Supporting Information

Triazole-Directed Pd-Catalyzed C(sp $\left.{ }^{2}\right)$-H Oxygenation of Arenes and Alkenes
Aitziber Irastorza, Jesús M. Aizpurua and Arkaitz Correa*
Department of Organic Chemistry I, University of the Basque Country (UPV/EHU)
Joxe Mari Korta R\&D Center, Avda. Tolosa 72, 20018
Donostia-San Sebastián (Spain).E-mail: arkaitz.correa@ehu.es

1.-General Considerations S2
2.-Synthesis of Triazoles S3
3.-Pd-catalyzed C($\mathbf{s p}^{2}$)-H Acetoxylation (Table 2-4) S12
4.-Pd-catalyzed C($\mathbf{s p}^{2}$)-H Pivaloxylation (Table 3-4) S29
5.-Further Transformations (Scheme 2) S31
6.- ${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR Spectra S33

1.-General Considerations

Reagents. Commercially available materials were used without further purification. Palladium(II) acetate recrystallized (97% purity), (diacetoxy)iodobenzene (98% purity), bis(tert-butylcarbonyloxy)iodobenzene (97\% purity), and 1,2-dichloroethane (spectrophotometric grade, $\geq 99 \%$) were purchased from Sigma-Aldrich. AcOH (acetic acid glacial, extra pure) was purchased from Scharlau and $\mathrm{Ac}_{2} \mathrm{O}$ (acetic anhydride) was purchased from Panreac.

Analytical Methods. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra as well as IR, HRMS and melting points (where applicable) are included for all new compounds. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 MHz and 500 MHz at $20^{\circ} \mathrm{C}$. All ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl_{3} (7.26 ppm), unless otherwise indicated. All ${ }^{13} \mathrm{C}$ NMR spectra were reported in ppm relative to residual CHCl_{3} (77 ppm), unless otherwise indicated, and were obtained with ${ }^{1} \mathrm{H}$ decoupling. Coupling constants, J, are reported in hertz. Melting points were measured using open glass capillaries in a Büchi SMP-20 apparatus. Mass spectra were performed by SGIker and were acquired on a time of flight (TOF) mass spectrometer (SYNAPT G2 HDMS from Waters, Milford, MA, USA) equipped with an electrospray source in positive mode (ESI ${ }^{+}$). The chromatographic separation was performed using an ACQUITY UPLC system from Waters (Milford, MA, USA) equiped with an Acquity UPLC BEH C18 $1.7 \mu \mathrm{~m}$, $50 \times 2.1 \mathrm{~mm}$ column at $30^{\circ} \mathrm{C}$. Mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in methanol (B). Separation was carried out in 5 min: initial conditions were 5% B, raised to 100% B over 2.5 min , held at 100% B until 4 min , decreased to 5% B over 0.1 min and held at $5 \% \mathrm{~B}$ until 5 min for re-equilibration of the system. Flow rate was $0.25 \mathrm{~mL} / \mathrm{min}$ and injection volume was $5 \mu \mathrm{~L}$. Infrared spectra were recorded on a Bruker Alpha P. Flash chromatography was performed with EM Science silica gel 60 (230-400 mesh). The yields reported in tables 2-4 correspond to isolated yields and represent an average of at least two independent runs. The procedures described in this section are representative; thus the yields may differ slightly from those given in the tables of the manuscript.

2.-Synthesis of Triazoles

General Procedure A: Alkyne (1.0 equiv) and the corresponding azide (1.1 equiv) were dissolved in a mixture of deoxygenated $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(4: 1,1 \mathrm{~mL} / \mathrm{mmol})$. Then a deoxygenated aq. solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%, 1 \mathrm{~mL} / \mathrm{mmol})$ followed by a deoxygenated aq. solution of sodium ascorbate ($40 \mathrm{~mol} \%, 1 \mathrm{~mL} / \mathrm{mmol}$) was added. The resulting mixture was stirred under inert atmosphere at room temperature overnight. The solvent was partially evaporated under reduced pressure and the resulting solution was washed with aq. $\mathrm{NH}_{4} \mathrm{OH}$, extracted with AcOEt and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (hexanes/AcOEt 7/3) unless otherwise noted.

General Procedure B: 1-Bromo-3-methylbutane (1.0 equiv) was dropwise added over a solution of NaN_{3} (1.1 equiv) in HMPA ($0.6 \mathrm{~mL} / \mathrm{mmol}$). The resulting solution was stirred under argon at room temperature for 4 hours. Then, $\mathrm{CuI}(10 \mathrm{~mol} \%$), alkyne (1.0 equiv) and DIPEA ($5.0 \mathrm{~mL} / \mathrm{mmol}$) were subsequently added and the resulting solution was stirred at room temperature overnight. Next, it was washed with $\mathrm{HCl} 10 \%$, aq. $\mathrm{NH}_{4} \mathrm{OH}$, extracted with AcOEt and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (hexanes/AcOEt 7/3) unless otherwise noted.

General Procedure C: 1-Bromo-3-methylbutane (1.0 equiv) was dropwise added over a solution of NaN_{3} (1.1 equiv) in HMPA ($0.6 \mathrm{~mL} / \mathrm{mmol}$). The resulting solution was stirred under argon at room temperature for 4 hours. In a different flask CuI (1.0 equiv) was dissolved in $\mathrm{MeCN}(2.4 \mathrm{~mL} / \mathrm{mmol})$ under argon at room temperature. A solution of N -
bromosuccinimide (1.2 equiv) in $\mathrm{MeCN}(2.4 \mathrm{~mL} / \mathrm{mmol})$ was added and stirred 5 min at room temperature. Later on, the previously prepared azide-containing solution along with alkyne (1.0 equiv) and DIPEA (1.1 equiv) were subsequently added and the resulting mixture was stirred at room temperature overnight. Next, the mixture was washed with $\mathrm{HCl} 10 \%$, aq. $\mathrm{NH}_{4} \mathrm{OH}$, extracted with AcOEt and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (hexanes/AcOEt 7/3) unless otherwise noted.

Methyl 2-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoate (1f) (Table 2).

Following the general procedure A , using in situ generated methyl 2-azido-2methylpropanoate (7.4 mmol) and phenylacetylene ($8.2 \mathrm{mmol}, 0.9 \mathrm{~mL}$) provided 216 mg (13% yield) of $\mathbf{1 f}$ as a white solid. $\mathrm{Mp} 76-103{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91$ (s, $1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, $3 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.9,147.5,130.7,128.9,128.2$, $125.8,118.5,64.6,53.4,25.9 \mathrm{ppm}$. IR (neat, cm^{-1}): 3130, 1739, 1626, 1279, 1163, 1157, 1081, 767, 695. MS (ESI $) m / z(\%) 246(M+H)$. HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 246.1243 , found 246.1240 .

1-[Bis(trimethylsilyl)methyl]-4-phenyl-1H-1,2,3-triazole (1i) (Table 2). Following the general procedure B, using (chloromethylene)bis(trimethylsilane) ($5.95 \mathrm{mmol}, 1.3 \mathrm{~mL}$) and phenylacetylene ($5.95 \mathrm{mmol}, 0.65 \mathrm{~mL}$) provided $1.53 \mathrm{~g}(87 \%$ yield) of $\mathbf{1 i}$ as a white solid. $\mathrm{Mp} 81-86^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86-7.79$ (m, 2H), 7.54 (s, 1H), 7.41 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 0.13(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.0,131.2,128.9,128.0,125.6,120.2,46.9,-0.9 \mathrm{ppm}$. IR (neat, cm^{-1}): 2882, 1249, 1045, 842, 760, 687. MS (ESI ${ }^{+}$m/z (\%) 304 (M+H). HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{Si}_{2}\right)$: 304.1665, found 304.1656.

(10)

5-Iodo-1-isopentyl-4-phenyl-1H-1,2,3-triazole (10) (Table 3). Following the general procedure C, using phenylacetylene ($4.89 \mathrm{mmol}, 0.54 \mathrm{~mL}$) provided 1.00 g (66% yield) of 10 as a white solid. $\mathrm{Mp} 97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52-7.33(\mathrm{~m}, 3 \mathrm{H}), 4.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.6,130.3,128.4,127.4,76.0,49.4,38.6$, 25.6, 22.2 ppm . IR (neat, cm^{-1}): 1447, 1224, 1064, 985. MS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}(\%) 342(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{I}\right): 342.0467$, found 342.0462 .

1-Isopentyl-4-(2-methoxyphenyl)-1H-1,2,3-triazole (1q) (Table 3). Following the general procedure B , using 1-ethynyl-2-methoxybenzene ($3.78 \mathrm{mmol}, 0.49 \mathrm{~mL}$) provided $600 \mathrm{mg}(69 \%$ yield $)$ of $\mathbf{1 q}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.31(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{dt}, J=13.4$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.1,142.4$, $128.3,126.9,122.5,120.3,119.0,110.3,54.8,48.0,38.6,25.0,21.7 \mathrm{ppm}$. IR (neat, cm^{-1}): 1538, 1243, 1069, 752. MS (ESI $) m / z(\%) 246(M+H)$. HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}\right)$: 246.1606 , found 246.1607 .

1-Isopentyl-4-[2-(trifluoromethyl)pheny])-1H-1,2,3-triazole (1r) (Table 3). Following the general procedure B , using 1-ethynyl-2-(trifluoromethyl)benzene ($2.94 \mathrm{mmol}, 0.41$ $\mathrm{mL})$ provided 413 mg (50% yield) of $\mathbf{1 r}$ as a white solid. Mp $40-41^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{dt}, J=$ $13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0$, 131.9, 131.5, 129.6, 128.1, $127.0(\mathrm{~d}, J=30 \mathrm{~Hz}), 125.9(\mathrm{q}, J=10 \mathrm{~Hz}), 125.4,122.6$ (q, $J=$ 10 Hz), 48.7, 38.9, 25.4, 22.1 ppm . IR (neat, cm^{-1}): 1581, 1312, 1100, 767. MS (ESI ${ }^{+}$) $m / z(\%) 284(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~F}_{3}\right): 284.1375$, found 284.1381 .

4-(4-Fluorophenyl)-5-iodo-1-isopentyl-1H-1,2,3-triazole (1s) (Table 3). Following the general procedure C , using 4-fluorophenylacetylene ($4.16 \mathrm{mmol}, 0.48 \mathrm{~mL}$) provided 790 $\mathrm{mg}\left(53 \%\right.$ yield) of 1 s as a white solid. $\mathrm{Mp} 118-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 8.00-7.75 (m, 2H), $7.13(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.30(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{ddd}, J=9.5,7.8,6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.68(\mathrm{dt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.3(\mathrm{~d}, J=247 \mathrm{~Hz}), 148.9,129.3(\mathrm{~d}, J=9 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=10 \mathrm{~Hz})$, $115.4(\mathrm{~d}, J=21 \mathrm{~Hz}), 75.9,49.4,38.5,25.6,22.2 \mathrm{ppm}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1607,1476,1223$, 838. MS (ESI $\left.{ }^{+}\right) m / z(\%) 360(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{FI}\right): 360.0373$, found 360.0373 .

5-Iodo-1-isopentyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (1t) (Table 3). Following the general procedure C , using 4-methoxyphenylacetylene ($3.78 \mathrm{mmol}, 500 \mathrm{mg}$) provided $600 \mathrm{mg}\left(43 \%\right.$ yield) of 1 t as a white solid. $\mathrm{Mp} 95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $1.95-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7$, $149.5,128.7,122.8,113.9,75.3,55.2,49.4,38.6,25.6,22.2 \mathrm{ppm}$. IR (neat, cm^{-1}): 1614, 1339, 1117, 1066. MS (ESI $) m / z(\%) 372(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OI}\right)$: 372.0573 , found 372.0565 .

(1u)

1-Isopentyl-4-(m-tolyl)-1H-1,2,3-triazole (1u) (Table 3). Following the general procedure B , using 1-ethynyl-3-methylbenzene ($8.61 \mathrm{mmol}, 1.09 \mathrm{~mL}$) provided 1.70 g (86% yield) of $\mathbf{1 u}$ as a white solid. $\mathrm{Mp} 51-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76$ (s, $1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{dt}, J=13.4,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.6,138.3$, $130.5,128.6,128.5,126.2,122.6,119.2,48.5,38.9,25.3,22.0,21.3 \mathrm{ppm}$. IR (neat, cm^{-1}):

1433, 1079, 839, 716. MS (ESI $) ~ m / z(\%) 230(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3}\right)$: 230.1657, found 230.1661 .
 (1w)

1-Mesityl-4-(m-tolyl)-1H-1,2,3-triazole (1w) (Table 3). Following the general procedure A, using 2-azido-1,3,5-trimethylbenzene ${ }^{1}(3.90 \mathrm{mmol}, 630 \mathrm{mg})$ and 3-ethynyltoluene $(4.30 \mathrm{mmol}, 0.54 \mathrm{~mL})$ provided $1.05 \mathrm{~g}\left(97 \%\right.$ yield) of $\mathbf{1 w}$ as a brown solid. $\mathrm{Mp} 87-92^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.01$ ($\mathrm{s}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): δ 147.7, 140.0, 138.6, 135.1, 133.5, 130.4, $129.1,129.0,128.8,126.4,122.9,121.5,21.5,21.2,17.3 \mathrm{ppm}$. IR (neat, cm^{-1}): 2918, 1491, 1378, 1226, 1036, 784, 695. MS (ESI $) m / z(\%) 278(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3}\right): 278.1657$, found 278.1654 .

4-(Cyclohex-1-en-1-yl)-1-isopentyl-1H-1,2,3-triazole (1x) (Table 3). Following the general procedure B, using 1-bromo-3-methylbutane ($10 \mathrm{mmol}, 1.20 \mathrm{~mL}$) and 1ethynylcyclohexene ($10 \mathrm{mmol}, 1.30 \mathrm{~mL}$) provided $1.80 \mathrm{~g}(82 \%$ yield) of $\mathbf{1 x}$ as a white solid. $\mathrm{Mp} 38-42{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{p}, J=6.7,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.63(\mathrm{p}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.54(\mathrm{dt}, J=13.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 149.4,127.4,124.6,118.1,48.5,39.1,26.3,25.4,25.2,22.5,22.2,22.1 \mathrm{ppm}$. IR (neat, cm^{-1}): 2951, 2929, 2868, 2837, 1459, 1434, 1216, 1052, 919, 832. MS (ESI ${ }^{+}$) $m / z(\%) 220(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{3}\right): 220.1814$, found 220.1804 .

Benzyl 2-(4-(cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)acetate (1y) (Table 3).
Following the general procedure A , using benzyl 2-azidoacetate ${ }^{2}(9 \mathrm{mmol}, 1.73 \mathrm{~g})$ and 1ethynylcyclohexene ($10 \mathrm{mmol}, 1.20 \mathrm{~mL}$) provided $2.30 \mathrm{~g}(85 \%$ yield $)$ of $\mathbf{1 y}$ as a white

[^0]solid. Mp 95-98 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 5 \mathrm{H})$, $6.54(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{dd}, J=34.5,5.9$ $\mathrm{Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,150.1,134.7,128.9,128.8,128.6$, 127.1, 125.5, 119.7, $68.0,50.9,26.5,25.4,22.5,22.3 \mathrm{ppm}$. IR (neat, cm^{-1}): 2927, 2857, 2831, 1750, 1675, 1454, 1385, 1195, 942, 748, 698. MS (ESI $) ~ m / z(\%) 298(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 298.1556$, found 298.1552 .

4-[(4-Cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)methyl]benzonitrile (1z) (Table 3). Following the general procedure A, using 4-(azidomethyl)benzonitrile ${ }^{3}$ ($8.60 \mathrm{mmol}, 1.36$ g) and 1-ethynylcyclohexene ($9.50 \mathrm{mmol}, 1.00 \mathrm{~mL}$) provided $2.20 \mathrm{~g}(97 \%$ yield) of $\mathbf{1 z}$ as a white solid without requiring chromatographic purification. Mp 131-134 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.50$ $(\mathrm{s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J=32.6,5.9 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.4,140.3,132.9,128.3,127.0,125.7,118.5,118.3,112.6$, 53.3, 26.4, 25.3, 22.4, 22.2 ppm . IR (neat, cm^{-1}): 2934, 2860, 2831, 2232, 1446, 1314, 1197, 1036, 798, 768, 546. MS (ESI $) ~ m / z(\%) 265(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{4}\right)$: 265.1453, found 265.1452.

1-[4-(Tert-butyl)benzyl)]-4-(cyclohex-1-en-1-yl)-1H-1,2,3-triazole (1za) (Table 3). Following the general procedure A, using 1-ethynylcyclohex-1-ene ($9.42 \mathrm{mmol}, 1.10 \mathrm{~mL}$) and 4-(tert-butyl)benzyl azide ${ }^{4}(10.4 \mathrm{mmol}, 1.96 \mathrm{~g})$ provided $2.76 \mathrm{~g}(99 \%$ yield) of $\mathbf{1 z a}$ as a white solid without requiring chromatographic purification. Mp 132-133 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.50$ (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{dq}, J=6.1,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.56(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 151.6, 149.8, 131.9, 127.7, 127.3, 125.9, 124.9, 118.1, 53.6, 34.5, 31.2, 26.3, 25.2, 22.4, 22.1 ppm . IR (neat, cm^{-1}): 1433, 1050, 710, 679. MS (ESI $) ~ m / z(\%) 296(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3}\right): 296.2127$, found 296.2129 .

[^1]

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]phenyl 4-methylbenzenesulfonate
(Table 4). Following the general procedure A, using 2-(prop-2-yn-1-yl)phenol ${ }^{5}$ (7.20 $\mathrm{mmol}, 956 \mathrm{mg}$) and benzyl azide ($7.20 \mathrm{mmol}, 963 \mathrm{mg}$) provided 1.80 g (95% yield) of 2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]phenol as a white solid. Then, such triazole ($1.88 \mathrm{mmol}, 500 \mathrm{mg}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and tosyl chloride (2.26 mmol , 431 mg) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$, and triethylamine ($2.26 \mathrm{mmol}, 0.32$ mL) was added. The resulting solution was warmed to room temperature and after complete consumption of the starting material, the reaction was acidified with $\mathrm{HCl}(10 \%)$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried (anhydrous MgSO_{4}), filtered and evaporated under reduced pressure. The crude residue was purified by flash chromatography to provide $788 \mathrm{mg}(99 \%)$ of $\mathbf{3 a}$ as a white solid. Mp $110-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41-6.99 (m, 12H), 5.48 (s, 2H), 3.93 (s, 2H), 2.47 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.7$ 146.3, 145.7, 134.9, 133.0, 132.7, 131.3, 130.0, 129.1, 128.7, 128.43, 128.0, 127.9, 127.4, 122.4, 122.0, 54.2, 26.4, 21.9 ppm . IR (neat, cm^{-1}): 1375, 1191, 1158, 1083, 868, 711, 550. MS (ESI $) m / z(\%) 420(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: 420.1304, found 420.1305.

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]phenyl benzoate (3b) (Table 4). To a solution 2-[(1-benzyl-1 H-1,2,3-triazol-4-yl)methyl]phenol ($1.88 \mathrm{mmol}, 500 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ benzoyl chloride ($2.20 \mathrm{mmol}, 0.26 \mathrm{~mL}$) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$, and triethylamine ($2.26 \mathrm{mmol}, 0.32 \mathrm{~mL}$) was added. The resulting solution was warmed to room temperature and after complete consumption of the starting material, the reaction was acidified with $\mathrm{HCl}(10 \%)$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried (anhydrous MgSO_{4}), filtered and evaporated under reduced pressure. The crude residue was purified by flash chromatography to provide 678 mg (98% yield) of $\mathbf{3 b}$ as a white solid. $\mathrm{Mp} 77-87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.13(\mathrm{~m}, 9 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR

[^2](101 MHz, CDCl_{3}): $\delta 165.0,149.1,146.7,134.9,133.8,131.2,130.9,130.2,129.2$, 129.1, 128.7, 128.6, 128.1, 128.0, 126.5, 122.7, 121.7, 54.1, 27.1 ppm . IR (neat, cm^{-1}): 1739, 1449, 1214, 1051, 701. MS (ESI $) ~ m / z(\%) 370(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 370.1477 , found 370.1479 .

1-Benzyl-4-(3-methylbenzyl)-1H-1,2,3-triazole (3c) (Table 4). Following the general procedure A, using benzyl azide ($4.23 \mathrm{mmol}, 563 \mathrm{mg}$) and 3-(m-tolyl)-1-propyne (3.85 $\mathrm{mmol}, 500 \mathrm{mg}$) provided 778 mg (77% yield) of $\mathbf{3 c}$ as a white solid. $\mathrm{Mp} 77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37$ (d, J = $5.9 \mathrm{~Hz}, 3 \mathrm{H}$), $7.32-7.13$ (m, 4H), 7.07 (dd, $J=$ $12.0,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 148.0,138.8,138.0,134.7,129.3,128.9,128.4,128.3,127.8,127.0,125.5$, 121.2, 53.8, 32.1, 21.2 ppm . IR (neat, cm^{-1}): 1607, 1124, 787, 709. MS (ESI ${ }^{+}$m/z (\%) $264(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3}\right)$: 264.1422, found 264.1422.

4-Benzyl-1-isopentyl-1H-1,2,3-triazole (3e) (Table 4). Following the general procedure B, using 1-bromo-3-methylbutane ($10 \mathrm{mmol}, 1.20 \mathrm{~mL}$) and 3-phenyl-1-propyne (10 $\mathrm{mmol}, 1.30 \mathrm{~mL}$) provided $2.46 \mathrm{~g}(99 \%)$ of $\mathbf{3 e}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.31(\mathrm{dq}, J=16.4,8.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}$, $2 \mathrm{H}), 1.78(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,138.7,128.0,127.9,125.7,120.8,47.7,38.3$, $31.5,24.8,21.5 \mathrm{ppm}$. IR (neat, cm^{-1}): 2956, 2870, 1495, 1455, 1216, 1048, 724, 697. MS (ESI ${ }^{+} m / z(\%) 230(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3}\right): 230.1657$, found 230.1674.

4-Benzyl-5-iodo-1-isopentyl-1H-1,2,3-triazole (3g) (Table 2). Following the general procedure C, using 1-bromo-3-methylbutane ($10 \mathrm{mmol}, 1.20 \mathrm{~mL}$) and 3-phenyl-1propyne ($10 \mathrm{mmol}, 1.30 \mathrm{~mL}$) provided $1.76 \mathrm{~g}\left(50 \%\right.$ yield) of 3 g as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.23$ (dd, $J=30.3,7.2 \mathrm{~Hz}, 5 \mathrm{H}$), 4.34 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.95 (s, $2 \mathrm{H}), 1.67(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{dp}, J=13.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 149.6,138.3,128.1,126.0,82.9,48.4,37.9$,
31.3, 24.7, 21.8 ppm . IR (neat, cm^{-1}): 2955, 2869, 1494, 1453, 1213, 1060, 723, 695. MS (ESI $) ~ m / z(\%) 356(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{I}\right)$: 356.0624, found 356.0620 .

1,4-Dibenzyl-5-iodo-1H-1,2,3-triazole (3h) (Table 4). Following the general procedure C, using benzyl azide ($10 \mathrm{mmol}, 1.30 \mathrm{~g}$) and 3-phenyl-1-propyne ($10 \mathrm{mmol}, 1.30 \mathrm{~mL}$) provided $1.10 \mathrm{~g}\left(30 \%\right.$ yield) of $\mathbf{3 h}$ as a yellowish solid. Mp $131-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.19(\mathrm{~m}, 10 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 151.1,138.3,134.5,129.0,128.8,128.6,128.6,127.9,126.6,78.9,54.4,32.5$ ppm. IR (neat, cm^{-1}): 3026, 1493, 1454, 1211, 1082, 729, 693. MS (ESI $) \mathrm{m} / \mathrm{z}(\%) 376$ $(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{I}\right): 376.0311$, found 376.0306.

3.-Pd-Catalyzed C(sp ${ }^{2}$)-H Acetoxylation (Table 2-4)

General Procedure: A reaction tube containing a stirring bar was charged with the corresponding triazole (if solid) ($0.25 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}(0.50 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$. The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated up to three times). The triazole (if liquid) ($0.25 \mathrm{mmol}, 1.00$ equiv), AcOH ($0.50 \mathrm{mmol}, 2.00$ equiv), 1,2 -dichloroethane (0.50 mL) and $\mathrm{Ac}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ were then added under argon atmosphere. The reaction tube was next warmed up to $90^{\circ} \mathrm{C}$ and stirred for 24 hours. The mixture was then allowed to warm to room temperature, filtered off through a pad of celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting mixture was concentrated under reduced pressure and the corresponding product was purified by flash chromatography (hexanes/AcOEt 7/3). The yields reported in the manuscript refer to isolated yields and represent an average of at least two independent runs.

(2a)

(2a')

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)phenyl acetate (2a) (Table 2). Following the general procedure, using 1-benzyl-4-phenyl-1H-1,2,3-triazole ${ }^{6}(\mathbf{1 a})(0.25 \mathrm{mmol}, 59 \mathrm{mg})$ provided $33 \mathrm{mg}\left(45 \%\right.$ yield) of $\mathbf{2 a}$ as a white solid along with 23 mg (25% yield) of $\mathbf{2 a} \mathbf{a}^{\prime}$ as a white solid. 2a: Mp 162-163 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $(\mathrm{s}, 1 \mathrm{H}), 7.54-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8,147.0,143.3,134.4,129.1,129.0,128.8,128.6,128.2$, 126.3, 123.2, 123.0, 121.7, 54.2, 21.0 ppm . IR (neat, cm^{-1}): 1738, 1191, 852. MS (ESI $)$ $m / z(\%) 294(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 294.1243$, found 294.1243. 2a': Mp 172-173 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=$ $7.3,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.9,149.0,139.3,134.7,129.1,129.1,128.8,128.1,123.2,120.7$, 54.1, 20.7 ppm . IR (neat, cm^{-1}): 1735, 1197, 883. MS (ESI $) ~ m / z(\%) 352(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 352.1297, found 352.1292.

[^3]

2-[1-(4-(tert-butyl)benzyl)-1H-1,2,3-triazol-4-yl]phenyl acetate (2b) (Table 2).
Following the general procedure, using 1-[4-tert-butyl)benzyl]-4-phenyl-1 H -1,2,3triazole ${ }^{7}$ ($\mathbf{1 b}$) ($0.25 \mathrm{mmol}, 73 \mathrm{mg}$) provided 27.9 mg (32% yield) of $\mathbf{2 b}$ as a white solid along with 30.5 mg (30% yield) of $\mathbf{2 b}$ ' as a white solid. $\mathbf{2 b}$: Mp $163-165{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.40-7.32 (m, 2H), $7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 2.13$ $(\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.9,152.2,147.2,143.4$, $131.6,129.0,128.7,128.2,126.5,126.2,123.5,123.1,121.7,54.0,34.8,31.3,21.2 \mathrm{ppm}$. IR (neat, cm^{-1}): 1750, 1202, 1178, 762. MS (ESI $) ~ m / z(\%) 350(\mathrm{M}+\mathrm{H})$. HRMS calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 350.1869$, found 350.1869. 2b': Mp 189-196 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.1$, $152.3,149.2,139.5,131.9,129.3,128.2,126.3,123.3,121.0,118.2,54.0,34.8,31.4,20.9$ ppm. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1752,1750,1216,1187,1028 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z(\%) 408(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 408.1923, found 408.1927 .

2-[1-(4-Cyanobenzyl)-1H-1,2,3-triazol-4-yl]phenyl acetate (2c) (Table 2). Following the general procedure, using 4-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]benzonitrile ${ }^{8}$ (1c) ($0.25 \mathrm{mmol}, 65 \mathrm{mg}$) provided $35 \mathrm{mg}(44 \%$ yield) of 2 c as a yellow oil along with 25.1 mg (27% yield) of $\mathbf{2 c} \mathbf{c}^{\prime}$ as a white solid. 2c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{dd}, J=7.5$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{dd}, J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.1,147.2$, $144.0,139.9,132.9,129.3,128.7,128.4,126.5,123.2,123.1,122.0,118.2,112.7,53.3$, 21.3 ppm . IR (neat, cm^{-1}): 1750, 1216, 1038, 765. MS (ESI $) m / z(\%) 319(\mathrm{M}+\mathrm{H})$.

[^4]HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$: 319.1195, found 319.1193. 2c': Mp 201-206 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,149.3,140.1,133.1,129.7,128.4,123.6,121.0,118.1$, 117.9, 113.1, 53.5, 31.1, 21.0 ppm . IR (neat, cm^{-1}): 1747, 1197, 1026, 884. MS (ESI $)$ $m / z(\%) 377(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$: 377.1250, found 377.1240 .

(2d)

2-[1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl]phenyl acetate (2d) (Table 2). Following the general procedure, using 1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole ${ }^{9}$ (1d) (0.25 mmol, 78 mg) provided 34.4 mg (37% yield) of $\mathbf{2 d}$ as a white solid along with 33.3 mg (31% yield) of 2d' as a yellowish solid. 2d: Mp 135-139 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=10.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.0,147.3,143.9,133.7,132.5,129.8,129.2,128.8,126.5,123.3,123.2$, $123.1,121.7,53.6,21.3 \mathrm{ppm}$. IR (neat, cm^{-1}): 1754, 1199, 1189, 1010, 760. MS (ESI ${ }^{+}$) $m / z(\%) 372(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}\right): 372.0348$, found 372.0349. 2d': Mp 179-199 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 169.1,149.2,139.8,133.9,132.5,129.8,129.5,123.4,123.2$, $121.0,118.0,53.6,21.0 \mathrm{ppm}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1744,1196,1029,883 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$ $430(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}\right)$: 430.0402, found 430.0405 .

Methyl 4-[(4-(2-acetoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl]benzoate (2e) (Table 2).
Following the general procedure, using methyl 4-[(4-phenyl-1H-1,2,3-triazol-1yl)methyl]benzoate ${ }^{10}(\mathbf{1 e})(0.25 \mathrm{mmol}, 73 \mathrm{mg})$ provided $29 \mathrm{mg}(33 \%$ yield) of $\mathbf{2 e}$ as a white solid along with $28 \mathrm{mg}\left(28 \%\right.$ yield) of $\mathbf{2 e} \mathrm{e}^{\prime}$ as a white solid. $\mathbf{2 e}$: $\mathrm{Mp} 162-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$

[^5]NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.9,166.2,147.1,143.7,139.4,130.5,130.3,129.1,128.6,127.7$, $126.3,123.1,121.7,53.6,52.2,21.1 \mathrm{ppm}$. IR (neat, cm^{-1}): $1743,1720,1196,726 . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right) m / z(\%) 352(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 352.1297, found 352.1289. 2e': Mp 172-173 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (s , $1 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}$, $2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,166.2,149.1$, $139.7,139.6,130.7,130.4,129.4,127.7,123.4,120.8,117.9,53.6,52.3,20.8 \mathrm{ppm} . \operatorname{IR}$ (neat, cm^{-1}): 1741, 1716, 1194, 729. MS (ESI $) m / z(\%) 410(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}\right): 410.1352$, found 410.1342 .

(2f)

(2f')

Methyl 2-[4-(2-acetoxyphenyl)-1H-1,2,3-triazol-1-yl]-2-methylpropanoate (2f) (Table
2). Following the general procedure, using triazole $\mathbf{1 f}(0.25 \mathrm{mmol}, 61 \mathrm{mg})$ at $110{ }^{\circ} \mathrm{C}$ provided 22.7 mg (30% yield) of $\mathbf{2 f}$ as a yellowish oil along with 46 mg (51% yield) of 2f' as a pale brown solid. 2f: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.9,169.2,147.4,143.1,129.2$, $128.9,126.6,123.6,123.2,120.9,64.6,53.5,26.1,21.4 \mathrm{ppm}$. IR (neat, cm^{-1}): 1751, 1749, 1172, 1009, 831. MS (ESI $\left.{ }^{+}\right) m / z(\%) 304(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 304.1297, found 304.1287. 2f': Mp 90-94 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 171.8,169.2,149.2,138.6,129.3,122.9,120.9$, $118.2,64.6,53.4,25.8,21.0 \mathrm{ppm}$. IR (neat, cm^{-1}): 1743, 1741, 1186, 1184, 1024. MS $\left(\mathrm{ESI}^{+}\right) m / z(\%) 362(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}\right): 362.1352$, found 362.1347 .

Benzyl 2-[4-(2-acetoxyphenyl)-1H-1,2,3-triazol-1-yl] acetate (2g) (Table 2). Following the general procedure, using benzyl 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetate $\left.{ }^{11} \mathbf{(1 g}\right)(0.25$

[^6]mmol, 73 mg) at $110^{\circ} \mathrm{C}$ provided 41.3 mg (47% yield) of $\mathbf{2 g}$ as a yellowish solid along with $24.6 \mathrm{mg}(24 \%$ yield $)$ of $\mathbf{2 g}$ ' as a white solid. $\mathbf{2 g}$: Mp 81-87 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~s}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2,166.2,147.4$, $143.6,134.6,129.3,129.0,128.9,128.8,128.7,126.5,123.4,123.2,123.2,68.2,51.0$, 21.3 ppm . IR (neat, cm^{-1}): 1749, 1261, 1175, 696. MS (ESI') m/z (\%) $352(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 352.1297, found 352.1292. 2g': Mp 181-187 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.23(\mathrm{~s}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.3, 166.2, 149.4, $139.4,134.6,129.6,129.0,128.9,128.7,125.2,120.9,118.1,68.2,51.0,21.0 \mathrm{ppm} . \mathrm{IR}$ (neat, cm^{-1}): 1760, 1744, 1222, 1185, 1030. MS (ESI $) m / z(\%) 410(\mathrm{M}+\mathrm{H}) . \mathrm{HRMS}$ calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}\right)$: 410.1352, found 410.1353 .

(2h)

(2h')

2-(1-Isopentyl-1H-1,2,3-triazol-4-yl)phenyl acetate (2h) (Table 2). Following the general procedure, using 1-(isopentyl)-4-phenyl-1H-1,2,3-triazole ${ }^{12}$ ($\mathbf{1 h}$) ($0.25 \mathrm{mmol}, 54$ mg) at $110{ }^{\circ} \mathrm{C}$ provided 28.7 mg (42% yield) of $\mathbf{2 h}$ as a white solid along with 36.4 mg (44% yield) of $\mathbf{2 h}$ ' as a yellowish solid. $\mathbf{2 h}$: Mp 83-90 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{p}, J=7.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{dt}, J=13.5,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.1,147.2$, $143.2,129.0,128.8,126.4,123.6,123.1,121.5,48.7,39.1,25.5,22.2,21.4 \mathrm{ppm} . \operatorname{IR}$ (neat, cm^{-1}): 1758, 1371, 1189, 758. MS (ESI $) m / z(\%) 274(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 274.1556$, found 274.1553. 2h': Mp 136-144 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.81(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{dt}, J=13.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.1,149.3,138.9,129.3,123.3$, $120.9,118.3,48.8,39.2,25.6,22.3,21.1 \mathrm{ppm}$. IR (neat, cm^{-1}): $1747,1197,1027,883$. MS (ESI $\left.{ }^{+}\right) m / z(\%) 332(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 332.1610, found 332.1622.

[^7]
(2i)

(2i')

2-[1-(Bis(trimethylsilyl)methyl)-1H-1,2,3-triazol-4-yl]phenyl acetate (2i) (Table 2). Following the general procedure, using triazole $\mathbf{1 i}(0.25 \mathrm{mmol}, 76 \mathrm{mg})$ provided 18.9 mg (21% yield) of $\mathbf{2 i}$ as a white solid along with 47.2 mg (45% yield) of $\mathbf{2 i}$ ' as a white solid. 1i: Mp 139-143 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.33$ (dt, $J=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,147.2,142.3,128.8,126.5,123.9,123.0,122.4$, 46.7, 21.5, -1.0 ppm. IR (neat, cm^{-1}): 1749, 1249, 1197, 843, 765. MS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}(\%)$ $362(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}\right)$: 362.1720, found 362.1716. 1i': Mp 137$139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66$ $(\mathrm{s}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.9,149.4$, $138.0,129.2,124.0,120.6,119.0,46.6,21.0,-1.1 \mathrm{ppm}$. IR (neat, cm^{-1}): 1764, 1760, 1217, 1189, 1027, 843. MS (ESI ${ }^{+}$m/z (\%) $420(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}\right): 420.1775$, found 420.1769 .

(2j)

(2j')

2-(1-Phenyl-1H-1,2,3-triazol-4-yl)phenyl acetate (2j) (Table 2). Following the general procedure, using 1,4-diphenyl-1 H -1,2,3-triazole ${ }^{13}(\mathbf{1 j})(0.25 \mathrm{mmol}, 55 \mathrm{mg})$ provided 21 mg (30% yield) of $\mathbf{2} \mathbf{j}$ as a white solid along with 21.1 mg (25% yield) of $\mathbf{2} \mathbf{j}$ ' as a yellowish solid. 2j: Mp 117-119 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25$ (s, 1H), 8.16 (dd, $J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.36$ (m, 3 H), 7.26 (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.2,147.4,144.0,137.0,129.9,129.3,128.9,128.8,126.5,123.3,123.1,120.6,119.8$, 21.5 ppm . IR (neat, cm^{-1}): 1742, 1506, 1214, 1189, 1036, 753. MS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}(\%) 280$ $(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}\right):$ 280.1086, found 280.1083. 2j${ }^{\prime}: \mathrm{Mp} 130-140{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.50-7.39 (m, 2H), 7.13 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.24(\mathrm{~s}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.2,149.3,139.8,136.9,130.0,129.5,129.1,121.5,121.1,120.6,117.8$, 21.2 ppm . IR (neat, cm^{-1}): 1744, 1368, 1187, 1024, 762. MS (ESI $) \mathrm{m} / \mathrm{z}(\%) 338(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 338.1141, found 338.1139 .

[^8]
(2k)

($2 k^{\prime}$)

2-[1-(4-Cyanophenyl)-1H-1,2,3-triazol-4-yl]phenyl acetate (2k) (Table 2). Following the general procedure, using 4-(4-phenyl-1 $\mathrm{H}-1,2,3$-triazol-1-yl)benzonitrile ${ }^{14}$ ($\mathbf{1 k}$) (0.25 $\mathrm{mmol}, 62 \mathrm{mg}$) provided 29 mg (38% yield) of $\mathbf{2 k}$ as a white solid along with 24.4 mg (27% yield) of $\mathbf{2 k}$ ' as a yellowish solid. $\mathbf{2 k}$: $\mathrm{Mp} 201-207{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=33.1,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $169.1,147.6,144.9,139.8,134.2,129.9,129.0,126.7,123.5,122.6,120.7,119.3,117.8$, 112.7, 21.6 ppm . IR (neat, cm^{-1}): 2223, 1748, 1519, 1215, 1185, 1025, 838. MS (ESI ${ }^{+}$) $m / z(\%) 305(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}\right): 305.1039$, found 305.1037. 2k': Mp $142-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $169.1,149.2,140.4,139.6,134.1,129.9,121.2,121.1,120.6,117.8,117.2,112.5,21.1$ ppm. IR (neat, cm^{-1}): 2231, 1754, 1190, 1031, 836. MS (ESI $) m / z(\%) 363(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4}\right): 363.1093$, found 363.1082.

(2I)

(21')

2-[1-(3-Methoxyphenyl)-1H-1,2,3-triazol-4-yl]phenyl acetate (21) (Table 2). Following the general procedure, using 1-(3-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole ${ }^{15}$ (11) (0.25 mmol, 63 mg) provided $30.2 \mathrm{mg}(39 \%$ yield) of 21 as a white solid along with 21.1 mg (23% yield) of $\mathbf{2 l}{ }^{\prime}$ as a yellowish solid. 2l: Mp $117-121{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{ddd}, J=24.7,7.8$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.2,160.7,147.4,143.9,138.0,130.7,129.4,129.0,126.5,123.3$, $123.1,119.9,114.7,112.4,106.6,55.7,21.5 \mathrm{ppm}$. IR (neat, cm^{-1}): 1738, 1610, 1499, 1212, 1158, 1040, 754. MS (ESI $) m / z(\%) 310(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: 310.1192, found 310.1194. 2l': Mp 126-132 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16$ (s, $1 \mathrm{H}), 7.48(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$

[^9]NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2,160.8,149.3,139.7,137.9,130.8,129.5,121.5,121.1$, $117.8,114.8,112.4,106.5,55.8,21.2 \mathrm{ppm}$. IR (neat, cm^{-1}): 1749, 1747, 1610, 1484, 1195, 1028. MS (ESI $\left.{ }^{+}\right) m / z(\%) 368(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$: 368.1246, found 368.1245 .

(2m)

(2m')

2-(1-Mesityl-1H-1,2,3-triazol-4-yl)phenyl acetate (2m) (Table 2). Following the general procedure, using 1-mesityl-4-phenyl-1H-1,2,3-triazole ${ }^{16}$ (1m) ($0.25 \mathrm{mmol}, 66$ $\mathrm{mg})$ at $110{ }^{\circ} \mathrm{C}$ provided $19 \mathrm{mg}(24 \%$ yield) of $\mathbf{1 m}$ as a white solid along with 61.2 mg (64% yield) of $\mathbf{1 m}$ ' as white solid. 1m: Mp $107-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.20(\mathrm{dd}, J=6.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.9,147.3$, $143.0,140.2,135.2,133.4,129.2,129.1,128.8,126.5,123.7,123.4,123.1,21.4,21.2$, 17.4 ppm . IR (neat, cm^{-1}): 1763, 1481, 1207, 1184, 1047, 758. MS (ESI $) \mathrm{m} / \mathrm{z}(\%) 322$ $(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 322.1556, found 322.1553. 1m': Mp 155-164 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.5,149.1,139.9,138.5,134.7,133.0,129.2,128.9,125.3,120.5,118.0$, 20.9, 20.6, 16.9 ppm . IR (neat, cm^{-1}): 1745, 1496, 1457, 1185, 1024. MS (ESI $) ~ m / z(\%)$ $380(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right): 380.1610$, found 380.1602 .

(2n)

2-(1-Benzyl-5-iodo-1H-1,2,3-triazol-4-yl)phenyl acetate (2n) (Table 2). Following the general procedure, using 1-benzyl-5-iodo-4-phenyl-1 $\mathrm{H}-1,2,3$-triazole ${ }^{17}$ (1n) (0.25 mmol , 90 mg) provided $71 \mathrm{mg}\left(68 \%\right.$ yield) of 2 n as a white solid. $\mathrm{Mp} 130-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.15(\mathrm{~m}, 8 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}), 2.13$ (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,148.5,134.3,131.0,130.1,128.9,128.5$, $127.7,125.9,123.3,123.1,79.7,54.5,21.0$ ppm. IR (neat, cm^{-1}): $1737,1195,912,761$. MS (ESI $) m / z(\%) 420(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}\right)$: 420.0209, found

[^10]420.0215.

(20)

2-(5-Iodo-1-isopentyl-1H-1,2,3-triazol-4-yl)phenyl acetate (20) (Table 2). Following the general procedure, using triazole $\mathbf{1 0}(0.25 \mathrm{mmol}, 85 \mathrm{mg})$ provided $98 \mathrm{mg}(98 \%$ yield) of $\mathbf{2 0}$ as a white solid. $\mathrm{Mp} 94-95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.36$ $(\mathrm{m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dq}, J=13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1,148.5,147.7,131.1,130.0$, 125.8, 123.4, 123.2, 79.1, 49.6, 38.6, 25.7, 22.3, 21.1 ppm . IR (neat, cm^{-1}): 1753, 1197, 907, 768. MS (ESI $) m / z(\%) 400(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}\right)$: 400.0522, found 400.0522.

(2p)

(2p')

2-(1,5-Diphenyl-1H-1,2,3-triazol-4-yl)phenyl acetate (2p) (Table 2). Following the general procedure, using 1,4,5-triphenyl-1 $\mathrm{H}-1,2,3$-triazole ${ }^{18}$ ($\mathbf{1 p}$) ($0.25 \mathrm{mmol}, 74 \mathrm{mg}$) provided 40 mg (45% yield) of $\mathbf{2 p}$ as a white solid along with 36.2 mg (35% yield) of $\mathbf{2 p}$, as white solid. 2p: $\mathrm{Mp} 137-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.10(\mathrm{~m}, 14 \mathrm{H})$, 2.11 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.2, 148.6, 141.7, 136.4, 134.8, 131.1, 129.6, 129.3, 129.1, 129.0, 128.8, 126.9, 125.8, 125.1, 123.7, 123.1, 20.9 ppm. IR (neat, cm^{-1}): 1761, 1495, 1365, 1198, 1173, 995, 915, 772, 761, 691. MS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ (\%) $356(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 356.1399, found 356.1400. 2p': Mp 61$78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.09(\mathrm{~m}, 13 \mathrm{H}), 1.97(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,150.0,137.3,136.8,136.1,129.8,129.5,129.5,129.3$, 129.1, 129.0, 127.0, 125.4, 120.4, 117.9, 20.9 ppm . IR (neat, cm^{-1}): 1759, 1365, 1179, 1026, 996, 755, 696. MS (ESI $) ~ m / z(\%) 414(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 414.1454, found 414.1449 .

[^11]
(2q)

2-(1-Isopentyl-1H-1,2,3-triazol-4-yl)-3-methoxyphenyl acetate (2q) (Table 3).
Following the general procedure, using triazole $1 \mathbf{q}(0.25 \mathrm{mmol}, 61 \mathrm{mg})$ provided 71 mg (93% yield) of $\mathbf{2 q}$ as a white solid. $\mathrm{Mp} 99-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90$ (s, $1 \mathrm{H}), 7.32(\mathrm{q}, J=7.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=29.7,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $0.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.1,157.3,149.2,139.3$, $128.9,124.2,116.0,113.4,108.5,55.9,48.5,38.9,25.5,22.1,21.1 \mathrm{ppm}$. IR (neat, cm^{-1}): 1756, 1261, 1074, 737. MS (ESI $) m / z(\%) 304(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: 304.1661, found 304.1662.

(2r)

2-(1-Isopentyl-1H-1,2,3-triazol-4-yl)-3-(trifluoromethyl)phenyl acetate (2r) (Table 3). Following the general procedure, using triazole $1 \mathbf{r}(0.25 \mathrm{mmol}, 71 \mathrm{mg})$ provided 66 mg (77% yield) of 2 r as a white solid. $\mathrm{Mp} 60-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 169.0,150.4,138.9,131.0(\mathrm{q}, J=30 \mathrm{~Hz}$), $129.8,126.7,124.6,123.7(\mathrm{q}, J=6 \mathrm{~Hz}), 121.9,48.7,38.9,25.3,22.1,20.4 \mathrm{ppm}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1769,1319,1190,1007,807 . \mathrm{MS}^{\left(\mathrm{ESI}^{+}\right)} \mathrm{m} / \mathrm{z}(\%) 342(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~F}_{3}\right): 342.1429$, found 342.1433 .

(2s)

5-Fluoro-2-(5-iodo-1-isopentyl-1H-1,2,3-triazol-4-yl)phenyl acetate (2s) (Table 3). Following the general procedure, using triazole $1 \mathrm{~s}(0.25 \mathrm{mmol}, 90 \mathrm{mg})$ provided 73 mg (71% yield) of 2 s as a brown solid. $\mathrm{Mp} 62-63{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55$ (dd, $J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.84$ $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{dt}, J=13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 168.6,162.8(\mathrm{~d}, J=249 \mathrm{~Hz}), 149.4(\mathrm{~d}, J=11 \mathrm{~Hz}), 147.1$,
132.1 (d, $J=10 \mathrm{~Hz}$), 119.6 (d, $J=3 \mathrm{~Hz}$), 113.1 (d, $J=21 \mathrm{~Hz}$), 111.1 (d, $J=25 \mathrm{~Hz}), 79.2$, 49.6, 38.5, 25.6, 22.2, 21.0 ppm . IR (neat, cm^{-1}): 1763, 1459, 1200, 833. MS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ (\%) $418(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{FI}\right)$: 418.0428, found 418.0441 .

(2t)
2-(5-Iodo-1-isopentyl-1H-1,2,3-triazol-4-yl)-5-methoxyphenyl acetate (2t) (Table 3). Following the general procedure, using triazole $\mathbf{1 t}(0.25 \mathrm{mmol}, 93 \mathrm{mg})$ provided 77 mg (72% yield) of $\mathbf{2 t}$ as a white solid. $\mathrm{Mp} 86-87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.48(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,160.8,149.5,147.6$, $131.6,115.7,111.8,108.8,78.9,55.5,49.5,38.5,25.6,22.2,21.0 \mathrm{ppm}$. IR (neat, cm^{-1}): 1764, 1622, 1187, 1090, 840. MS (ESI $\left.{ }^{+}\right) m / z(\%) 430(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{I}\right): 430.0628$, found 430.0632 .

2-(1-Isopentyl- $\mathbf{H - 1 , 2 , 3 - t r i a z o l - 4 - y l) - 4 - m e t h y l p h e n y l ~ a c e t a t e ~ (2 u) ~ (T a b l e ~ 3) . ~}$ Following the general procedure, using triazole $\mathbf{1 u}(0.25 \mathrm{mmol}, 57 \mathrm{mg})$ provided 59 mg (82% yield) of $\mathbf{2 u}$ as a white solid. Mp $67-69{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86$ (s, $1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=45.9,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{dt}, J=13.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2,144.9,143.1,136.1,129.5,129.0,122.9$, $122.7,121.3,48.6,39.0,25.4,22.1,21.2,20.8 \mathrm{ppm}$. IR (neat, cm^{-1}): 1769, 1430, 1214, 948. MS (ESI') m/z (\%) $288(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 288.1712, found 288.1711.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-3-methylphenyl acetate (2v) (Table 3). Following the general procedure, using 1-benzyl-4-(m-tolyl)- $1 H$-1,2,3-triazole ${ }^{19}$ (1v) $(0.25 \mathrm{mmol}, 62$

[^12]mg) provided 38.4 mg (50% yield) of $\mathbf{2 v}$ as a yellowish solid. Mp $119-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=4.7,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.30$ (dd, $J=7.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.2,145.0,143.6,136.2$, $134.7,129.8,129.3,129.1,129.0,128.3,123.0,122.8,121.7,54.3,21.2,21.0 \mathrm{ppm} . \mathrm{IR}$ (neat, cm^{-1}): 1755, 1496, 1371, 1182, 1069, 822, 715. MS (ESI') $m / z(\%) 308(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 308.1399$, found 308.1397.

(2w)

2-(1-Mesityl-1H-1,2,3-triazol-4-yl)-3-methylphenyl acetate (2w) (Table 2). Following the general procedure, using triazole $1 \mathbf{w}(0.25 \mathrm{mmol}, 69 \mathrm{mg})$ provided $60.4 \mathrm{mg}(72 \%$ yield) of $2 \mathbf{w}$ as a yellow solid. $\mathrm{Mp} 107-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.2,145.0,143.6,136.2,134.7,129.8,129.3,129.1,129.0,128.3,123.0$, $122.8,121.7,54.3,21.2,21.0 \mathrm{ppm}$. IR (neat, cm^{-1}): 1760, 1494, 1367, 1183, 1039, 908, 730. MS (ESI $\left.{ }^{+}\right) m / z(\%) 336(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 336.1712$, found 336.1701 .

(2x)

2-(1-Isopentyl-1H-1,2,3-triazol-4-yl)cyclohex-1-en-1-yl acetate (2x) (Table 3). Following the general procedure, using triazole $\mathbf{1 x}(0.25 \mathrm{mmol}, 55 \mathrm{mg})$ at $110{ }^{\circ} \mathrm{C}$ provided $51.9 \mathrm{mg}\left(75 \%\right.$ yield) of $\mathbf{2 x}$ as a yellow solid. $\mathrm{Mp} 73-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 168.6,144.9,144.2,120.9,115.1,48.3$, $38.9,27.8,26.2,25.3,22.4,22.0,21.9,21.2 \mathrm{ppm}$. IR (neat, cm^{-1}): 2938, 2846, 1748, 1371, 1215, 1198, 1150, 1103, 1058. MS (ESI $) ~ m / z(\%) 278(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 278.1869$, found 278.1860 .

Benzyl 2-[4-(2-acetoxycyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl]acetate (2y) (Table 3). Following the general procedure, using triazole $\mathbf{1 y}(0.25 \mathrm{mmol}, 74 \mathrm{mg})$ provided 65.7 $\mathrm{mg}\left(74 \%\right.$ yield) of $\mathbf{2 y}$ as a yellow solid. $\mathrm{Mp} 59-66^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.67 ($\mathrm{s}, 1 \mathrm{H}$), 7.37-7.23 (m, 5H), 5.13 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 2.64-2.55 (m, 2H), 2.32-2.24 $(\mathrm{m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7$, $166.2,145.5,144.7,134.5,128.7,128.6,128.4,122.8,115.0,67.7,50.6,27.8,26.2,22.4$, 21.9, 21.1 ppm . IR (neat, cm^{-1}): 2937, 1751, 1457, 1188, 1104, 1056, 749, 698. MS $\left(\mathrm{ESI}^{+}\right) m / z(\%) 356(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 356.1610, found 356.1601 .

(2z)

2-[1-(4-Cyanobenzyl)-1H-1,2,3-triazol-4-yl]cyclohex-1-en-1-yl acetate (2z) (Table 3). Following the general procedure, using triazole $\mathbf{1 z}(0.25 \mathrm{mmol}, 66 \mathrm{mg})$ provided 58 mg (72% yield) of $\mathbf{2 z}$ as a white solid. Mp 111-117 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.7,145.9,145.5,140.2,132.9,128.3,121.3,118.2,115.0,53.3,48.6,28.0$, 26.5, 22.6, 22.0, 21.4 ppm . IR (neat, cm^{-1}): 2941, 2226, 1738, 1374, 1220, 1097, 765. MS (ESI ${ }^{+}$) $m / z(\%) 323(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$: 323.1508, found 323.1502 .

(2za)

2-\{1-[4-(Tert-butyl)benzyl]-1H-1,2,3-triazol-4-yl\}cyclohex-1-en-1-yl acetate (2za)
(Table 3). Following the general procedure, using triazole 1za ($0.25 \mathrm{mmol}, 74 \mathrm{mg}$) provided 66 mg (75% yield) of 2za as a white solid. Mp 134-135 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.39$ (d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H})$, $2.64(\mathrm{dd}, J=5.9,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.50(\mathrm{~m}, 4 \mathrm{H})$,
1.30 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.6,151.9,145.2,144.7,131.6$, $128.1,128.0,126.1,126.0,121.0,115.3,53.7,34.6,31.2,27.8,26.2,22.5,22.0,21.1$ ppm. IR (neat, cm^{-1}): 1750, 1213, 1191. MS (ESI $) ~ m / z(\%) 354(M+H)$. HRMS calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 354.2182 , found 354.2180 .

(4a)

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-3-(tosyloxy)phenyl acetate (4a) (Table 4). Following the general procedure, using 3a ($0.25 \mathrm{mmol}, 104.9 \mathrm{mg}$) provided $77 \mathrm{mg}(65 \%$ yield) of $\mathbf{4 a}$ as a yellowish oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.36-7.26 (m, 5H), 7.24-7.15 (m, 3H), 7.12 (s, 1H), 7.00 (dd, $J=13.1,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.38$ $(\mathrm{s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.7, 150.1, 148.2, 145.8, 145.4, 134.8, 132.4, 129.9, 128.8, 128.4, 128.2, 127.7, 127.6, $125.5,121.9,121.8,119.8,53.8,21.6,21.5,20.6 \mathrm{ppm}$. IR (neat, cm^{-1}): 1752, 1492, 1209, 1168, 727. MS (ESI ${ }^{+}$) $m / z(\%) 478(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right)$: 478.1358, found 478.1359.

(4b)

3-Acetoxy-2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]phenyl benzoate (4b) (Table 4). Following the general procedure, using 3b $(0.25 \mathrm{mmol}, 92.3 \mathrm{mg})$ provided $66 \mathrm{mg}(62 \%$ yield) of $\mathbf{4 b}$ as a yellowish solid. $\mathrm{Mp} 80-117^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20-$ $7.10(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): δ 169.2, 165.0, 150.2, 150.1, 145.9, 135.0, 133.9, $130.2,129.0,128.9,128.7,128.5,127.9,124.6,121.9,120.8,120.5,54.1,21.9,20.8 \mathrm{ppm}$. IR (neat, cm^{-1}): $1765,1731,1462,1264,1173,1061,1025,702 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$ $428(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 428.1532, found 428.1533 .

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-4-methylphenyl acetate (4c) (Table 2).

Following the general procedure, using triazole 3c ($0.25 \mathrm{mmol}, 66 \mathrm{mg}$) provided 52 mg (65% yield) of $\mathbf{4 c}$ as yellow solid. Mp $85-86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{dd}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H), 5.43 ($\mathrm{s}, 2 \mathrm{H}$), $3.95(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.5,146.8,146.5,135.9,134.8,131.2,130.5,128.9,128.5,128.4,127.8$, 122.3, 121.5, 54.0, 27.1, 20.8, 20.7 ppm . IR (neat, cm^{-1}): 1752, 1366, 1124, 1052, 635. MS (ESI^{+}) $m / z(\%) 322(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 322.1477, found 322.1479 .

(4e)

(4e')

2-[(1-Isopentyl-1H-1,2,3-triazol-4-yl)methyl]phenyl acetate (4e) (Table 4). Following the general procedure, using triazole 3e ($0.25 \mathrm{mmol}, 57 \mathrm{mg}$) provided $12.2 \mathrm{mg}(17 \%$ yield) of $\mathbf{4 e}$ as a yellow oil along with 46.6 mg (54% yield) of $\mathbf{4 e}$, as white solid. $\mathbf{4 e}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.34-4.27 (m, 2H), 4.05 (s, 2H), 2.26 (s, 3H), 1.76 ($\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58$ (dt, $J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.6,149.0,146.5,131.3,130.9,128.1,126.4,122.9,121.5,48.8,39.1,27.3,25.7,22.3$, 21.0 ppm. IR (neat, cm^{-1}): 2957, 1764, 1367, 1202, 1169, 1047, 749. MS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ (\%) $288(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 288.1712$, found 288.1713. 4e': Mp 96$100{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.13-6.97(\mathrm{~m}, 3 \mathrm{H}), 4.37-4.21$ $(\mathrm{m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{q}, J=2.1,1.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.00-0.93(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.3,150.0,145.5,127.8$, $124.7,121.7,120.6,48.7,39.0,25.6,22.2,21.8,20.8 \mathrm{ppm}$. IR (neat, cm^{-1}): 1757, 1463, 1373, 1199, 1165, 1052, 1023, 869. MS (ESI ${ }^{+}$m/z (\%) 346 (M+H). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 346.1767 , found 346.1763 .

(4f)

(4f')

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]phenyl acetate (4f) (Table 4). Following the general procedure, using 1,4-dibenzyl-1H-1,2,3-triazole ${ }^{20}$ ($\mathbf{3 f}$) ($0.25 \mathrm{mmol}, 62 \mathrm{mg}$) provided 12.3 mg (16% yield) of $\mathbf{4 f}$ as a yellow oil along with 45.6 mg (50% yield) of $\mathbf{4 f}$,

[^13]as yellowish solid. 4f: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~h}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.32-7.22$ (m, 4H), 7.19 (td, $J=5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 2.19$ (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,149.0,147.0,135.0,131.1,130.8$, 129.2, 128.7, 128.1, 128.1, 126.4, 122.9, 121.7, 54.2, 27.4, 20.9 ppm . IR (neat, cm^{-1}): 1747, 1366, 1207, 1172, 1048, 750, 726. MS (ESI ${ }^{+}$m/z (\%) 308 (M+H). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 308.1399, found 308.1388. 4f': Mp 107-109 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07$ ($\mathrm{s}, 1 \mathrm{H}$), 7.00 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.42 ($\mathrm{s}, 2 \mathrm{H}$), 4.00 (s, 2H), 2.19 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.3,150.0,146.0,135.1,129.1,128.6,128.0$, $127.9,124.5,122.0,120.6,54.2,21.9,20.9 \mathrm{ppm}$. IR (neat, cm^{-1}): 1759, 1463, 1371, 1210, 1200, 1170, 1023, 722. MS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}(\%) 366(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 366.1454, found 366.1454 .

(4g')

2-[(5-Iodo-1-isopentyl-1H-1,2,3-triazol-4-yl)methyl]-1,3-phenylene diacetate (4g') (Table 4). Following the general procedure, using triazole $\mathbf{3 g}$ ($0.25 \mathrm{mmol}, 89 \mathrm{mg}$) provided $84.8 \mathrm{mg}\left(72 \%\right.$ yield) of $\mathbf{4 g}{ }^{\prime}$ as yellowish solid. Mp $122-126{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.26(\mathrm{~m}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{dp}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.97$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.8,150.0,148.4,127.6$, $122.8,120.2,77.5,49.1,38.5,25.5,22.2,22.1,21.2 \mathrm{ppm}$. IR (neat, cm^{-1}): 1764, 1466, 1366, 1203, 1171, 1031, 860, 773, 726. MS (ESI $) ~ m / z(\%) 472(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{I}\right): 472.0733$, found 472.0742 .

(4h')

2-[(1-Benzyl-5-iodo-1H-1,2,3-triazol-4-yl)methyl]-1,3-phenylene diacetate (4h') (Table 4). Following the general procedure, using triazole $\mathbf{3 h}(0.25 \mathrm{mmol}, 94 \mathrm{mg})$ provided 108.1 mg (88% yield) of $\mathbf{4 h}$ ' as yellow solid. Mp 139-153 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8,149.9,149.1,134.4,128.8,128.3,127.6,122.7,120.1,78.1,54.0$,
22.1, 21.1 ppm . IR (neat, cm^{-1}): 1761, 1462, 1369, 1203, 1174, 1029, 741. MS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}(\%) 492(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{I}\right): 492.0420$, found 492.0410 .

(4h)

2-[(1-Benzyl-5-iodo-1H-1,2,3-triazol-4-yl)methyl]phenyl acetate (4h) (Table 4).
Following the general procedure, using triazole $3 \mathrm{~h}(0.25 \mathrm{mmol}, 94 \mathrm{mg})$ and $\mathrm{PhI}(\mathrm{OAc})_{2}$ ($0.25 \mathrm{mmol}, 83 \mathrm{mg}$) provided 28 mg (23% yield) of $\mathbf{4 h}$ ' along with 44.7 mg (41% yield) of $\mathbf{4 h}$ as a yellowish solid. Mp 133-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.35(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}$, $2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.3,149.8,149.1$, 134.5, 131.1, 129.9, 129.0, 128.5, 128.0, 127.8, 126.1, 122.7, 78.9, 54.3, 27.5, 21.2 ppm. IR (neat, cm^{-1}): 1752, 1492, 1209, 1168, 1098, 727. MS (ESI) m/z (\%) $434(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IN}_{3} \mathrm{O}_{2}\right)$: 434.0287, found 434.0288..

4.-Pd-Catalyzed $\mathbf{C}\left(\mathbf{s p}^{2}\right)$-H Pivaloxylation (Table 3-4)

General Procedure: A reaction tube containing a stirring bar was charged with the correspoding triazole ($0.25 \mathrm{mmol}, 1.00$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(0.50 \mathrm{mmol}, 2.00$ equiv), PivOH ($0.50 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$. The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated up to three times). Then 1,2-dichloroethane (1.00 mL) was added under argon atmosphere. The reaction tube was next warmed up to $90^{\circ} \mathrm{C}$ and stirred for 24 hours. The mixture was then allowed to warm to room temperature, filtered off through a pad of celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting mixture was concentrated under reduced pressure and the corresponding product was purified by flash chromatography (hexanes/AcOEt 7/3). The yields reported in the manuscript refer to isolated yields and represent an average of at least two independent runs.

(2na)
2-(5-Iodo-1-isopentyl-1 H-1,2,3-triazol-4-yl)phenyl pivalate (2na) (Table 3). Following the general procedure, using triazole $\mathbf{1 n}(0.25 \mathrm{mmol}, 90 \mathrm{mg})$ provided 78 mg (68% yield) of 2na as a white solid. Mp 105-107 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.43(\mathrm{~m}$, $3 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.3,149.1,148.5,134.2,131.3,130.1,128.8,128.4,127.9$, 125.6, 123.6, 122.9, 80.1, 54.4, 38.8, 26.9 ppm . IR (neat, cm^{-1}): 1747, 1730, 1093, 731. MS (ESI^{+}) $m / z(\%) 462(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}\right)$: 462.0678, found 462.0688.

2-(5-Iodo-1-isopentyl-1H-1,2,3-triazol-4-yl)phenyl pivalate (2ua) (Table 3). Following the general procedure, using triazole $\mathbf{1 u}(0.25 \mathrm{mmol}, 57 \mathrm{mg})$ provided 58 mg (70% yield) of 2ua as a white solid. $\mathrm{Mp} 78-80^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.68$
(s, 1H), $7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.81(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.9,145.7,143.2,135.8,129.7,129.6$, 123.3, 122.4, 121.6, 48.6, 39.1, 27.3, 25.4, 22.2, 20.8 ppm . IR (neat, cm^{-1}): 1742, 1498, 1110, 790. MS (ESI $) m / z(\%) 330(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 330.2182$, found 330.2193.

(2zb)
2-(5-Iodo-1-isopentyl-1H-1,2,3-triazol-4-yl)phenyl pivalate (2zb) (Table 3). Following the general procedure, using triazole $\mathbf{1 z}(0.25 \mathrm{mmol}, 74 \mathrm{mg})$ provided 76 mg (77% yield) of $\mathbf{2 z b}$ as a white solid. $\mathrm{Mp} 88-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{dt}, J=8.1,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.9,151.8,145.2,144.3,131.2,128.2,126.0,121.2,115.4,53.8$, $38.6,34.5,31.2,27.3,26.9,26.7,26.4,22.5,22.0 \mathrm{ppm}$. IR (neat, cm^{-1}): 1739, 1115, 715. MS (ESI^{+}) m/z (\%) $396(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 396.2651, found 396.2666.

(4d)

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-4-methylphenyl pivalate (4d) (Table 4). Following the general procedure, using triazole 3e $(0.25 \mathrm{mmol}, 66 \mathrm{mg})$ provided 55 mg (60% yield) of $\mathbf{4 d}$ as a yellow solid. Mp 99-100 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ $(\mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $177.0,147.0,146.9,135.7,134.9,131.3,130.4,129.0,128.5,128.4,127.9,122.1,121.7$, 54.0, 39.1, 27.2, 20.8 ppm . IR (neat, cm^{-1}): 1744, 1199, 736. MS (ESI $) \mathrm{m} / \mathrm{z}(\%) 396$ $(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 364.1947$, found 364.1948 .

5.-Further Transformations (Scheme 2)

Methyl (E)-3-(4-(2-acetoxyphenyl)-1-benzyl-1H-1,2,3-triazol-5-yl)acrylate (5). A reaction tube containing a stirring bar was charged with triazole $\mathbf{2 n}(0.17 \mathrm{mmol}, 70 \mathrm{mg})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.017 \mathrm{mmol}, 1.9 \mathrm{mg}), \mathrm{TBAB}(0.013 \mathrm{mmol}, 4.2 \mathrm{mg})$ and $\mathrm{NaHCO}_{3}(0.42 \mathrm{mmol}$, 35 mg). The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated up to three times). Methyl acrylate ($0.42 \mathrm{mmol}, 38 \mu \mathrm{~L}$) , and DMF $(2.0 \mathrm{~mL})$ were then added under argon atmosphere. The reaction tube was next warmed up to $80^{\circ} \mathrm{C}$ and stirred 12 hours. The resulting mixture was concentrated under reduced pressure and the corresponding product was purified by flash chromatography (hexanes/AcOEt 7/3) to provide $44 \mathrm{mg}\left(69 \%\right.$ yield) of $\mathbf{5}$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,166.1,148.4,143.9,134.4,131.1,130.4,129.5,129.2,128.6,126.9,126.8$, 126.3, 123.6, 123.4, 123.2, 52.8, 52.0, 20.7 ppm. IR (neat, cm^{-1}): 1715, 1644, 1176, 908, 726. MS (ESI $) ~ m / z(\%) 378(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: 378.1454, found 378.1467.

2-(1-Benzyl-5-(phenylethynyl)-1 \mathbf{H}-1,2,3-triazol-4-yl)phenyl acetate (6a). A reaction tube containing a stirring bar was charged with triazole $2 \mathrm{n}(0.12 \mathrm{mmol}, 50 \mathrm{mg})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.012 \mathrm{mmol}, 8.20 \mathrm{mg})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.18 \mathrm{mmol}, 25 \mathrm{mg})$. The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated up to three times). Phenylacetylene ($0.18 \mathrm{mmol}, 20 \mu \mathrm{~L}$), and THF (1.0 mL) were then added under argon atmosphere. The reaction tube was next warmed up to $80^{\circ} \mathrm{C}$ and stirred 12 hours. The resulting mixture was concentrated under reduced pressure and the corresponding product was purified by flash chromatography (hexanes/AcOEt $8 / 2$) to provide 39 mg (83% yield) of $\mathbf{6 a}$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.34(\mathrm{~m}, 11 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7,148.0,145.34,134.6,131.5,130.0,130.1,129.7,128.9$,
128.6, 128.5, 128.0, 125.9, 123.4, 123.0, 121.2, 119.1, 102.2, 75.0, 53.1, $21.2 \mathrm{ppm} . \operatorname{IR}$ (neat, cm^{-1}): 1763, 1190, 729, 689. MS (ESI $) m / z(\%) 394(\mathrm{M}+\mathrm{H})$. HRMS calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: 394.1556, found 394.1566.

2-(1-Benzyl-5-(phenylethynyl)-1H-1,2,3-triazol-4-yl)phenyl pivalate (6b). Following the procedure for the synthesis of 6a, using triazole 2na ($0.13 \mathrm{mmol}, 60 \mathrm{mg}$) provided 40 $\mathrm{mg}\left(71 \%\right.$ yield) of $\mathbf{6 b}$ as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.44-7.31 (m, 11H), $7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101MHz, CDCl_{3}): $\delta 176.8,148.8,145.7,134.6,131.6,130.4,129.8,129.6,128.8$, $128.5,128.4,128.1,125.6,123.2,123.1,121.3,119.4,101.9,74.9,53.1,39.1,27.1 \mathrm{ppm}$. IR (neat, cm^{-1}): 1746, 1199, 1106, 756, 729. MS (ESI $) m / z(\%) 436(M+H)$. HRMS calcd. for $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}\right): 436.2025$, found 436.2022 .

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)phenol (7). A reaction tube containing a stirring bar was charged with triazole 2a ($0.17 \mathrm{mmol}, 50 \mathrm{mg}$) and dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.17 \mathrm{mmol}, 55 \mathrm{mg})$ was added and the resulting solution was stirred at room temperature for 5 hours under argon atmosphere. The solvent was partially evaporated under reduce pressure and the resulting solution was washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (hexanes/AcOEt 9/1) to provide 40 mg (94% yield) of 7 as a white solid. Mp 142-144 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.27$ (m, 6H), $7.21(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.8,148.0,134.0,129.7,129.2,129.0$, $128.10,125.8,119.4,118.8,117.6,113.8,54.5 \mathrm{ppm}$. IR (neat, cm^{-1}): $3200,1210,690$. MS (ESI $\left.{ }^{+}\right) m / z(\%) 252(M+H)$. HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}\right)$: 252.1137, found 252.1149 .

6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

(1i)

(10)

（1r）

（1r）

（1s）

(1t)

(1t)

(1x)

(1y)

(1za)

(4a)

 人1/n!
 ~ت ~~

(4a)

(4b)

OO.
需 咅

(4b)

190	180	170	160	150			120			90	80	70	60	50	40	30	10	
19	180	17	160		140	130	120	110	f1 (ppm)	90	80	7	60	0	0	30	20	10

(3c)

$\stackrel{\infty}{\sim}$
$\stackrel{7}{\sim}$

(3c)

(3e)

$\stackrel{\substack{\infty \\ 1 \\ 1}}{1}$

(3g)

(3h)

9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5		4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5


```
)

(2a)





\footnotetext{

}


\begin{tabular}{|c|c|c|c|}
\hline \% & - &  & 㐌 \\
\hline | & 1 & | | 1 | & \\
\hline
\end{tabular}

(2a')





```

IM

```
\(\stackrel{m}{\sim} \stackrel{m}{\sim}\)












\section*{}





\begin{tabular}{lllllllllllllllllllllllllll}
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{tabular}
\&
\(\stackrel{\text { ® }}{0}\)
\(\stackrel{\text { ̃ }}{1}\)
\(\stackrel{\circ}{i}\)



\begin{tabular}{|c|c|c|c|c|}
\hline  & \(\stackrel{\square}{9}\) & -i.e. &  &  \\
\hline \(1!\) & | & Y & Vill| & \/ \\
\hline
\end{tabular}



\section*{}

(2f)




(



\(\stackrel{\stackrel{+}{\dot{\circ}}}{\stackrel{\text { in }}{i}}\)
\(\stackrel{\infty}{\sim}\)



\footnotetext{

}

\(\stackrel{\stackrel{N}{i}}{1}\)







\footnotetext{

}






\footnotetext{

}




(2h)





\footnotetext{

}

（2h＇）


(2i)

-

(2i)







(2j)

 \(\stackrel{n}{i}\)



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \[
\int_{1} \int_{1}
\] & & & & & & & & & & & & & & & \\
\hline & & & & Hi & \(\stackrel{\text { M }}{\substack{\text { ¢ }}}\) & & & & & & & & & & & & & & \\
\hline 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \[
\underset{\mathrm{f} 1(\mathrm{ppm})}{5.0}
\] & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0. \\
\hline
\end{tabular}
~






\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\section*{ \\ }






（21）



（21）








\[
\begin{aligned}
& \text { (2m) }
\end{aligned}
\]



(2m')


(2n)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 \\
\hline
\end{tabular}
-i

(2n)


\footnotetext{

}

（20）




（20）


(2p)


N

(2p)



l

(2p')


（2q）



（2q）
\begin{tabular}{llllllllllllllllllllll} 
& 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & & \\
\hline
\end{tabular}

人）

（2r）



（2r）





(2s)



(2t)






范




(2v)



















(2za)


©


(2na)


(2na)





(4a) -Bn

\(\stackrel{\infty}{n}\)
Nin

(4a)
Bn

\footnotetext{
\(\begin{array}{llllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}\)
}



(4b)



(4c)


V

(4c)



（4e）

ハ ..... －

（4e）


(4e')


(4f)

N|


(4f)

\(\left.\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 10 & 1 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)\)

(4f')



(4g')



（4h）

｜



\footnotetext{
\(\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\)
}


（5）


テूं

（5）


\footnotetext{
\(\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}\)
}




(6b)



(6b)





(7)
```


[^0]: ${ }^{1}$ Abram, S.-L.; Monte-Pérez, I.; Pfaff, F. F.; Farquhar, E. R.; Ray, K. Chem. Commun. 2014, 50, 9852.
 ${ }^{2}$ Pokorski, J. K.; Jenkins, L. M. M.; Feng, H.; Durell, S. R.; Bai, Y.; Appella, D. H. Org. Lett. 2007, 9, 2381.

[^1]: ${ }^{3}$ Liu, M.; Reiser, O. Org. Lett. 2011, 13, 1102.
 ${ }^{4}$ Robinson, S. W.; Mustoe, C. L.; White, N. G.; Brown, A.; Thompson, A. L.; Kennepohl, P.; Beer, P. D. J. Am. Chem. Soc. 2015, 137, 499.

[^2]: ${ }^{5}$ Zhang, Q.; Takacs, J. M. Org. Lett. 2008, 10, 545.

[^3]: ${ }^{6}$ Sharghi, H.; Khalifeh, R.; Doroodmand, M. M. Adv. Synth. Catal. 2009, 351, 207.

[^4]: ${ }^{7}$ Özçubukçu, S.; Ozkal, E.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2009, 11, 4680.
 ${ }^{8}$ Bidal, Y. D.; Lesieur, M.; Melaimi, M.; Cordes, D. B.; Slawin, A. M. Z.; Bertrand, G.; Cazin, C. S. J. Chem. Comтип. 2015, 51, 4778.

[^5]: ${ }^{9}$ Bent, S. J.; Mahon, M. F.; Webster, R. L. Dalton Trans 2015, 44, 10253.
 ${ }^{10}$ Shin, J.-A.; Lim, Y.-G.; Lee, K.-H. J. Org. Chem. 2012, 77, 4117.

[^6]: ${ }^{11}$ Song, J. H.; Choi, P.; Lee, S. E.; Jeong, K. H.; Kim, T.; Kang, K. S.; Choi, Y. S.; Ham,. J. Eur. J. Org. Chem. 2013, 6249.

[^7]: ${ }^{12}$ Chen, Z.; Yan, Q.; Yi, H.; Liu, Z.; Lei, A.; Zhang, Y. Chem. Eur. J. 2014, 20, 13692.

[^8]: ${ }^{13}$ Deraedt, C.; Pinaud, N.; Astruc, D. J. Am. Chem. Soc. 2014, 136, 12092.

[^9]: ${ }^{14}$ Ramachary, D. B.; Shashank, A. B.; Karthik, S. Angew. Chem. Int. Ed. 2014, 53, 10420.
 ${ }^{15}$ Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem. Int. Ed. 2013, 52, 13324.

[^10]: ${ }^{16}$ Sau, S. C.; Roy, S. R.; Sen, T. K.; Mullangi, D.; Mandal, S. K. Adv. Synth. Catal. 2013, 355, 2982.
 ${ }^{17}$ Zhou, Y.; Lecourt, T.; Micouin, L. Angew. Chem. Int. Ed. 2010, 49, 2607.

[^11]: ${ }^{18}$ Shashank, A. B.; Karthik, S.; Madhavachary, R.; Ramachary, D. B. Chem. Eur. J. 2014, $20,16877$.

[^12]: ${ }^{19}$ Yamaguchi, K.; Oishi, T.; Katayama, T.; Mizuno, N. Chem. Eur. J. 2009, 15, 10464.

[^13]: ${ }^{20}$ Leeb, L.; Gmeiner, P.; Löber, S. Comb. Sci. 2007, 26, 1145.

