SUPPLEMENTARY MATERIAL

A new sesquiterpene from the gorgonian coral Menella sp.

Qi Peng^{1a}, Fen Liu^{1a}, Huan Sun^a, Xiao-Jian Liao^a, Mei-Ran Feng^a, Ting-Ting Liu^a, Zheng-Xiong Xu^a , Jun Zhang^{b*}, Shi-Hai Xu^{a*}

^aDepartment of Chemistry, Jinan University, Guangzhou 510632, P.R.China

^bCollege of science and engineering, Jinan University, Guangzhou 510632, P.R. China

¹These authors contributed equally to this work and should be considered as co-first authors

^{*}Corresponding author. E-mail: bri71527152@outlook.com; txush@jnu.edu.cn

A new sesquiterpene from the gorgonian coral Menella sp.

A new sesquiterpene named menecubebane B (1) and a known analogue (2) were isolated

from the gorgonian coral Menella sp.. Their structures were elucidated by the extensive

analyses of spectroscopic data, and by the comparison with related literature. Cytotoxic

effect against both Eca9706 and HeLa cell lines was evaluated, revealing 1 exhibited

moderate cytotoxicity against the two cell lines involved with IC₅₀ values being 20.8 and

 $30.6 \mu M$, respectively.

Keywords: Gorgonian coral; *Menella* sp.; sesquiterpene; cytotoxicity

2

Table S1: ¹H (500 MHz), ¹³C (125 MHz) data of compound **1** in CD₃OD

No	1						
No.	δ_{C} (mult.)	$\delta_{\rm H}$ (mult., J in Hz)					
1	160.5 (C)						
2	63.8 (CH)	4.94 (ddd, J = 5.0, 4.5, 2.0 Hz)					
3	46.2 (CH ₂)	2.19 (dd, $J = 14.0$, 4.5 Hz) 2.11 (dd, $J = 14.0$, 5.0 Hz)					
4	73.2 (C)						
5	204.1 (C)						
6	136.0 (C)						
7	39.0 (CH)	2.75 (m)					
8	19.5 (CH ₂)	1.74 (m), 1.56 (m)					
9	38.4 (CH ₂)	1.82 (m), 1.58 (m)					
10	72.2 (C)						
11	29.9 (CH)	2.06 (m)					
12	17.8 (CH ₃)	0.75 (d, J = 6.5 Hz)					
13	$21.0 (CH_3)$	0.89 (d, J = 6.5 Hz)					
14	28.5 (CH ₃)	1.50 (s)					
15	27.5 (CH ₃)	1.46 (s)					

Figure legends

Figure S1. Key ¹H-¹H COSY and HMBC correlations of **1**

Figure S2. Key NOESY correlations of 1

Figure S3. ¹H NMR (500 MHz, CD₃OD) of **1**

Figure S4. ¹³C NMR (125 MHz, CD₃OD) of **1**

Figure S5. COSY (500 MHz, CD₃OD) of 1

Figure S6. HSQC (500 MHz, CD₃OD) of 1

Figure S7. HMBC (500 MHz, CD₃OD) of 1

Figure S8. NOESY (500 MHz, CD₃OD) of 1

Figure S9. HRMS of 1

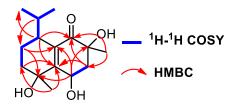


Figure S1. Key ¹H-¹H COSY and HMBC correlations of **1**

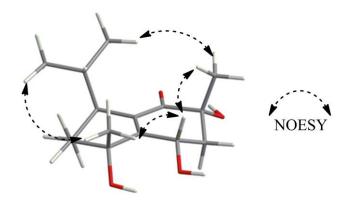
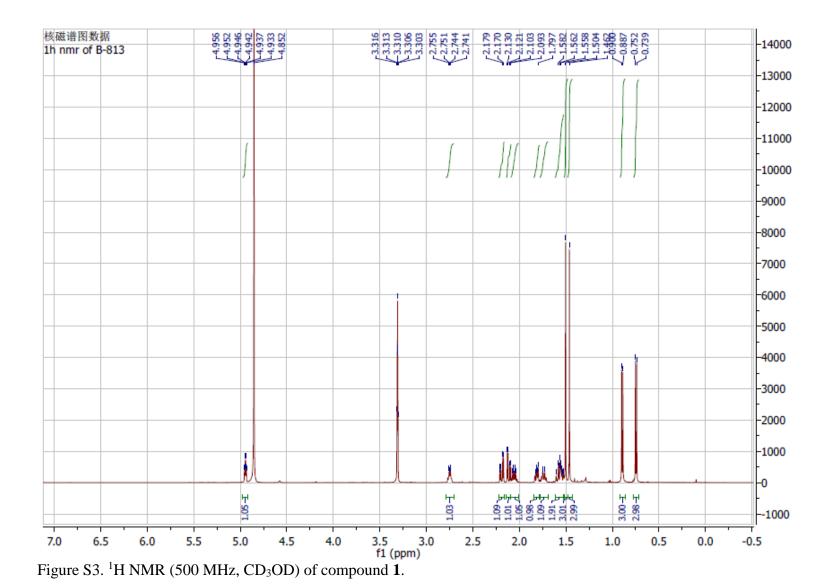
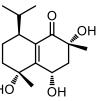




Figure S2. Key NOESY correlations of 1

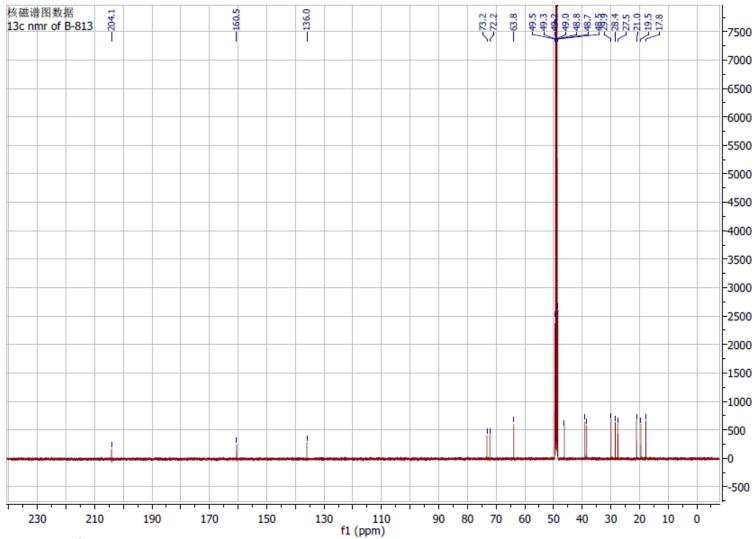


Figure S4. ¹³C NMR (125 MHz, CD₃OD) of compound **1**.

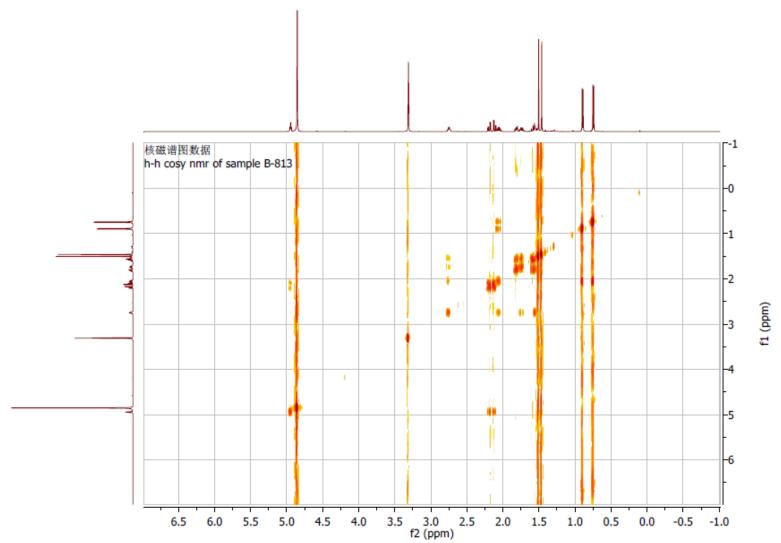


Figure S5. ¹H-¹H COSY (500 MHz, CD₃OD) of compound **1**.

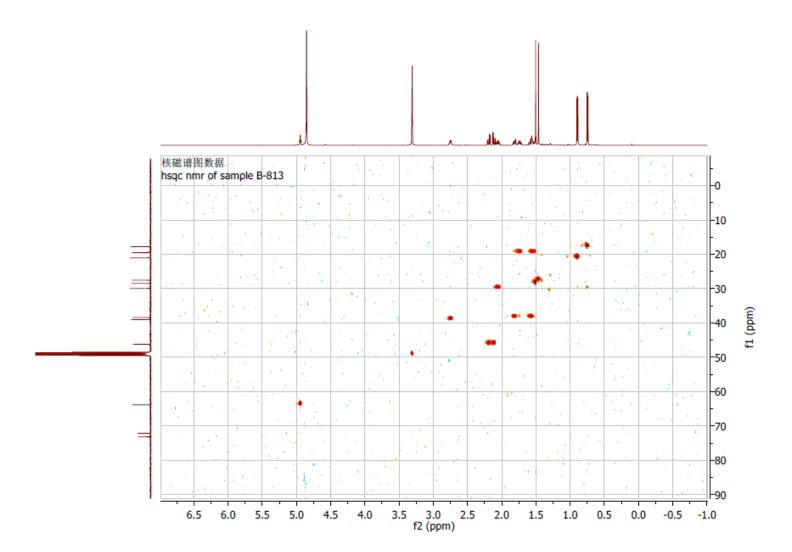
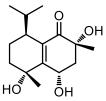



Figure S6. HSQC (500 MHz, CD₃OD) of compound 1.

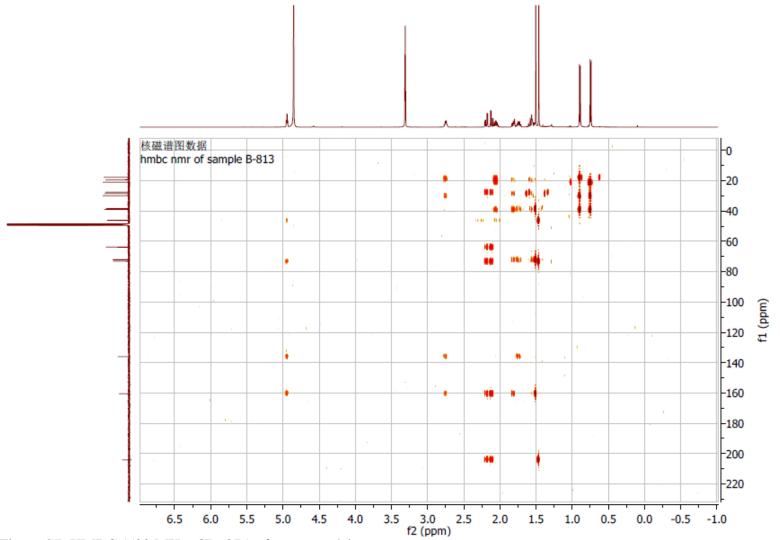


Figure S7. HMBC (500 MHz, CD₃OD) of compound 1

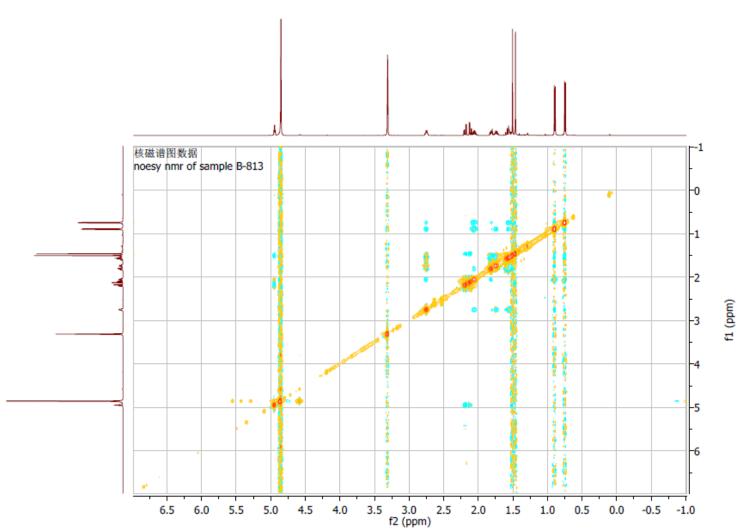
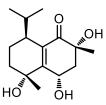
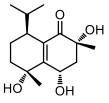




Figure S8. NOESY (500 MHz, CD₃OD) of compound 1

Summary

1444	Compound Name (Library Hit)	Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)	Expected RT (min)	Found RT (min)	RT Delta (min)	Isotope Diff (%)	Purity (%)
v • v • v	268.16745952 (No Match)	C15H24O4	609825	50	267.1602	267.1598	-1.3	0.00	5.08	5.08	1.4%	0.0%

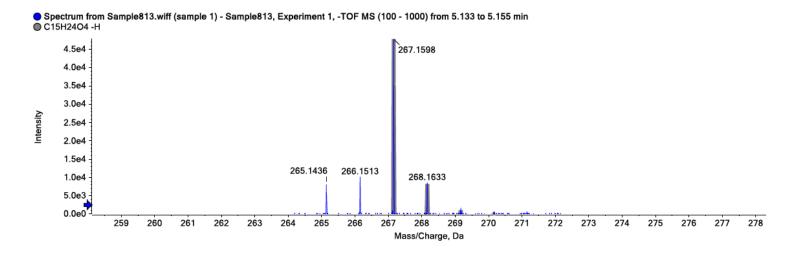


Figure S9. HRMS of compound 1.