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e Environmental exposures may induce subtle system-wide changes in high-
dimensional genomic data such as gene expression or epigenetic measures

— Can such situations be exploited to improve prediction models?

e Large system-wide changes are observed in many environments and hence this
assumption can possibly be exploited to aid analysis of high dimensional data

e We develop and implement a multivariate penalization procedure for predict-
Ing a continuous or binary disease outcome while detecting interactions between

high dimensional data (p >> n) and an environmental factor. R software:
http://sahirbhatnagar.com/eclust/

— Dimension reduction is achieved through leveraging the environmental-class-
conditional correlations

— Also, we develop and implement a strong heredity framework within the penal-
ized model
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FIGURE 1: Microarray study of COPD. Top: Heatmap of Pearson correlations. Bottom:
Heatmap of gene expression data (2,900 genes) rows are genes and columns are subjects. There
are 7 subjects in each group, matched on COPD case status, gender and age.
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FIGURE 3: Method overview. First step involves measuring gene similarity in both exposure
oroups. We then cluster these and create a cluster representation. The last step involves
entering these terms in a penalization model that follows the strong heredity principle [1]
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FIGURE 4: Clustering based on Fisher’s Z transformation of exposure dependent correla-
tions. Let p;;r be the correlation between genes 7 and j in class k. Transform the corre-
lations into z values: z;;, = 0.5log|(1 + p;i1)/(1 — pik)|- The Z-test statistic is given by

2ij0 — zij1l/v/1/(ng — 3) + 1/(nl — 3) ~ N (0, 1)

e Model: g(p) = By + 1 X1+ + BpXp + BEEﬁng(XlE) + -+ osz(XpEz

Interactions
e Strong Hierarchy Principle [1]: &g # 0 = Bj £0 and  Bp#0
e Reparametrization [2]: o = v, p8;8E.

main effects

e Variable Selection:
argming, g~ 5 [|Y — g(p)||” + Ag (wiB1 + -+ + wyBy + wpBp) + Ay (wipne + -+ weEveE)
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e Adaptive weights: w; = 7
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e Why strong heredity?
— Statistical Power: large main effects are more likely to lead to detectable interactions than small
ones

— Interpretability: Assuming a model with interaction only is generally not biologically plausible

— Practical Sparsity: X1, F, X1 - E (2 variables to measure) vs. X1, E, X9 - E (3 variables to
measure).
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FIGURE 5: Stability of results: Average Jaccard distance from 10-fold cross validation. A
Jaccard distance of 1 indicates perfect agreement between two sets while no agreement will
result in a distance of 0.
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FIGURE 6: Prediction accuracy: Test set mean squared error

This work was supported by the Ludmer Centre for Neuroinformatics and Mental Health.
Software available at http://sahirbhatnagar.com/eclust/.
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