RuO2 Monolayer: A Promising Bi-Functional Catalytic Material for

Non-Aqueous Lithium-Oxygen Batteries

Supporting Information

Le Shi, Ao Xu, Tianshou Zhao*

Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China

Table. S1 Optimized lattice parameters of Li2O2, RuO2 monolayer and rutile RuO2

	a (Å)	b (Å)	c (Å)
Li ₂ O ₂ (<i>P6</i> ₃ / <i>mmc</i>)	3.14	3.14	7.65
RuO ₂ monolayer ($R\overline{3}m$)	2.93	2.93	
Rutile RuO ₂ (P4 ₂ /mnm)	4.52	4.52	3.11

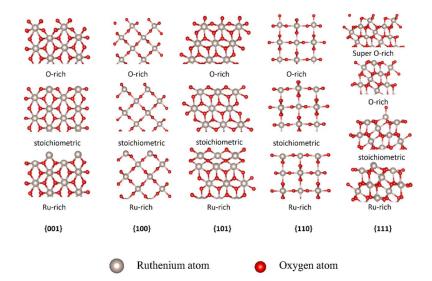


Fig. S1 The orientations and terminations of rutile RuO₂ considered for the Wulff construction.

^{*}Corresponding author. Tel.: (852) 2358 8647 E-mail: metzhao@ust.hk (T.S. Zhao)

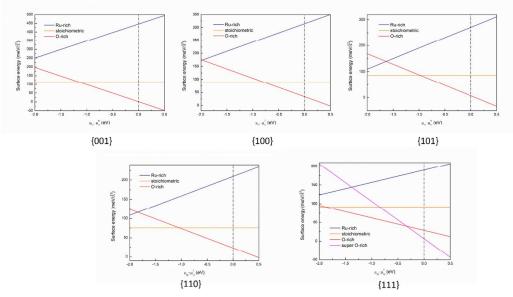


Fig. S2 Surface energies of different orientations and terminations of rutile RuO₂ under different oxygen chemical potentials

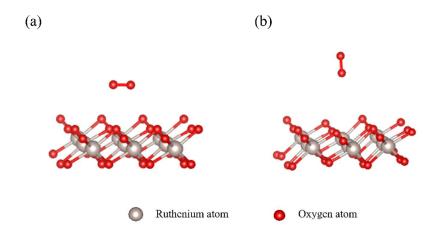


Fig. S3 Optimized geometry for oxygen molecular adsorbed onto the surface of RuO_2 monolayer. Two initial geometries were considered (a and b). The oxygen-oxygen bond lengths in both cases are 1.22Å (The bond length for free oxygen molecular is 1.21 Å).

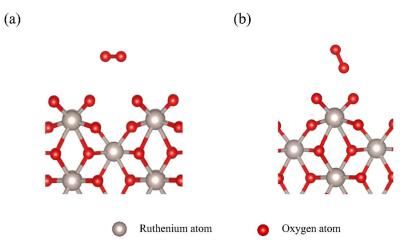


Fig. S4 Optimized geometry for oxygen molecular adsorbed onto rutile RuO_2 {001} surface. Two initial geometries were considered (a and b). The oxygen-oxygen bond lengths for both cases are 1.21Å (The bond length for free oxygen molecular is 1.21Å).

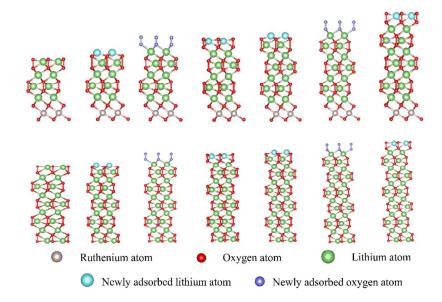


Fig. S5 Optimized geometry of discharge process happened on Li_2O_2 {0001} surface with and without RuO₂ monolayer.

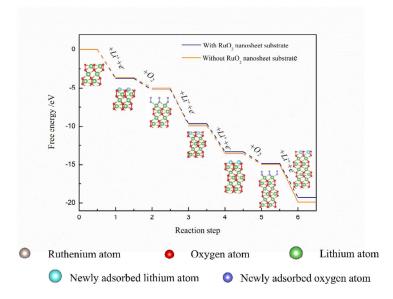


Fig. S6 Energy profiles for the discharge process happened on the Li_2O_2 {0001} surface with and without RuO₂ monolayer

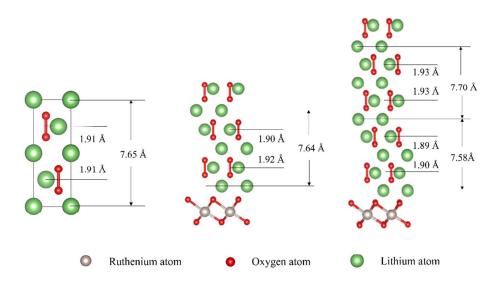


Fig. S7 Optimized lattice parameters of Li_2O_2 before and after adsorption onto RuO_2 monolayer.

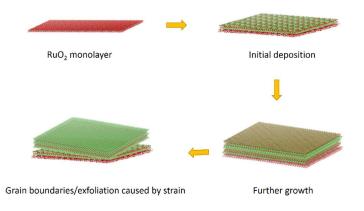


Fig. S8 Illustration for proposed formation mechanism for the assembled thin disc morphology of Li₂O₂

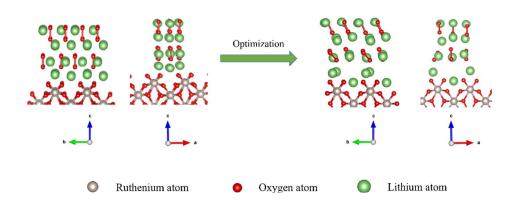


Fig. S9 The geometries of the interfacial model of rutile RuO₂ {001} surface and Li₂O₂ {0001} surface before and after optimization. The white, red and green balls correspond to ruthenium, oxygen and lithium atoms respectively.