SUPPORTING INFORMATION

Highly Efficient Epoxidation of Allylic Alcohols with Hydrogen

Peroxide Catalyzed by Peroxoniobate-Based Ionic Liquids

Chen Chen, ${ }^{\dagger, \dagger}$ Haiyang Yuan, ${ }^{\dagger, \star}$ Haifeng Wang, ${ }^{\dagger}, *$ Yefeng Yao, ${ }^{\S}$ Wenbao Ma, ${ }^{\dagger}$ Jizhong Chen, ${ }^{\dagger}$ Zhenshan Hou, ${ }^{\dagger}$ *
${ }^{\dagger}$ Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China.
${ }^{\text {§ }}$ Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China.
*E-mail: houzhenshan@ecust.edu.cn; hfwang@ecust.edu.cn; Tel: +86-21-64251686

Characterization and activity test of ILs

Figure S1. Photographs of ILs catalyst: a) TPAIL; b) TBAIL; c) THAIL at $10^{\circ} \mathrm{C}$.

Figure S2. Mass spectrum of $\left[\mathrm{Nb}=\mathrm{O}(\mathrm{O}-\mathrm{O})(\mathrm{OH})_{2}\right]^{-}$

Figure S3. FT-IR spectra of a) TPAOH; b) TBAOH; c) THAOH. The hydroxide precursor can be obtained by anion exchange between KOH and corresponding a quaternary ammonium halide salt in ethanol, following by drying carefully at room temperature.

Figure S4. Simulated IR for three possible formed anions. (a) $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{4}\right]^{3-}$; (b) $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{3}(\mathrm{OOH})\right]^{2-} ;(\mathrm{c})\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{2}(\mathrm{OOH})_{2}\right]^{-}$.

Table S1. Epoxidation catalyzed by TBA-IL in different solvents ${ }^{[a]}$

Entries	Solvents ${ }^{[b]}$	Conv. \% ${ }^{[c]}$	Sel. \%	
			epoxide	diol
1	none	96.4	≥ 99	<1
2	$\mathrm{CH}_{3} \mathrm{CN}$	53.9	≥ 99	<1
3	$\mathrm{CH}_{3} \mathrm{OH}$	40.8	88.3	11.7
4	EtOAc	35.6	≥ 99	<1
5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	38.8	≥ 99	<1
6	$\mathrm{H}_{2} \mathrm{O}$	45.2	≥ 99	<1
$7^{[d]}$	$\mathrm{H}_{2} \mathrm{O}$	61.9	≥ 99	<1
eaction ol), TB essary.	s: 3-methyl 5 mmol), 0 ersion with	-1-ol (2 m $5 \mathrm{~h} .{ }^{[b]} 2 \mathrm{~m}$ as an inter	30% aq vent was andard. ${ }^{[d]}$	$\mathrm{H}_{2} \mathrm{O}_{2}$ dded ml H

Figure S5. Time profile of the epoxidation reaction of 3-methyl-2-butene-1-ol catalyzed by TBAIL. a) Reaction conditions: 2 mmol of 3-methyl- 2-butene-1-ol, 2 mmol of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}, 0.05 \mathrm{mmol}$ of the TBAIL, 2 mL EtOAc. After reaction for $4 \mathrm{~h}, 1 \mathrm{ml}$ EtOAc was removed and stirred continuously (solid triangle point), indicating that reaction stopped immediately. The remained solution continued on the reaction (solid circle point); b) Reaction conditions: 4 mmol of 3-methyl-2-butene-1-ol, 4 mmol of $30 \mathrm{wt} \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}, 0.1 \mathrm{mmol}$ of the TBAIL. After reaction for 10 min , the butylated hydroxytoluene (BHT) was added to the reaction mixture, which did not affect the reaction conversion (solid square point and solid triangle point).

Figure S6. Photographs in water/oil phase: a) $\mathrm{H}_{2} \mathrm{O}_{2}$ and 3-methyl-2-butene-1-ol formed biphasic system; b) $\mathrm{H}_{2} \mathrm{O}_{2}$ and 3-methyl-2-butene-1-ol became homogeneous phase immediately after introduction of TBA-IL; c) $\mathrm{H}_{2} \mathrm{O}$ and 3-methyl-2-butene-1-ol kept biphasic even if TBA-IL was added. Conditions: $4 \mathrm{mmol} \mathrm{H}_{2} \mathrm{O}_{2}, 4 \mathrm{mmol}$ 3-methyl-2-butene-1-ol and 0.1 mmol TBAIL under ice bath.

Figure S7. Conversion/time profiles of 3-methyl-2-butene-1-ol epoxidation reactions over the different catalysts. Reaction conditions: 3-methyl-2-butene-1-ol (2 mmol), $\mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{mmol})$, catalyst (0.05 mmol$), 0^{\circ} \mathrm{C}$. TOF was defined as the number of moles of the consumed allylic alcohol (3-methyl-2-butene-1-ol) per moles of catalyst per hour.

Figure S8. The relationship between the reaction rate $\left(\mathrm{R}_{0}\right)$ and the concentration of 1a and hydrogen peroxide. Reaction conditions for a and b: 3-methyl-2-butene-1-ol (2.0 $\mathrm{M}-4.5 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(4.0 \mathrm{M})$, TBAIL $(0.083 \mathrm{M}), 0^{\circ} \mathrm{C}$. Reaction conditions for c and d: 3-methyl-2-butene-1-ol (4.0 M), $\mathrm{H}_{2} \mathrm{O}_{2}$ (3.0 M-4.4 M), TBAIL (0.096 M), $0^{\circ} \mathrm{C}$. All reaction profiles have been attained at low conversions ($<20 \%$).

Figure S9. Recyclability of the TBAIL catalyst without any other solvent at $0^{\circ} \mathrm{C}$ for 0.75 h .

Supplementary details of the thermodynamic and concentration

calculation

In order to obtain a quantitative estimation of the relative stability of various Nb anions, the conversion from the initial anion $\left[\mathrm{Nb}=\mathrm{O}(\mathrm{O}-\mathrm{O})(\mathrm{OH})_{2}\right]^{-}$(A) to $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{\mathrm{m}}(\mathrm{OOH})_{4-\mathrm{m}}\right]^{(\mathrm{m}-1)-}(\mathrm{m}=2,3$ and 4$)(\mathrm{B})$ is calculated here. The reaction formula is written as

$$
\begin{equation*}
\mathrm{A}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~B}+(\mathrm{m}-2) \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

At 298 K , the Gibbs free energy change $(\Delta \mathrm{G})$ from A to B can be described as

$$
\begin{equation*}
\Delta G=G_{B}+(\mathrm{m}-2) \Delta G_{H}^{+}(\mathrm{sol})+3 G_{H 2 \mathrm{O}}-G_{A}-3 G_{\mathrm{H}_{2} \mathrm{O}_{2}} \tag{2}
\end{equation*}
$$

where $G_{\mathrm{x}}\left(\mathrm{x}=\mathrm{A}, \mathrm{B}, \mathrm{H}_{2} \mathrm{O}\right.$ or $\left.\mathrm{H}_{2} \mathrm{O}_{2}\right)$ are the Gibbs free energies of A and B anions, $\mathrm{H}_{2} \mathrm{O}$, and $\mathrm{H}_{2} \mathrm{O}_{2}$, respectively, obtained from DFT calculation directly within the Gaussian package, with the entropies and zero-point energies included. In addition, it is worth noting that solvent model (PCM) was used to simulate water environment due to presence of $40 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$, in which $\mathrm{H}_{2} \mathrm{O}$ can be seen as solvent in the system. $\Delta G_{H}{ }^{+}$(sol) is solvation free energy of H^{+}in water at 298 K , which was obtained from experimental value, about $-11.53 \mathrm{eV} .{ }^{1}$

Meanwhile, we quantitatively evaluated the relative concentrations of various anions. Firstly, assuming the initial concentration of $\left[\mathrm{Nb}=\mathrm{O}(\mathrm{O}-\mathrm{O})(\mathrm{OH})_{2}\right]^{-}$at $1 \mathrm{~mol}{ }^{*} \mathrm{~L}^{-1}$ and considering the experimental condition of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%) / \mathrm{TBAIL}=40$ (molar ratio), it gives the concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ to be $40 \mathrm{~mol}{ }^{*} \mathrm{~L}^{-1}$ and 176.3 mol $* L^{-1}$, respectively. Secondly, at the equilibrium state the concentrations of these three anions $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{\mathrm{m}}(\mathrm{OOH})_{4-\mathrm{m}}\right]^{(\mathrm{m}-1)-}(\mathrm{m}=2,3$ and 4) can be calculated through Eqs. (3), (4) and (5) at 298 K :

$$
\begin{align*}
& -R T \ln \frac{\mathrm{C}_{1} *\left(2 \mathrm{C}_{1}+\mathrm{C}_{2}\right)^{2} *\left(176.30+3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right)^{3}}{\left(1-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right) *\left(40-3 \mathrm{C}_{1}-3 \mathrm{C}_{2}-3 \mathrm{C}_{3}\right)^{3} C_{\theta}{ }^{2}}=\Delta G_{1}=151930 \mathrm{~J} / \mathrm{mol} \tag{3}\\
& -R T \ln \frac{\mathrm{C}_{2} *\left(2 \mathrm{C}_{1}+\mathrm{C}_{2}\right) *\left(176.30+3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right)^{3}}{\left(1-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right) *\left(40-3 \mathrm{C}_{1}-3 \mathrm{C}_{2}-3 \mathrm{C}_{3}\right)^{3} C_{\theta}}=\Delta G_{2}=15510 \mathrm{~J} / \mathrm{mol} \tag{4}\\
& -R T \ln \frac{\mathrm{C}_{3} *\left(176.30+3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right)^{3}}{\left(1-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right) *\left(40-3 \mathrm{C}_{1}-3 \mathrm{C}_{2}-3 \mathrm{C}_{3}\right)^{3}}=\Delta G_{3}=-22690 \mathrm{~J} / \mathrm{mol} \tag{5}
\end{align*}
$$

where $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} are the concentrations of $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{4}\right]^{3-},\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{3}(\mathrm{OOH})\right]^{2-}$ and $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{2}(\mathrm{OOH})_{2}\right]^{-}$, respectively, while $\Delta G_{1}, \Delta G_{2}$ and ΔG_{3} are the corresponding Gibbs free energy changes from $\left[\mathrm{Nb}=\mathrm{O}(\mathrm{O}-\mathrm{O})(\mathrm{OH})_{2}\right]^{-}$to $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{4}\right]^{3-}$, $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{3}(\mathrm{OOH})\right]^{2-}$ and $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{2}(\mathrm{OOH})_{2}\right]^{-}$, respectively. R is Molar gas constant, $8.314 \mathrm{~J}^{*} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. The calculated concentrations are showed in Table 1.

Supplementary details for Mechanism of allylic alcohol epoxidation

(1) The initial interaction forms in hydrogen bonding mechanism

Figure S10. The initial interaction forms between allylic alcohol and $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{2}(\mathrm{OOH})_{2}\right]^{-}$in hydrogen bonding mechanism. (a), (b) and (c) represents three different hydrogen bonds, $\mathrm{O}_{9} \mathrm{H}^{\cdots} \mathrm{O}_{1}, \mathrm{O}_{9} \mathrm{H}^{\cdots} \mathrm{O}_{5}$ and $\mathrm{O}_{9} \mathrm{H}^{\cdots} \mathrm{O}_{6}$, respectively, in which (a) is the most stable one.
(2) The deprotonation and \mathbf{H} back-donation process in metal-alcoholate bonding mechanism

In metal-alcoholate bonding mechanism, the deprotonation of the OH group in allylic alcohols is a prerequisite, in which the proton was transferred to the peroxo, ${ }^{2}$ corresponding to an energy barrier of 0.26 eV (TS4, Figure S11a). In TS4, the $\mathrm{O}_{9}-\mathrm{H}$ bond is elongated to $1.194 \AA$, at the same time the $\mathrm{Nb}-\mathrm{O}_{1}$ bond is also elongated and inclined to break. Indeed, when the proton is transferred to the O_{1} atom, the $\mathrm{Nb}-\mathrm{O}_{1}$ bond is broken and forms an $\mathrm{O}_{2} \mathrm{O}_{1} \mathrm{H}$ species.

After oxidation of allylic alcohols in metal-alcoholate bonding mechanism, two intermediates IM2(3) (Figure S11b and S11c, respectively) are formed, corresponding
to the epoxidation process oxidized by the peroxo (O-O) and OOH , respectively. For the intermediates $\mathrm{IM} 2(3)$, it requires to capture the proton back to finish the whole epoxidation process. Here, two transition states (TS7 and TS8) for two different epoxidation pathways, corresponding to IM2 and IM3, are calculated as showed in Figure S11d and S11e, respectively. In TS7 which has an energy barrier of 0.48 eV , the $\mathrm{O}_{1}-\mathrm{H}$ and $\mathrm{O}_{9}-\mathrm{H}$ bond are $1.285 \AA$ and $1.143 \AA$, respectively, and the $\mathrm{Nb}-\mathrm{O}_{9}$ is elongated to $2.469 \AA$ from the initial $2.088 \AA$, while the $\mathrm{Nb}-\mathrm{O}_{1}$ bond is shortened to $2.318 \AA$. In the other pathway, TS8 has an energy barrier of 0.23 eV , in which the $\mathrm{O}_{1}-\mathrm{H}$ bond and $\mathrm{Nb}-\mathrm{O}_{9}$ bond are elongated to $1.241 \AA$ and $2.268 \AA$, and the $\mathrm{O}_{9}-\mathrm{H}$ bond and $\mathrm{Nb}-\mathrm{O}_{1}$ are shortened to $1.193 \AA$ and $2.230 \AA$, respectively.

Figure S11. The optimized transition state structures and intermediate structures in metal-alcoholate bonding mechanism. (a) shows TS4 of the deprotonation process of the OH species; (b) and (c) correspond to the intermediate IM2 and IM3, respectively, which are produced from the epoxidation elementary process of OOH or the peroxo group (O-O) attacking the $\mathrm{C}=\mathrm{C}$ bond of allylic alcohol. (d) and (e) describe the structures of transition states TS7(8), corresponding to the process that IM2(3) capture the proton back to form the final product and finish the whole epoxidation, respectively.

(3) The epoxidation of allylic alcohol with $\mathbf{W}_{2} \mathrm{O}_{11}{ }^{2-}$

As reference to evaluate the activity of $\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{2}(\mathrm{OOH})_{2}\right]^{-}$in catalyzing epoxidation of allylic alcohols, the commonly used dinuclear peroxotungstate $\left(\mathrm{W}_{2} \mathrm{O}_{11}{ }^{2-}\right)$ was exminated. Here, both the hydrogen bonding and metal-alcoholate bonding mechanisms were investigated. In hydrogen bonding mechanism, two kinds of hydrogen bonds, $\mathrm{O}_{12} \mathrm{H}^{\cdots} \mathrm{O}_{1}$ and $\mathrm{O}_{12} \mathrm{H}^{\cdots} \mathrm{O}_{2}$ (Figure S12a and S12b), were considered, whose distances are $1.845 \AA$ and $1.822 \AA$, respectively. The corresponding interaction energies are 0.70 eV and 0.75 eV , respectively, indicating that the peroxo (O-O) can serve as a more stable hydrogen bond with the OH group in allylic alcohol. Hence, we mainly focused on this stable interaction configuration $\left(\mathrm{O}_{12} \mathrm{H}^{\cdots} \mathrm{O}_{2}\right)$ in the subsequent reaction. Under the assist of $\mathrm{O}_{12} \mathrm{H}^{\cdots} \mathrm{O}_{2}$, two transition states (TS9 and TS10) were discovered. TS9 (Figure S12c), describing that the O_{7} atom of the peroxo ($\mathrm{O}_{7}-\mathrm{O}_{8}$) in W_{2} attacks the $\mathrm{C}=\mathrm{C}$ bond has a high energy barrier of 1.24 eV , in which two $\mathrm{C}-\mathrm{O}_{7}$ bonds are $2.007 \AA$ and $2.112 \AA$, and the $\mathrm{O}_{7}-\mathrm{O}_{8}$ and $\mathrm{W}_{2}-\mathrm{O}_{7}$ bonds are elongated to $1.853 \AA$ and $2.157 \AA$, respectively. And, TS10 (Figure S12d) is that the $\mathrm{C}=\mathrm{C}$ bond is oxidized by the O_{4} atom in peroxo $\left(\mathrm{O}_{4}-\mathrm{O}_{5}\right)$ connecting to W_{1} with two C-O ${ }_{4}$ bonds of $1.885 \AA$ and $2.220 \AA$, respectively, which has an energy barrier of 1.26 eV . In metal-alcoholate bonding mechanism, we also calculated two transition states (TS11 and TS12, see Figure S12f and S12g, respectively), which correspond to the initial state (Figure S12e) and the oxidative species are also similar with TS11 and TS12, respectively. The energy barriers are calculated to be 1.65 eV and 1.02 eV , respectively.

Figure S12. Optimized structures of various possible intermediate and transition sates in the epoxidation process with $\mathrm{W}_{2} \mathrm{O}_{11}{ }^{2-}$. (a) and (b) are two initial interaction forms between allylic alcohol and $\mathrm{W}_{2} \mathrm{O}_{11}{ }^{2-}$ via hydrogen bond; (c) and (d) are the possible transition states of the alcohols epoxidation following hydrogen bonding mechanism; (e) is the initial interaction form between allylic alcohol and $\mathrm{W}_{2} \mathrm{O}_{11}{ }^{2-}$ via metal-alcoholate bond; (f) and (g) are the transition states of the epoxidation of allylic alcohols in metal-alcoholate bonding mechanism. Light green, red, white and grey balls represent $\mathrm{W}, \mathrm{O}, \mathrm{H}$ and C atom, respectively.

Table S2. Cartesian coordinates of some optimized structures.
$\left[\mathrm{Nb}=\mathrm{O}(\mathrm{O}-\mathrm{O})(\mathrm{OH})_{2}\right]^{-}$

Atom	Coordinates $/ \AA$		
	x	y	z
Nb	0.14100	0.000011	0.089936
O	0.63572	0.001108	1.778992
O	-1.704490	0.741537	-0.148439
O	-1.70192	-0.74812	-0.145720
O	0.96364	1.59625	-0.791940
O	0.971235	-1.591330	-0.793637
H	0.446958	2.083537	-1.438802
H	0.458162	-2.079612	1.442605

Charge $=-1 ; E=-433.911055$ Hartree
Table S2. (Continued)
$\left[\mathrm{Nb}(\mathrm{O}-\mathrm{O})_{2}(\mathrm{OOH})_{2}\right]^{-}$

Atom	Coordinates $/ \AA$		
	y	z	
O	-2.143388	-0.159169	-0.745516
O	-1.782811	-1.307440	0.123336
O	1.074482	2.016991	-0.292853
O	-0.355233	1.895150	-0.605481
O	2.350674	-1.166185	-0.721458
O	1.023038	-0.897100	-1.208193
O	0.091694	0.482729	1.837666
O	0.845708	-0.761075	1.557789
Nb	-0.295533	-0.051435	-0.010732
H	1.048220	2.308139	0.633206
H	2.235299	-1.030528	0.244479

Charge $=-1 ; \mathrm{E}=-659.359349$ Hartree

Table S2. (Continued)
TS1

Atom	Coordinates $/ \AA$		
	x	y	z
O	-1.966757	2.016692	-0.238208
O	-0.495599	2.018083	-0.285938
O	-2.888678	-1.767456	-0.035270
O	-3.175601	0.341084	-0.212965
O	-0.034124	-1.684668	1.811070
O	-0.768304	-0.441837	1.722182
O	-0.797038	-0.775227	-1.663780
O	0.784650	-0.611957	-0.648463
Nb	-1.205392	0.172822	-0.121225
H	-2.733163	-2.047097	-0.952078
H	0.428569	-1.684172	0.946071
C	2.796874	-0.776833	-0.186522
C	2.384065	0.306266	0.541547
C	2.470486	1.745160	0.102213
O	1.826462	2.639648	0.989813
C	2.947547	-2.135763	0.444267
C	3.363575	-0.649514	-1.574352
H	2.053073	0.157621	1.565001
H	2.074722	1.850305	-0.914592
H	3.528124	2.043098	0.076261
H	0.872458	2.598776	0.783829
H	2.517415	-2.172703	1.446001
H	4.011853	-2.395265	0.520303
H	2.471288	-2.900878	-0.176358
H	3.039833	-1.493719	-2.187755
H	4.461712	-0.660411	-1.539078
H	3.039826	0.265279	-2.067822

Charge $=-1 ; \mathrm{E}=-931.036273$ Hartree; $\mathrm{IF}=-493.8869$

Table S2. (Continued)
TS2

Atom	Coordinates $/ \AA$		
	x	y	z
O	-1.066755	-0.505819	-0.574890
O	0.163749	-1.477640	-1.489770
O	1.646639	-0.028149	2.495379
O	0.498826	-0.417638	1.687305
O	2.227005	2.300352	-0.755836
O	1.006942	1.530617	-0.832777
O	2.699181	-1.311451	0.315170
Nb	2.996135	-0.291239	-0.703163
H	1.015118	-0.378040	-0.255405
H	2.358651	-0.570406	2.094498
C	2.900131	1.596203	-0.641082
C	-2.354408	1.240358	0.301471
C	-2.646204	-0.038407	0.683401
O	-3.615954	-0.990059	0.036919
C	-3.073131	-2.295042	-0.104121
C	-1.531572	2.132986	1.188248
H	-2.842912	1.880804	-0.967454
H	-2.239608	-0.382417	1.629983
H	-3.957813	-0.605837	-0.931397
H	-4.499207	-1.094680	0.679527
H	-2.178676	-2.146570	-0.457419
H	-1.164908	1.603536	2.067047
H	-2.135376	2.992996	1.510154
H	-0.669302	2.522890	0.639963
H	-2.003497	2.365065	-1.474598
H	-3.580422	2.662684	-0.740064

Charge $=-1 ; \mathrm{E}=-931.045384$ Hartree; $\mathrm{IF}=-452.0120$

Table S2. (Continued)
TS3

Atom	Coordinates $/ \AA$		
	x	y	z
O	0.492191	2.083719	0.407850
O	1.304751	1.872848	-0.806735
O	0.352559	-0.092180	2.122023
O	-0.90643	-0.320028	0.857718
O	3.720711	-1.122683	0.214012
O	2.642970	-0.548754	0.986579
O	0.502215	-1.079565	-1.393236
Nb	1.899604	-0.689099	-1.618640
H	1.024017	0.141527	0.059761
H	0.038742	0.769320	2.424713
C	3.264747	-1.278516	-0.646914
C	-2.633558	-1.119782	-0.146980
C	-2.361905	0.107119	-0.684481
O	-2.873354	1.442473	-0.211823
C	-2.062383	2.524557	-0.618976
C	-2.205850	-2.386562	-0.835231
H	-3.511036	-1.314139	1.058909
H	-1.780142	0.143041	-1.601461
H	-3.004606	1.429031	0.877952
H	-3.863231	1.625532	-0.653344
H	-1.160491	2.414577	-0.240631
H	-1.509391	-2.193130	-1.649354
H	-3.087634	-2.912809	-1.226533
H	-1.716507	-3.057921	-0.12336
H	-3.061918	-2.050324	1.730954
H	-4.491221	-1.702668	0.751377

Charge $=-1 ; E=-931.047510$ Hartree; $\mathrm{IF}=-401.6426$

Table S2. (Continued)
TS4

Atom	Coordinates $/ \AA$		
	x	y	z
O	0.943075	1.920365	1.16091
O	0.745642	2.084075	-0.293723
O	1.450439	-2.017478	1.958677
O	1.249428	-0.577932	2.014934
O	3.756200	-0.146931	-1.464274
O	3.208742	0.124414	-0.169512
O	0.889906	-1.584068	-1.069220
Nb	1.112051	-0.332673	-1.812300
H	1.282066	0.248318	0.156635
H	0.548937	-2.319205	2.135530
H	2.928081	-0.338601	-1.967068
C	-0.238640	-1.272022	-0.670736
C	-4.355847	-0.065366	-0.150369
C	-3.168469	-0.469664	-0.618541
O	-1.867276	0.279658	-0.632619
C	-0.846802	-0.491271	-0.003096
C	-5.568185	-0.962187	-0.234357
H	-4.617278	1.276214	0.488070
H	-3.105705	-1.469131	-1.048079
H	-1.934915	1.239415	-0.118146
H	-1.571902	0.491707	-1.670002
H	-5.329759	-1.920810	-0.700378
H	-6.371210	-0.490622	-0.815606
H	-5.979654	-1.159515	0.763823
H	-5.085919	1.145688	1.471140
H	-5.318638	1.864664	-0.11724

Charge $=-1 ; E=-931.054795$ Hartree; $\mathrm{IF}=-1008.5062$

Table S2. (Continued)
TS5

Atom	Coordinates $/ \AA$		
	x	y	z
O	-1.189607	0.091735	-1.058012
O	0.271913	-0.243565	-2.141530
O	1.425500	2.827096	0.736701
O	1.345328	2.029346	-0.449862
O	3.102083	-1.812149	-0.386592
O	2.720574	-0.427642	-0.439748
O	0.878234	-1.660796	1.993499
Nb	0.588753	-1.695581	0.569785
H	0.792687	0.126598	-0.403981
H	0.833045	2.303903	1.329186
H	2.307978	-2.194633	0.045999
C	0.639596	-0.728979	2.195999
C	-2.994504	-0.189447	-0.061776
C	-2.325407	0.824808	0.568304
O	-1.424960	0.677520	1.769427
C	-0.049270	0.780287	1.443897
C	-3.965309	0.114955	-1.168841
H	-2.929903	-1.630982	0.368357
H	-2.475001	1.836180	0.204036
H	-1.615271	-0.282291	2.265762
H	-1.675091	1.467172	2.493889
H	-3.963710	1.174409	-1.429213
H	-4.982479	-0.175209	-0.874378
H	-3.699065	-0.458740	-2.060343
H	-3.020388	-2.278427	-0.507266
H	-3.766277	-1.866856	1.040366

Charge $=-1 ; \mathrm{E}=-931.038579$ Hartree; $\mathrm{IF}=-512.7580$

Table S2. (Continued)
TS6

Atom	Coordinates $/ \AA$		
	x	y	z
O	0.115153	-0.765030	1.990242
O	-1.341055	-0.955170	1.885526
O	0.243122	1.809471	1.211914
O	1.290663	0.870922	0.061348
O	-2.571421	1.924883	-1.359714
O	-1.522190	1.854312	-0.371364
O	-2.762415	-1.816669	-0.827349
Nb	-2.541521	-0.435267	-0.482733
H	-0.720704	0.087860	0.363352
H	-0.041560	2.529912	0.623518
H	-2.901738	0.996266	-1.331812
C	-1.869177	-2.053452	-1.146466
C	3.001790	-0.062497	-0.448896
C	2.081971	-0.487644	-1.371033
O	1.177436	-1.680694	-1.234752
C	-0.152727	-1.271611	-0.997447
C	3.891427	1.110243	-0.759729
H	3.338724	-0.806702	0.815308
H	1.963705	0.092079	-2.281005
H	1.513605	-2.347317	-0.432711
H	1.191967	-2.257983	-2.170589
H	3.594066	1.608706	-1.683546
H	4.934378	0.781918	-0.855826
H	3.84224	1.835115	0.056648
H	3.565966	-0.091324	1.608791
H	4.229268	-1.430804	0.661052

Charge $=-1 ; \mathrm{E}=-931.036206$ Hartree; $\mathrm{IF}=-474.5635$

Table S2. (Continued)
TS7

Atom	Coordinates $/ \AA$		
	x	y	z
O	-3.781797	1.143003	-0.210141
O	1.169984	-1.047970	-1.744506
O	1.015377	2.727896	-0.135858
O	1.811852	1.712275	-0.771447
O	4.016161	-0.232050	1.014700
O	3.654694	-0.825304	-0.278294
O	0.942183	0.035694	1.859861
Nb	1.154136	-1.295774	1.262035
H	1.736040	-0.219953	-0.302573
H	0.145458	2.279292	-0.118233
H	3.707845	-0.913957	1.633509
C	-0.091904	0.341745	1.161585
C	-4.301596	-0.179705	0.032649
C	-2.937062	0.180435	0.462543
O	-1.665435	-0.279092	-0.209726
C	-0.569891	0.540390	0.142847
C	-5.408506	-0.232970	1.066382
H	-4.556944	-1.014646	-1.205616
H	-2.801859	0.403666	1.521855
H	-1.773344	-0.260559	-1.296324
H	-1.467389	-1.318149	0.092184
H	-5.177795	0.416412	1.912832
H	-5.546330	-1.253987	1.437275
H	-6.356222	0.098065	0.627518
H	-5.498814	-0.707504	-1.673001
H	-4.641060	-2.074729	-0.945027

Charge $=-1 ; \mathrm{E}=-931.127086$ Hartree; $\mathrm{IF}=-590.4891$

Table S2. (Continued)
TS8

Atom	Coordinates $/ \AA$		
	x	y	z
O	-1.466018	-2.142414	-0.451889
O	-1.000587	-1.201806	-1.493680
O	-2.015910	-0.892661	1.964918
O	3.779690	-0.510603	1.084595
O	-3.717273	1.544476	-1.027463
O	-3.455628	0.349067	-0.282541
O	-0.959897	1.762609	0.778224
Nb	-1.079909	1.567453	-0.678920
H	-1.634440	-0.258488	0.118616
H	-1.726690	-1.776814	2.207702
H	-2.808693	1.933624	-1.051091
C	0.063876	1.071971	0.898489
C	4.217945	0.116695	-0.137973
C	2.874369	0.389563	0.405329
O	1.587687	-0.149268	-0.171917
C	0.528871	-0.018072	0.757230
C	5.311584	1.148865	0.049372
H	4.429150	-0.820287	-1.309792
H	2.743399	1.336117	0.931361
H	1.694970	-1.204517	-0.430717
H	1.354631	0.404596	-1.092683
H	5.111172	1.767867	0.925758
H	5.386879	1.799867	-0.827825
H	6.280579	0.657168	0.189715
H	5.389978	-1.336218	-1.206077
H	4.447166	-0.261441	-2.251112

Charge $=-1 ; \mathrm{E}=-931.136615$ Hartree; $\mathrm{IF}=-1003.092$.

References:

1. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2007, 111, 408-422.
2. Kamata, K.; Yamaguchi, K.; Mizuno, N. Chem. Eur. J. 2004, 10, 4728-4734.

${ }^{1} H$ NMR spectra of the isolated epoxides

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=1: 1)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=$ NMR (400 MHz) $\delta=3.78(\mathrm{~d}$, $1 \mathrm{H}), 3.60(\mathrm{dd}, 1 \mathrm{H}), 2.93(\mathrm{t}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{~m}, 6 \mathrm{H})$.

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=1: 2)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=3.74(\mathrm{dd}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H})$, $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H})$.

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=2: 1){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=3.85(\mathrm{dd}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H})$, $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~m}, 3 \mathrm{H})$.

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=2: 1)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=5.01(\mathrm{t}, 1 \mathrm{H}), 3.75(\mathrm{dd}, 1 \mathrm{H}), 3.60$ (dd, 1H), $2.91(\mathrm{dd}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{dd}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}$, $3 \mathrm{H})$.

Crude product was purified by column chromatography using silica（petroleum ether／ethyl acetate $=1: 2)^{1}{ }^{1} \mathrm{H}$ NRR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=3.71(\mathrm{dd}, 1 \mathrm{H}), 3.54(\mathrm{dd}, 1 \mathrm{H})$ ， 2.56 （m，2H）， 2.35 （dd，1H）， 2.00 （s，1H）．

Parameter	Value
1 Data File Name	C：／Users／15800731356／Desktop／ MR／丙䋞辠／ $10 /$ fid
2 Title	hz－cc－6
3 Comment	
4 Origin	Bruker Biospin GmbH
5 Onner	nmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDC13
10 Tempersture	296.0
11 Pulse Sequence	$2 \mathrm{~g}^{30}$
12 Number of Scans	16
13 Receiver Gain	101
14 Relaxation Delay	1.0000
15 Pulse Tidth	14.7500
16 Acquisition Time	3.9846
17 Acquisition Date	2016－01－23T11：10：23
18 Yodification Date	2016－01－22T11：10：00
19 Spectrometer Frequency	400． 13
20 Spectral Tidth	8223.7
21 Lowest Prequency	－1675．2
22 Nucleus	1H
23 Acquired Size	32768
24 Spectral Size	65536

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=1: 1){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=3.82(\mathrm{dd}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H})$, $2.89(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~m}, 3 \mathrm{H})$.

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=1: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=4.02(\mathrm{dd}, 1 \mathrm{H}), 3.3(\mathrm{~m}, 2 \mathrm{H})$, $2.44(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H})$.

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=5: 1)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=7.37(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H})$, $3.77(\mathrm{dd}, 1 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}), 3.00(\mathrm{~d}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H})$.

Crude product was purified by column chromatography using silica (petroleum ether/ethyl acetate $=5: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=7.35(\mathrm{~m}, 5 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3$. $87(\mathrm{dd}, 1 \mathrm{H}), 3.78(\mathrm{dd}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 1 \mathrm{H})$.

