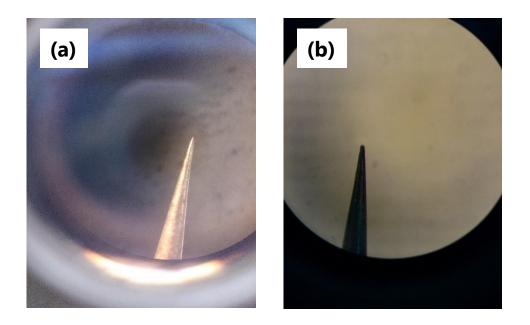
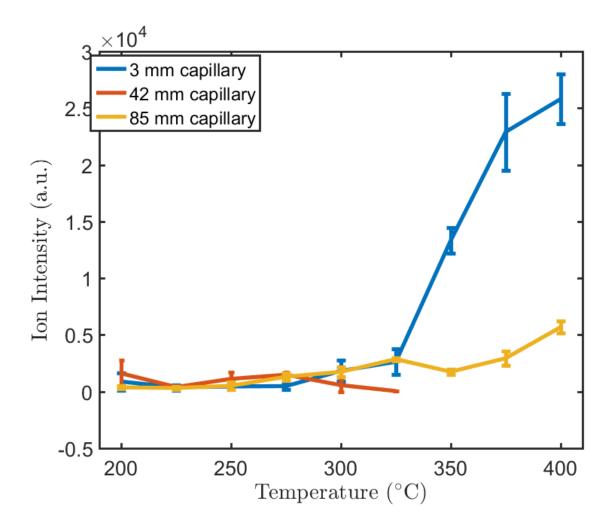
Supporting Information


Nanotip Ambient Ionization Mass Spectrometry

Zhenpeng Zhou^a, Jae Kyoo Lee^a, Samuel C. Kim¹, and Richard N. Zare^{*}


Department of Chemistry, Stanford University, Stanford, California 94305-5080 USA ¹Present address: Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143 USA.

^aThese authors contributed equally to this work.

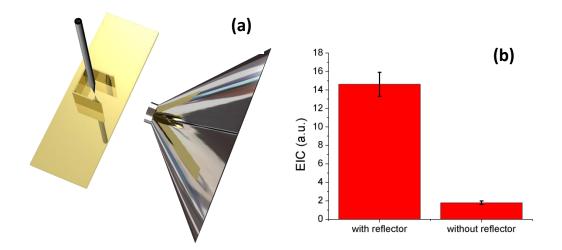

*To whom correspondence should be addressed: Dr. Richard N. Zare Department of Chemistry Stanford University 333 Campus Drive Stanford, CA 94305-5080 USA Tel: +1-650-723-3062 Email: zare@stanford.edu

Figure S 1. (a) The new 5 μ m tip (b) The same 5 μ m tip after 10 hours of use. The size of the tip changed from 10±4 μ m to 27±4 μ m. Showing the sign of thermal damage.

Figure S 2. The dependence of signal intensity of phenanthrene ion on temperature for different capillary lengths. The experimental conditions are U = 1 kV, $R = 1 \text{ M}\Omega$, and $d = 50 \mu \text{m}$, in which U denotes the voltage applied to the nanotip, R denotes the resistor in the circuit, and d denotes the distance between the nanotip and the conducting plate.

Figure S 3. (a) The design of ion reflector. 1 kV voltage was applied on the tip, 5 kV voltage was applied on the square-shaped reflector, and the plate was grounded while the reflector and the plate were insulated. The resistor in the circuit was 1 M Ω , and the distance between the tip and plate was 50 µm. (b) The ion reflector causes 8 times more signal for the detection of caffeine.