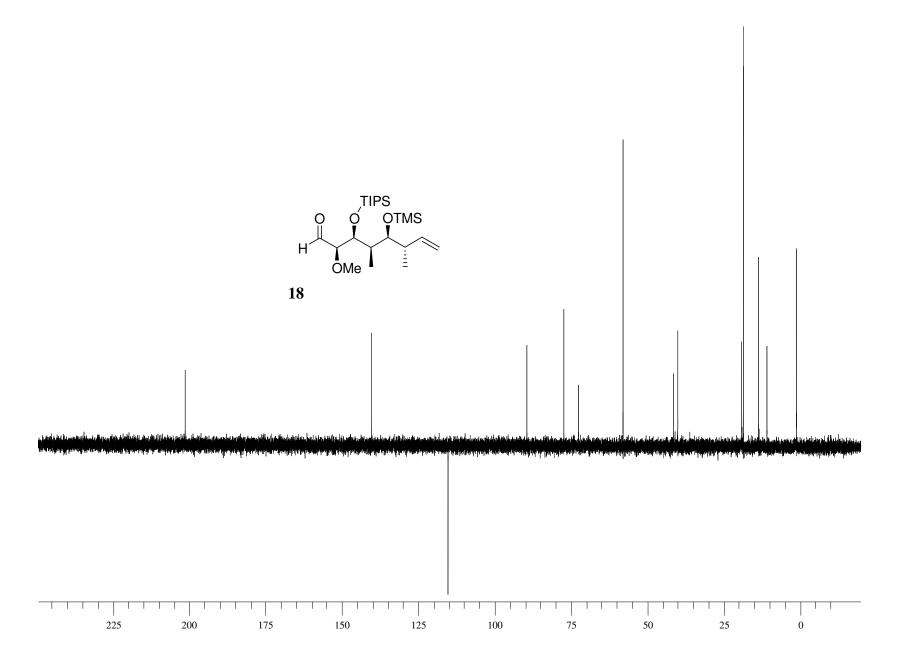

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

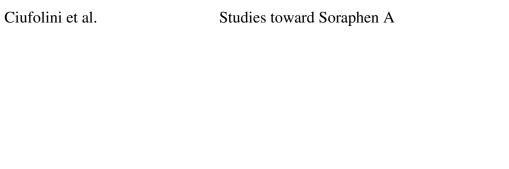


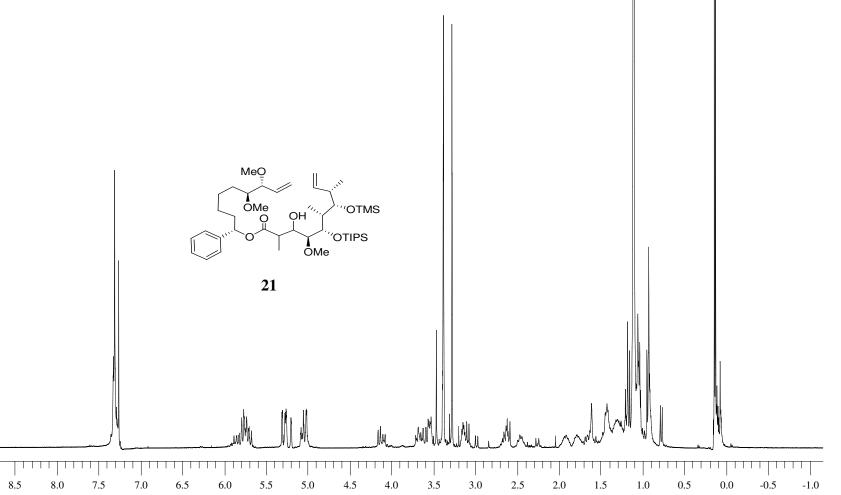


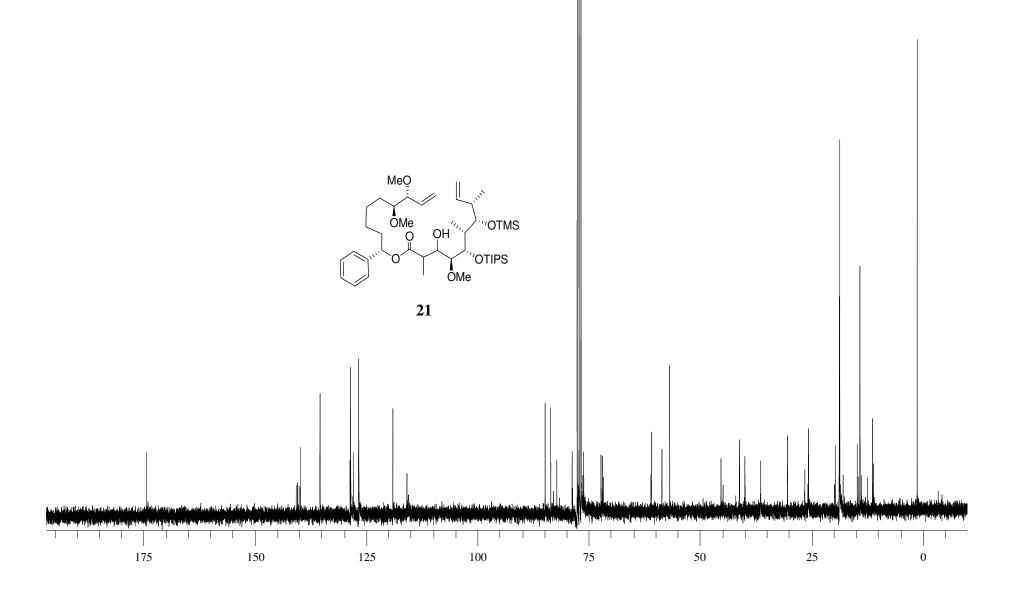


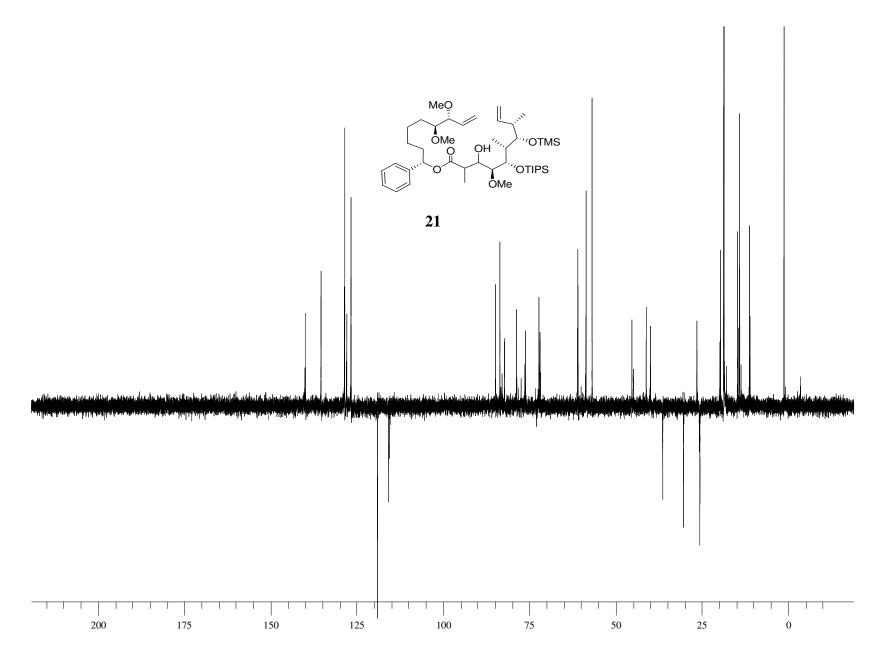


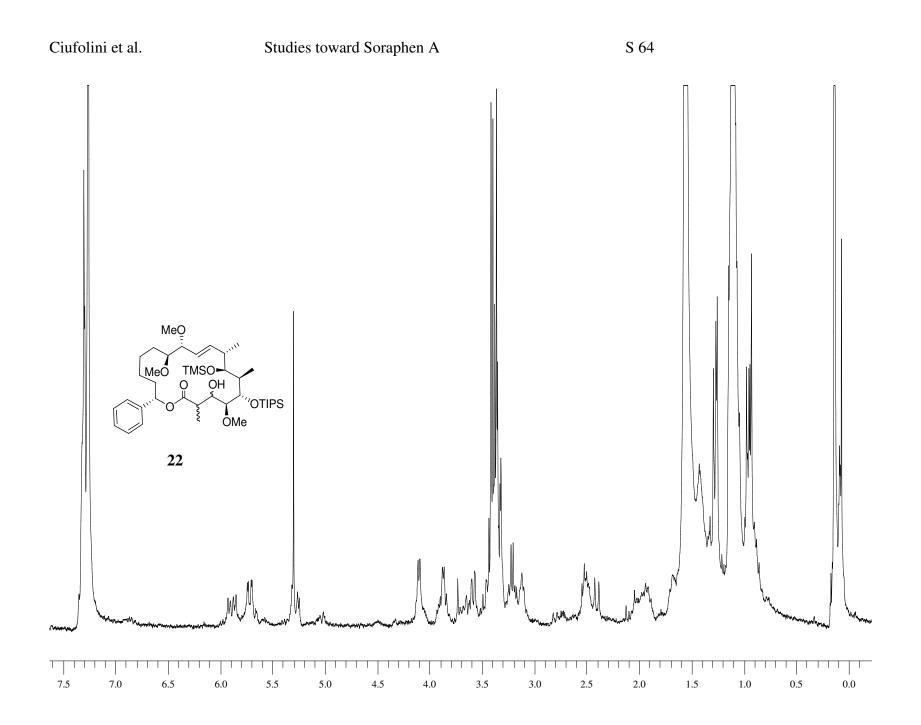


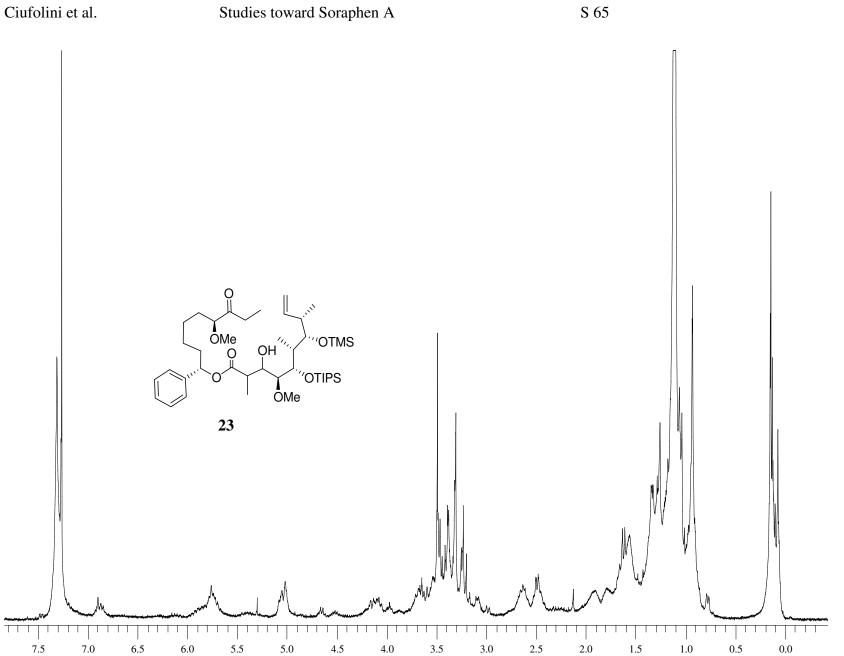


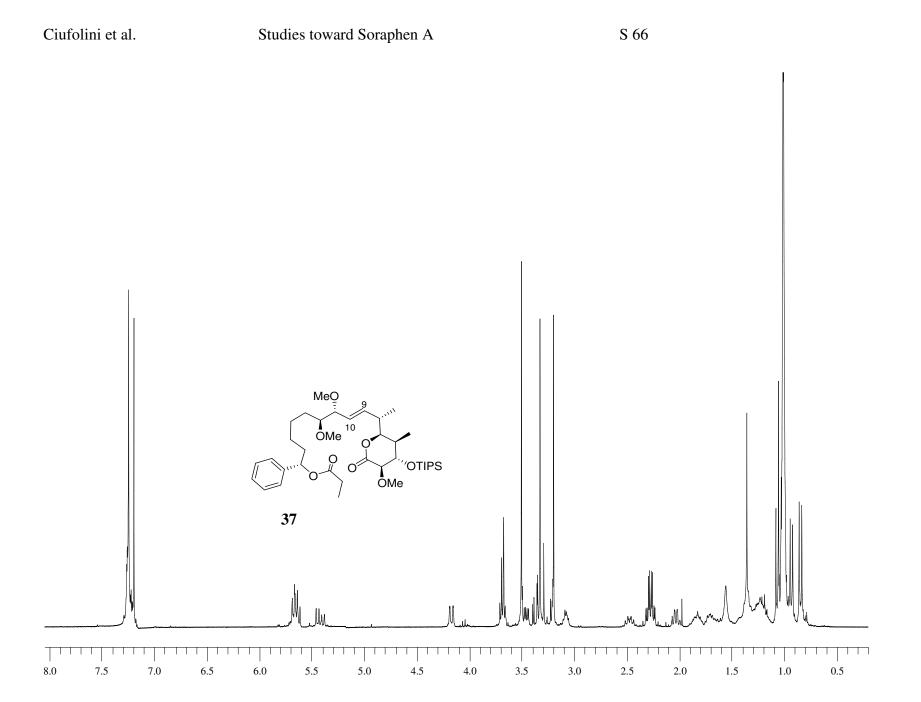


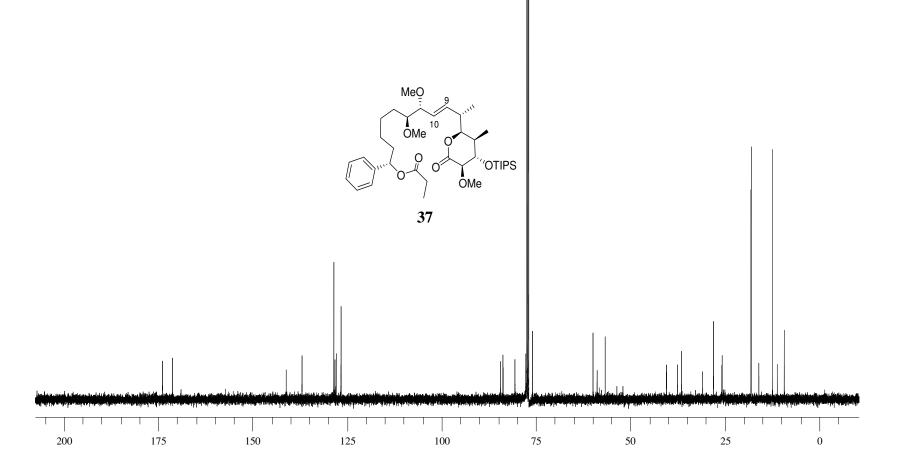


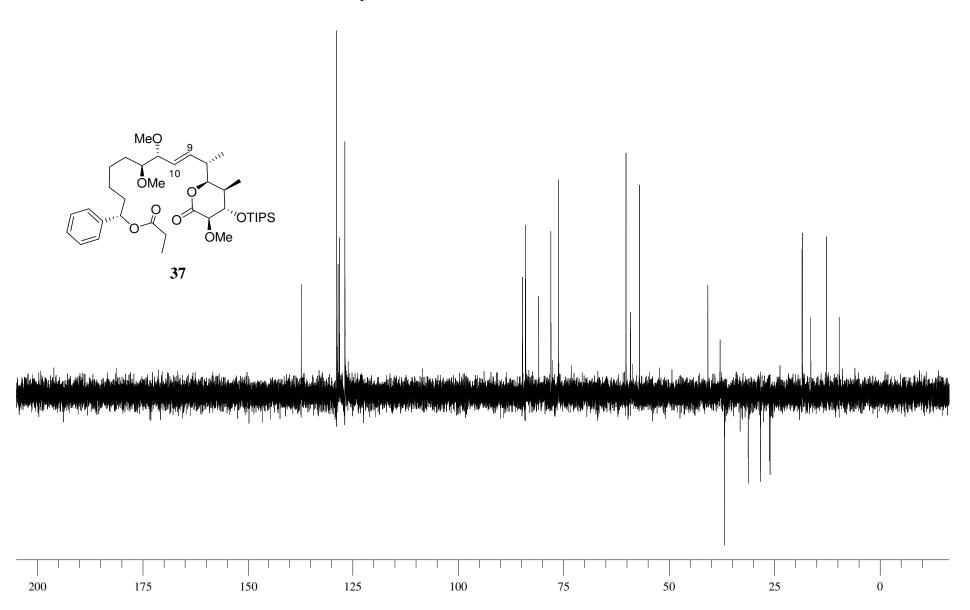


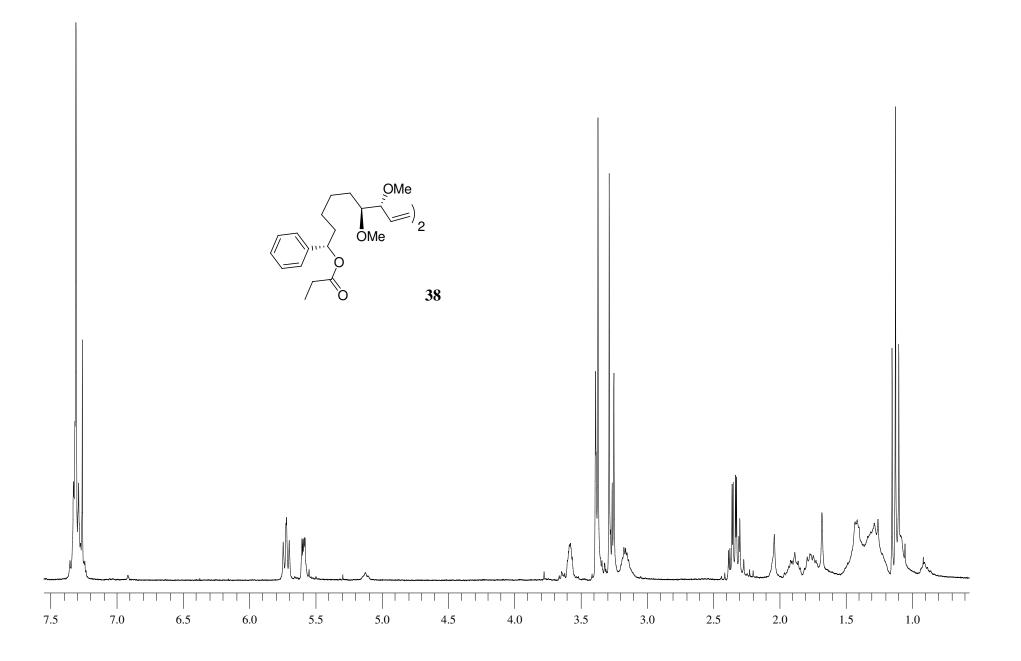


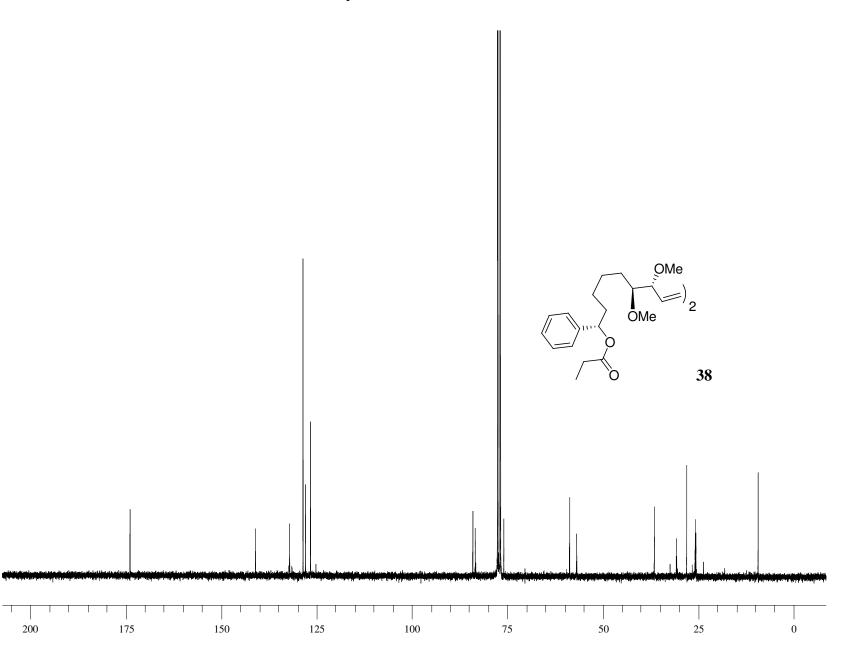


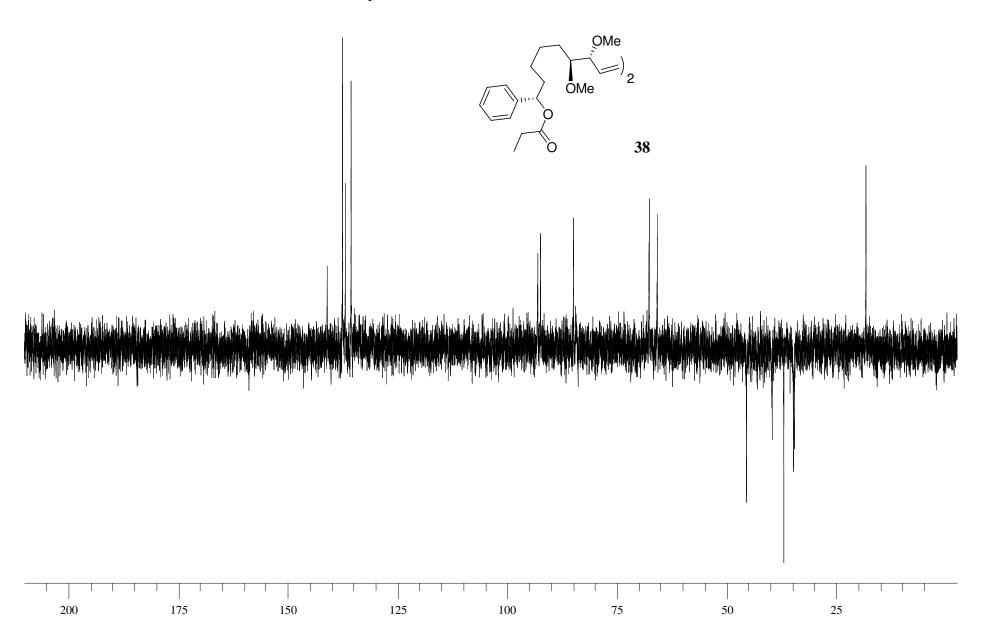


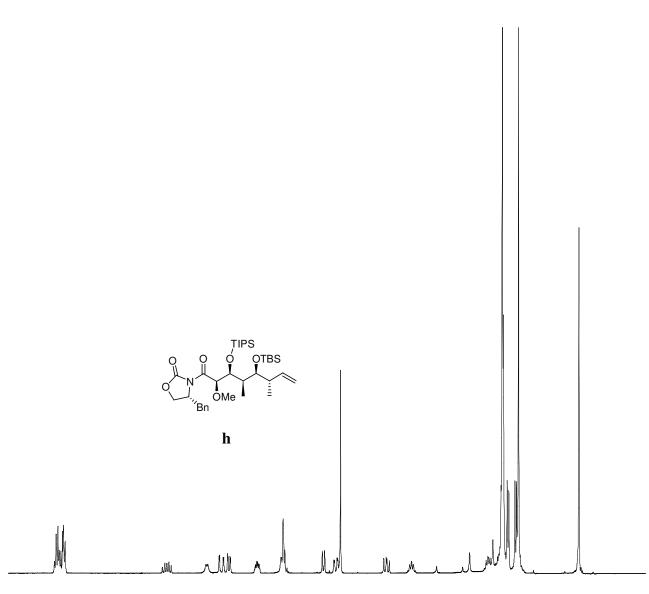


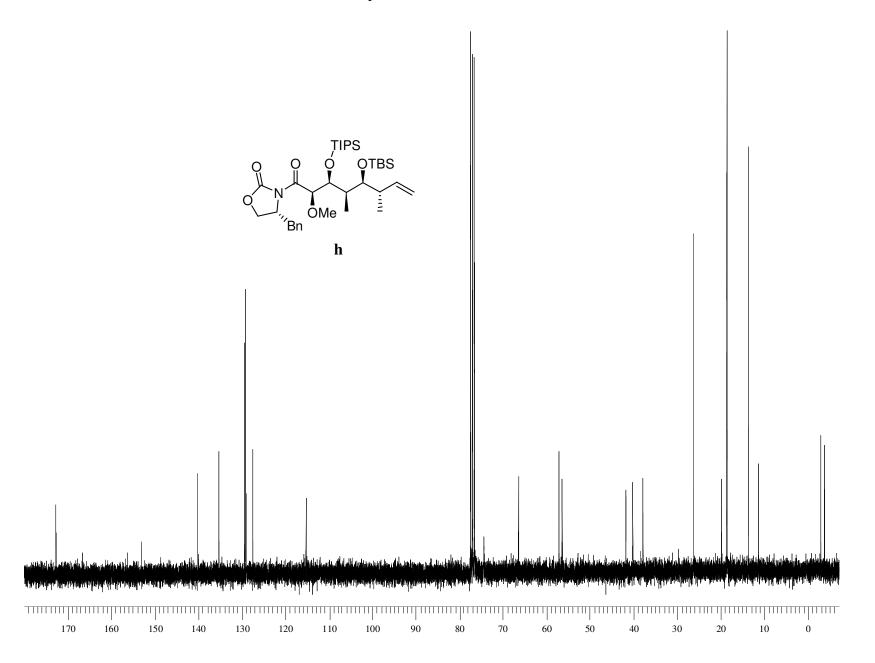


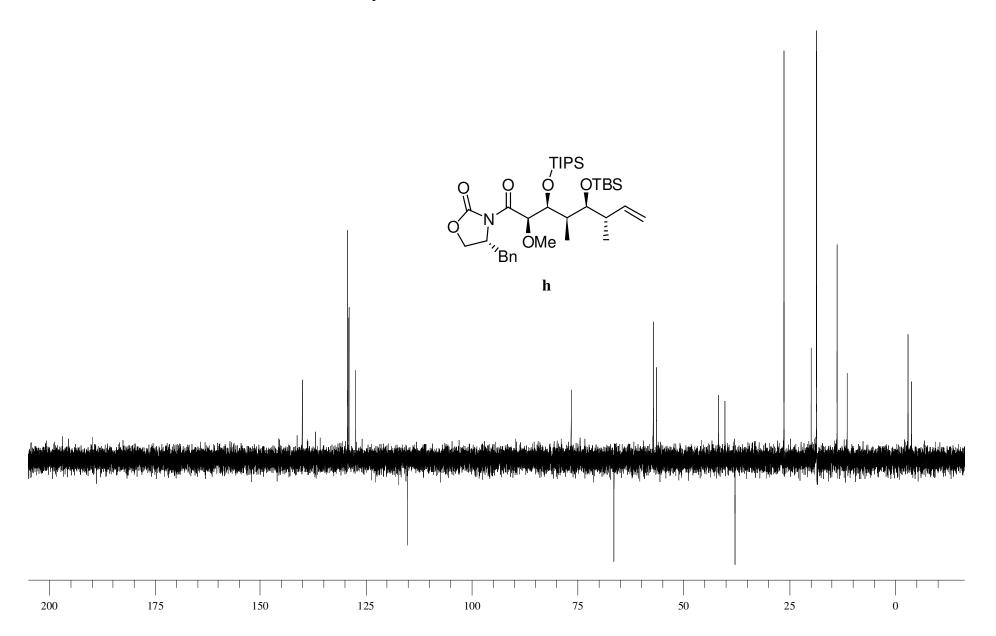


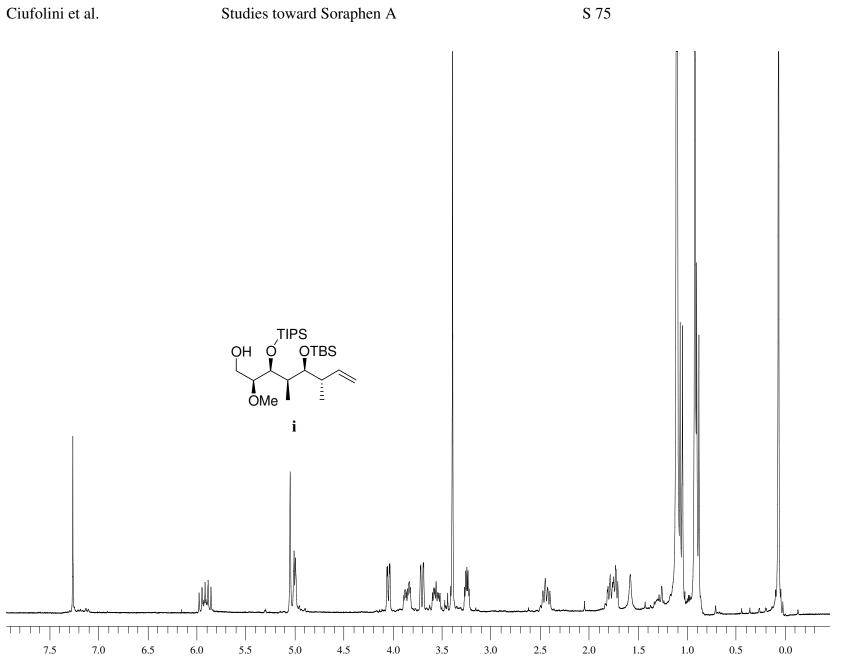


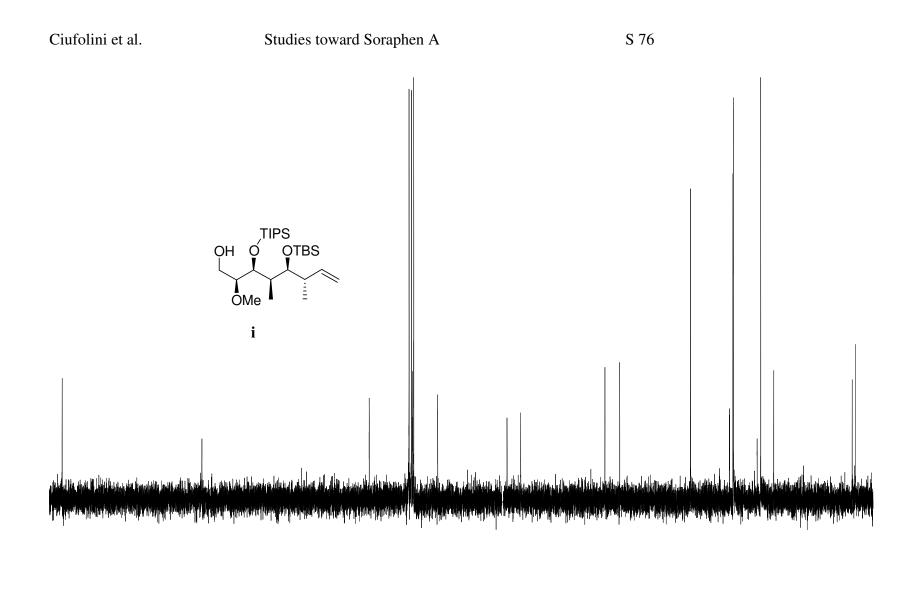


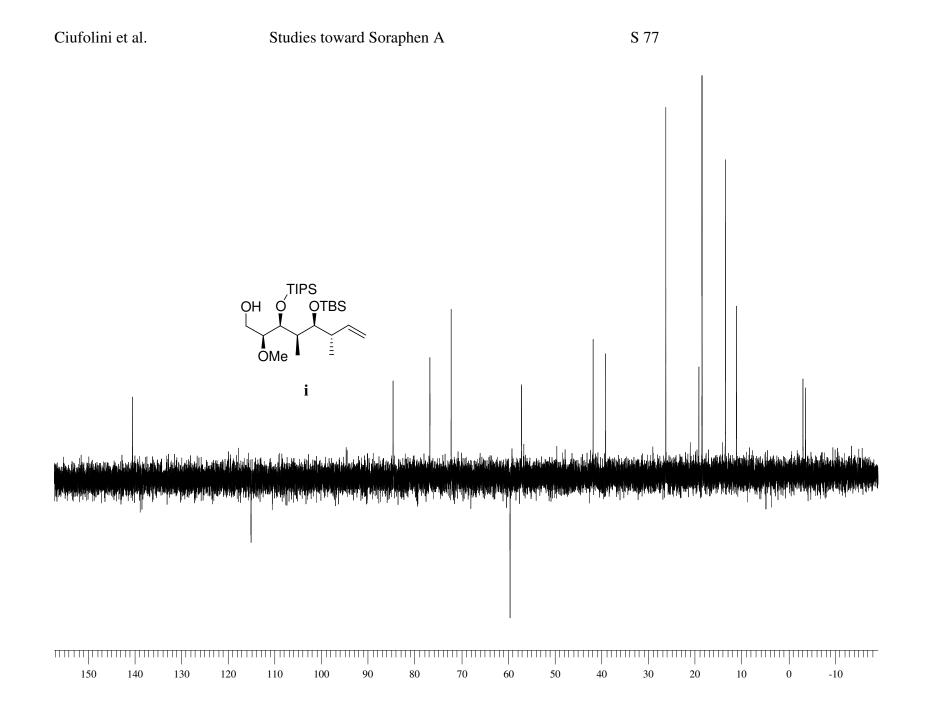

S 69

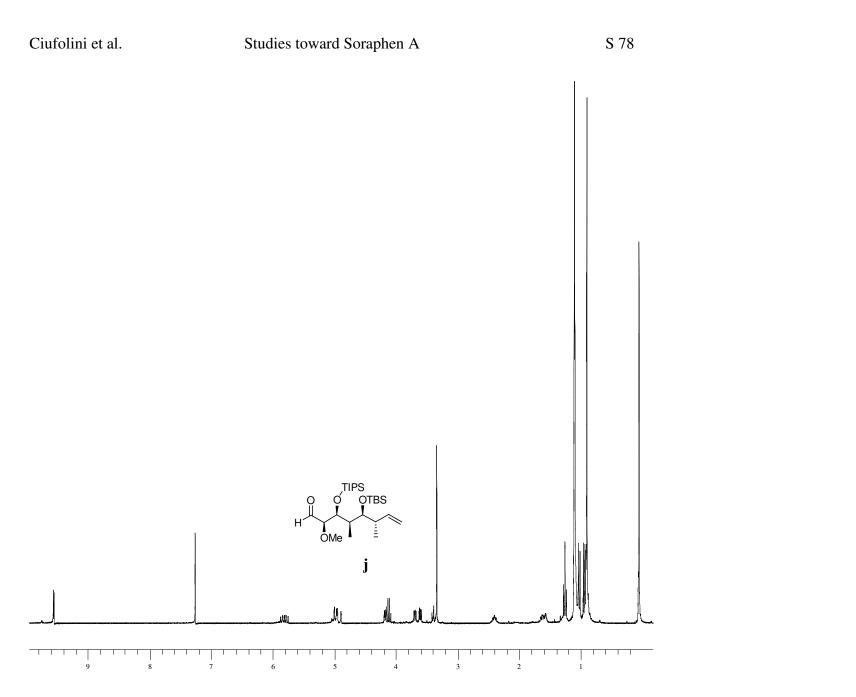


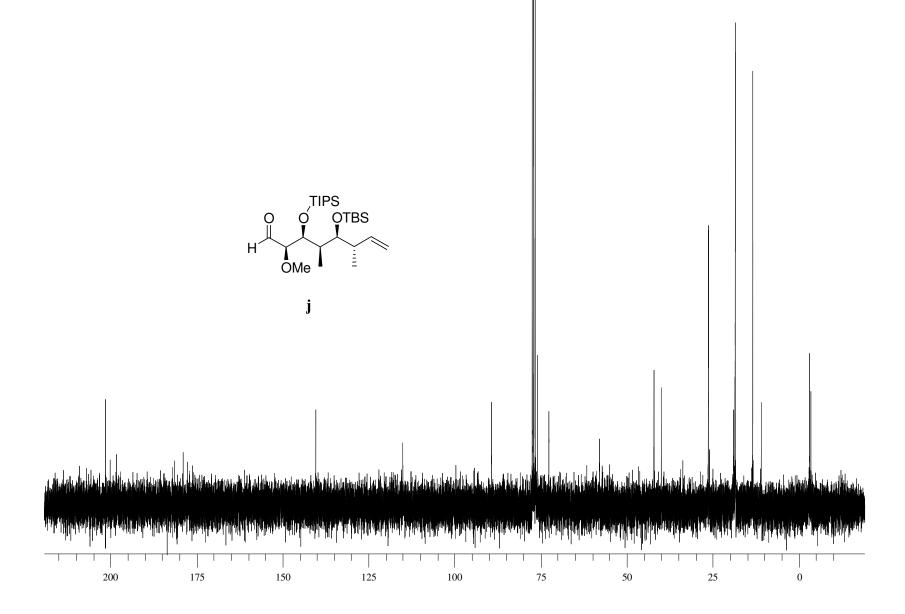


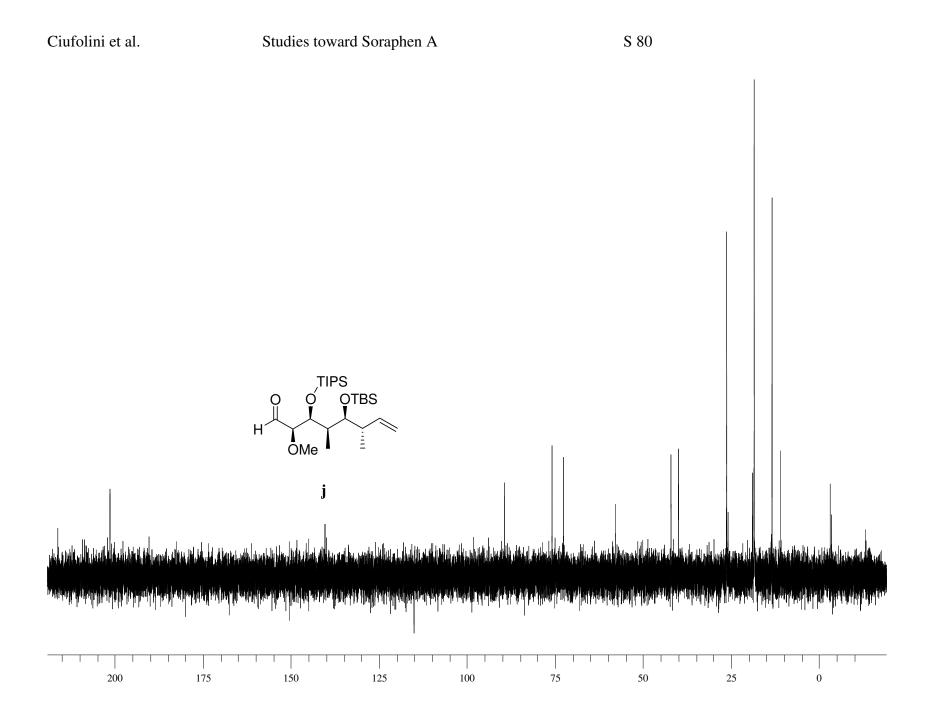











							11111111							
140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

