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Summary

•Environmental exposures may induce subtle system-wide changes in high-
dimensional genomic data such as gene expression or epigenetic measures

–Can such situations be exploited to improve prediction models?

•Large system-wide changes are observed in many environments and hence this
assumption can possibly be exploited to aid analysis of high dimensional data

•We develop and implement a multivariate penalization procedure for predict-
ing a continuous or binary disease outcome while detecting interactions between
high dimensional data (p >> n) and an environmental factor. R software:
http://sahirbhatnagar.com/eclust/

–Dimension reduction is achieved through leveraging the environmental-class-
conditional correlations

–Also, we develop and implement a strong heredity framework within the penal-
ized model

Motivation

Figure 1: Microarray study of COPD. Top: Heatmap of Pearson correlations. Bottom:
Heatmap of gene expression data (2,900 genes) rows are genes and columns are subjects. There
are 7 subjects in each group, matched on COPD case status, gender and age.

Methods

Figure 3: Method overview. First step involves measuring gene similarity in both exposure
groups. We then cluster these and create a cluster representation. The last step involves
entering these terms in a penalization model that follows the strong heredity principle [1]

Figure 4: Clustering based on Fisher’s Z transformation of exposure dependent correla-
tions. Let ρijk be the correlation between genes i and j in class k. Transform the corre-
lations into z values: zijk = 0.5log|(1 + ρijk)/(1 − ρijk)|. The Z-test statistic is given by

|zij0 − zij1|/
√

1/(n0 − 3) + 1/(n1− 3) ∼ N (0, 1)

•Model: g(µ) = β0 + β1X1 + · · · + βpXp + βEE︸ ︷︷ ︸

main effects

+α1E(X1E) + · · · + αpE(XpE)
︸ ︷︷ ︸

interactions

• Strong Hierarchy Principle [1]: α̂jE 6= 0 ⇒ β̂j 6= 0 and β̂E 6= 0

•Reparametrization [2]: αjE = γjEβjβE.

•Variable Selection:
arg minβ0,β,γ

1
2 ‖Y − g(µ)‖2 + λβ

(
w1β1 + · · · + wqβq + wEβE

)
+ λγ

(
w1Eγ1E + · · · + wqEγqE

)
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•Why strong heredity?

– Statistical Power: large main effects are more likely to lead to detectable interactions than small
ones

– Interpretability: Assuming a model with interaction only is generally not biologically plausible

– Practical Sparsity: X1, E,X1 · E (2 variables to measure) vs. X1, E,X2 · E (3 variables to
measure).

Simulation Study Results

Figure 5: Stability of results: Average Jaccard distance from 10-fold cross validation. A
Jaccard distance of 1 indicates perfect agreement between two sets while no agreement will
result in a distance of 0.

Figure 6: Prediction accuracy: Test set mean squared error
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