Palladium-Catalyzed [3+3] Cycloaddition of Trimethylenemethane with Azomethine Imines

Ryo Shintani and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Supporting Information

I. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon.

Toluene and THF were purified by passing through a neutral alumina column under nitrogen. 1,2-Dichloroethane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled over CaH_{2} under nitrogen. MeOH was distilled over Mg turnings under nitrogen.
p-Tolualdehyde (Wako Chemicals), m-chlorobenzaldehyde (Wako Chemicals), o tolualdehyde (TCI), 3-pyridinecarboxaldehyde (Wako Chemicals), pivaldehyde (Aldrich), benzaldehyde (Wako Chemicals), p-trifluoromethylbenzaldehyde (Wako Chemicals), methyl crotonate (TCI), hydrazine monohydrate (Wako Chemicals), triphenylphosphine (Wako Chemicals), and $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Furuya Metal) were used as received.
(2-(Acetoxymethyl)-2-propenyl)trimethylsilane (1), ${ }^{1}$ (2-(1'-acetoxyethyl)-2propenyl)trimethylsilane (4), ${ }^{2}$ (2-(acetoxymethyl)-1-buten-3-yl)trimethylsilane (5), ${ }^{2}$ pyrazolidin-3-one, ${ }^{3} 4,4$-dimethylpyrazolidin-3-one, ${ }^{3} 1$-benzylidene-3-oxopyrazolidin-1-ium-2-ide (2a), ${ }^{4}$ 1-(p-trifluoromethylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2c), ${ }^{4} \quad$ 1-(o - fluorobenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2e), ${ }^{4}$ 1-(1-cyclohexenylmethylidene)-3-oxopyrazolidin-1-ium-2-ide (2h), ${ }^{4}$ 1-benzylidene-4,4-dimethyl-3-oxopyrazolidin-1-ium-2-ide (2j), ${ }^{4} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4},{ }^{5}$ and $\mathrm{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{6}$ were

[^0]synthesized following the literature procedures.
All other chemicals and solvents were purchased from Aldrich, Wako Chemicals, TCI, or Kanto Chemicals and used as received.

II. Synthesis of Substrates

The yields have not been optimized.

1-(p-Methylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2b) (CAS 62516-59-0)

2b
p-Tolualdehyde ($245 \mu \mathrm{~L}, 2.08 \mathrm{mmol}$) was added to a solution of pyrazolidin-3-one ($179 \mathrm{mg}, 2.08 \mathrm{mmol}$) in $\mathrm{MeOH}(0.50 \mathrm{~mL})$. The mixture was stirred for 1 h at room temperature and then diluted with $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The precipitate was collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum to afford compound $\mathbf{2 b}$ as a pale yellow solid ($240 \mathrm{mg}, 1.27 \mathrm{mmol} ; 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.17\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 4.52\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.55\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 184.8,141.8,132.9,131.3,129.6,127.4,57.3,29.5,21.4$.

1-(m-Chlorobenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2d) (CAS 61283-27-0)

This was synthesized from m-chlorobenzaldehyde, following the procedure for compound 2b. White solid, 63% yield.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.07-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}$,

[^1]$2 \mathrm{H}), 4.59\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.58\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right): \delta$ 184.6, 133.3, 131.8, 130.53, 130.46, 129.9, 129.53, 129.46, 57.7, 29.0.

1-(o-Methylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2f)

This was synthesized from o-tolualdehyde, following the procedure for compound 2b. White solid, 61% yield.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H})$, $4.60\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.56\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSOd_{6}): $\delta 184.5,138.4,130.8,130.5,130.2,129.4,128.3,126.0,57.8,29.1,19.4$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$189.1022, found 189.1030.

1-(3-Pyridiylmethylidene)-3-oxopyrazolidin-1-ium-2-ide (2g) (CAS 84198-94-7)

This was synthesized from 3-pyridinecarboxaldehyde, following the procedure for compound 2b. Pale yellow solid, 58% yield.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 9.19\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.82\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right.$ and ${ }^{4} \mathrm{~J}_{\mathrm{HH}}$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.63\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.7 \mathrm{~Hz}\right.$ and $\left.{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{dd}$, ${ }^{3} J_{\mathrm{HH}}=8.2$ and $\left.4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.61\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.59\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 184.6,151.4,150.7,137.0,128.7,126.4,123.8,57.7,29.2$.

1-(2,2-Dimethylpropylidene)-3-oxopyrazolidin-1-ium-2-ide (2i)

This was synthesized from pivaldehyde, following the procedure for compound 2b. White solid, 57% yield.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.31\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.25 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 182.9, 145.2, 56.7, 33.7, 29.5, 25.8. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{ONa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$177.0998, found 177.1007.

5-Methylpyrazolidin-3-one (CAS 10234-76-1)

This was synthesized from methyl crotonate and hydrazine monohydrate, following the procedure for pyrazolidin-3-one. ${ }^{3}$ Pale yellow oil, 100% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.55\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=16.2 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=16.2 \mathrm{~Hz}\right.$ and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}\right)$.

1-Benzylidene-5-methyl-3-oxopyrazolidin-1-ium-2-ide (2k) (CAS 14893-83-5)

This was synthesized from benzaldehyde and 5-methylpyrazolidin-3-one, following the procedure for compound $\mathbf{2 b}$. White solid, 62% yield.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ 8.32-8.30 (m, 2H), 7.72 ($\mathrm{s}, 1 \mathrm{H}$), 7.55-7.50 (m, 3H), 4.84-4.78 $(\mathrm{m}, 1 \mathrm{H}), 2.84\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=16.3 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.24\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=16.3 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): \delta 183.2,132.0$, 131.4, 131.2, 130.1, 128.8, 65.7, 37.2, 22.2.
N-(p-Ethoxycarbonylphenyl)- α-(p-trifluoromethylphenyl)nitrone (8)

8
p-Trifluoromethylbenzaldehyde ($290 \mu \mathrm{~L}, 2.12 \mathrm{mmol}$) was added to a solution of ethyl p-hydroxylaminobenzoate (385 mg , 2.12 mmol) in $\mathrm{EtOH}(1.5 \mathrm{~mL})$. The mixture was stirred for 2 h at room temperature and then diluted with MeOH . The precipitate was collected by filtration, washed with MeOH , and dried under vacuum to afford compound 8 as a white solid ($185 \mathrm{mg}, 0.55 \mathrm{mmol} ; 26 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.39(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.11\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.01\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 164.7,151.2,134.4,133.6,131.3$, $130.1,130.0\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=32.1 \mathrm{~Hz}\right), 129.4,125.4\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.1 \mathrm{~Hz}\right), 123.9\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=272 \mathrm{~Hz}\right)$, 122.1, 61.2, 14.1. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 338.0999$, found 338.1007.

III. Catalytic Reactions

General Procedure for Table 2 and Equations 2-3.

A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18.5 \mathrm{mg}, 16.0 \mu \mathrm{~mol})$, (2-(acetoxymethyl)-2propenyl)trimethylsilane $1(74.5 \mathrm{mg}, 0.400 \mathrm{mmol})$, and azomethine imine 2 (0.200 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred for 48 h at $40^{\circ} \mathrm{C}$, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC to afford compound 3 .

Entry 1. White solid. 81\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.8\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 3.65\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.36\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.3 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.21\left(\mathrm{td}, J_{\mathrm{HH}}=10.1 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.66\left(\mathrm{q}, J_{\mathrm{HH}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59-2.38(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.0,140.2,138.7,129.0,128.5,127.7,111.9,71.6,48.5,47.6$, 42.4, 30.7. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.66 ; \mathrm{H}, 7.06$. Found: C, 73.54; H, 7.26.

Entry 2. Colorless oil. 74\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.00(\mathrm{~s}$, $1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.59\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.32\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}\right.$ $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20\left(\mathrm{td}, J_{\mathrm{HH}}=10.1 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.66\left(\mathrm{q}, J_{\mathrm{HH}}=9.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.0$, 138.8, 138.2, 137.1, 129.7, 127.5, 111.8, 71.3, 48.4, 47.5, 42.4, 30.6, 21.3. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.35 ; \mathrm{H}, 7.49$. Found: C, 74.19; H, 7.50.

Entry 3. White solid. 92\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.04(\mathrm{~s}$, $1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.61\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.44(\mathrm{dd}$, ${ }^{2} J_{\mathrm{HH}}=10.7 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.24\left(\mathrm{td}, J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.66-2.42 (m, 5H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.9,144.3,138.0,130.7\left(\mathrm{q}^{2}{ }^{2} \mathrm{~J}_{\mathrm{CF}}=32.6 \mathrm{~Hz}\right)$, $128.0,126.0\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.1 \mathrm{~Hz}\right), 124.1\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=271.7 \mathrm{~Hz}\right), 112.3,71.1,48.6,47.5,42.4$, 30.6. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 60.81 ; \mathrm{H}, 5.10$. Found: C, 60.73; H, 5.40.

Entry 4. Colorless oil. 90\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.59\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=\right.$ 10.8 Hz and $\left.{ }^{3} J_{\mathrm{HH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.25\left(\mathrm{td}, J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.65(\mathrm{q}$, $\left.J_{\mathrm{HH}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59-2.40(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.9,142.3,138.1,134.9$, 130.3, 128.6, 127.7, 125.8, 112.1, 70.9, 48.6, 47.5, 42.3, 30.6. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 64.00 ; \mathrm{H}, 5.75$. Found: C, 63.71; H, 5.80.

3e
Entry 5. Pale yellow oil. 88% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.54\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07\left(\mathrm{t},{ }^{3} \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.61\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.85\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=10.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.27\left(\mathrm{td}, J_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.70\left(\mathrm{q}, \mathrm{J}_{\mathrm{HH}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62-2.39(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 170.0,160.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246.5 \mathrm{~Hz}\right), 138.2,129.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 128.6,126.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=\right.$ $13.0 \mathrm{~Hz}), 124.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=22.2 \mathrm{~Hz}\right), 112.1,62.9,48.3,47.5,40.8$, 30.5. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 68.28 ; \mathrm{H}, 6.14$. Found: C, 68.07; H, 6.16.

Entry 6. Colorless oil. 70\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{bs}, 1 \mathrm{H}), 7.23\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.00$ $(\mathrm{s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.61\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H})$, 2.62-2.52 (m, 2H), 2.48-2.39 (m, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.0,138.8$, 138.3, 135.4, 130.8, 127.6, 126.8, 111.7, 66.6, 48.2, 47.5, 41.4, 30.7, 19.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.35 ; \mathrm{H}, 7.49$. Found: C, 74.10; H, 7.51.

3 g
Entry 7. Pale yellow oil. 75% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.35\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.8\right.$ and $\left.4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.61\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.43\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.22\left(\mathrm{td}, J_{\mathrm{HH}}=10.0\right.$ Hz and $\left.{ }^{3} J_{\mathrm{HH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.67-2.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.9,150.0,149.3$, $137.8,135.8,135.2,124.1,112.4,69.0,48.7,47.5,42.2,30.6$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right) 230.1288$, found 230.1299.

3h
Entry 8. White solid. 71\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.48\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.48\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.32\left(\mathrm{td}, J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right.$ and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.78$ $\left(\mathrm{q}, J_{\mathrm{HH}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.72\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.7 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.54\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=\right.$ 16.6 Hz and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.0$ and $\left.5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.50-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.24\left(\mathrm{~d}^{2} J_{\mathrm{HH}}=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.06-1.94 (m, 4H), 1.70-1.50 (m, 4H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.8,139.2,136.5,126.9$, 111.5, 73.8, 47.8, 47.3, 38.4, 30.7, 25.3, 24.2, 22.9, 22.7. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, 72.38; H, 8.68. Found: C, 72.27; H, 8.79.

Entry 9. Pale yellow oil. 20\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.56\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66(\mathrm{td}$, $J_{\mathrm{HH}}=9.6 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.50\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.85\left(\mathrm{q}, J_{\mathrm{HH}}=9.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.59\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=16.6 \mathrm{~Hz}\right.$ and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.8$ and $\left.3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.52-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.33$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.6\right.$ and $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.26\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.5 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.02$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.5,139.4,110.9,74.0,53.0,47.2,34.9,34.0,31.4,28.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$209.1648, found 209.1658.

Equation 2. White solid. 94\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.02\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.90\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=\right.$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.9 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=12.4 \mathrm{~Hz}\right.$ and $\left.2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.97\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.56(\mathrm{dd}$, ${ }^{2} J_{\mathrm{HH}}=13.1 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HH}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.47\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.35\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=9.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 174.5,140.1,138.8,129.0,128.3$, 127.7, 111.8, 72.4, 63.7, 48.0, 42.6, 41.2, 23.5, 23.4. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.97$;

H, 7.86. Found: C, 74.77; H, 7.80.

Equation 3. White solid. 87% yield, $\mathrm{dr}=96 / 4$. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded single crystals suitable for X-ray analysis, and the relative configuration of the major diastereomer was determined to be syn.

Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.97\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.83\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.68\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{HH}}=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=11.4\right.$ and $\left.3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.16\left(\mathrm{dqd},{ }^{3} J_{\mathrm{HH}}=9.0,6.7\right.$, and $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85\left(\mathrm{~d}^{2} J_{\mathrm{HH}}=16.9 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.47$ $\left(\mathrm{dt},{ }^{2} J_{\mathrm{HH}}=13.8 \mathrm{~Hz}\right.$ and $\left.J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.03\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=16.9 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz}$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.0,141.0$, 139.1, 129.0, 128.4, 127.6, 111.3, 70.5, 52.8, 46.8, 42.9, 36.8, 22.0. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.35 ; \mathrm{H}, 7.49$. Found: C, 74.11; H, 7.49.

Procedure for Equation 4.

A solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18.5 \mathrm{mg}, 16.0 \mu \mathrm{~mol})$, (2-(1'-acetoxyethyl)-2propenyl)trimethylsilane $4(80.1 \mathrm{mg}, 0.400 \mathrm{mmol})$, and azomethine imine 2a (34.8 mg , 0.200 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred for 48 h at $40^{\circ} \mathrm{C}$, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC with $\mathrm{EtOAc} /$ hexane $=1 / 1$ to afford compound 31 as a colorless oil ($27.6 \mathrm{mg}, 0.114$ $\mathrm{mmol} ; 57 \%$ yield) and compound 3 m as a white solid ($7.3 \mathrm{mg}, 30 \mu \mathrm{~mol} ; 15 \%$ yield).

31: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.40-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.54\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.49\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=\right.$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.29\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.20\left(\mathrm{td}, J_{\mathrm{HH}}=\right.$
10.0 Hz and $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.77\left(\mathrm{~d}^{2}{ }^{2} \mathrm{H}_{\mathrm{HH}}=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.66\left(\mathrm{q}, J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.54\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=16.5 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=8.9$ and $\left.5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.28\left(\mathrm{t}, \mathrm{J}_{\mathrm{HH}}\right.$ $=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 169.8,140.5,129.5$, 129.0, 128.4, 127.7, 121.0, 71.1, 48.7, 48.6, 36.0, 30.6, 13.0. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right) 243.1492$, found 243.1482.
$3 \mathrm{~m}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.87\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.82(\mathrm{~s}, 1 \mathrm{H}), 3.35\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.8 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.18\left(\mathrm{td}, J_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.76\left(\mathrm{dd}^{2} J_{\mathrm{HH}}=14.1 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.61\left(\mathrm{q}, J_{\mathrm{HH}}=9.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=16.1 \mathrm{~Hz}\right.$ and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.8$ and $\left.4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.42-2.33(\mathrm{~m}, 2 \mathrm{H})$, $1.46\left(\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.4,143.2,140.5,129.0,128.4,127.6$, 110.9, 72.1, 53.0, 48.6, 39.2, 31.0, 17.9. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 243.1492, found 243.1483.

Procedure for Equation 5.

A solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18.5 \mathrm{mg}, 16.0 \mu \mathrm{~mol})$, (2-(acetoxymethyl)-1-buten-3yl)trimethylsilane 5 ($80.1 \mathrm{mg}, 0.400 \mathrm{mmol}$), and azomethine imine $\mathbf{2 a}$ ($34.8 \mathrm{mg}, 0.200$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred for 72 h at $40^{\circ} \mathrm{C}$, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC with EtOAc/hexane $=1 / 1$ to afford a mixture of compounds $31-3 n$ as a colorless oil (32.1 $\mathrm{mg}, 0.132 \mathrm{mmol} ; 66 \%$ yield).

3n (mixture of cis/trans ~ 46/54): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}$, $0.54 \mathrm{H}), 5.00(\mathrm{bs}, 0.46 \mathrm{H}), 4.924(\mathrm{~s}, 0.54 \mathrm{H}), 4.918(\mathrm{~s}, 0.46 \mathrm{H}), 4.63\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.7 \mathrm{~Hz}\right.$, 0.54 H), 4.47 (bs, 0.46 H$), 3.83(\mathrm{bs}, 0.46 \mathrm{H}), 3.72\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.7 \mathrm{~Hz}, 0.54 \mathrm{H}\right), 3.65$ (bs, 0.46 H), $3.38(\mathrm{bs}, 0.46 \mathrm{H}), 3.07\left(\mathrm{td}, J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right.$ and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.6 \mathrm{~Hz}, 0.54 \mathrm{H}\right), 2.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $10.3 \mathrm{~Hz}, 0.54 \mathrm{H}), 2.63-2.35(\mathrm{~m}, 4 \mathrm{H}), 0.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 1.38 \mathrm{H}\right), 0.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6\right.$ $\mathrm{Hz}, 1.62 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.8,169.4,143.3,139.0,128.9,128.54,128.52,127.9$, 111.0, 110.1, 78.0, 77.5, 49.0, 48.6, 43.9, 41.7, 30.7, 30.6, 14.0, 13.5. Anal. Calcd for

Procedure for Equation 6.

A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$, (2-(acetoxymethyl)-2propenyl)trimethylsilane 1 ($46.6 \mathrm{mg}, 0.25 \mathrm{mmol}$), and nitrone 8 ($33.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ was stirred for 43 h at $40^{\circ} \mathrm{C}$, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC with EtOAc/hexane $=1 / 4.5$ to afford 9 as a colorless oil ($35.7 \mathrm{mg}, 91.2 \mu \mathrm{~mol} ; 91 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.49(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.0\right.$ and $\left.4.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.99(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.68\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31$ $\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.09\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.72\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=\right.$ 13.9 Hz and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.35\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 166.6$, $152.0,144.1,139.3,131.0,129.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.6 \mathrm{~Hz}\right), 128.3,125.5\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.6 \mathrm{~Hz}\right), 124.3$ $\left(q^{1}{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 123.1,114.4,111.8,74.3,63.3,60.7,37.5,14.6$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$392.1468, found 392.1463.

V. X-ray Crystal Structure of 3k

Data Collection

A colorless $\mathrm{Et}_{2} \mathrm{O}$ solution of $3 \mathbf{k}$ was prepared. Crystals suitable for X -ray analysis were obtained by slow evaporation of $\mathrm{Et}_{2} \mathrm{O}$ at room temperature.

A colorless prism crystal of $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ having approximate dimensions of 0.52 x $0.30 \times 0.10 \mathrm{~mm}$ was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation.

Indexing was performed from 3 oscillations that were exposed for 30 seconds. The crystal-to-detector distance was 127.40 mm .

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

$$
\begin{aligned}
& \mathrm{a}=7.076(5) \AA \quad \alpha=77.94(3)^{\circ} \\
& \mathrm{b}=7.693(5) \AA \quad \beta=84.96(3)^{\circ} \\
& \mathrm{c}=12.82(1) \AA \quad \gamma=75.35(3)^{\circ} \\
& \mathrm{V}=659.7(8) \AA^{3}
\end{aligned}
$$

For $\mathrm{Z}=2$ and F.W. $=242.32$, the calculated density is $1.22 \mathrm{~g} / \mathrm{cm}^{3}$. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:
P-1 (\#2)

The data were collected at a temperature of $-150 \pm 1^{\circ} \mathrm{C}$ to a maximum 2θ value of 54.9°. A total of 44 oscillation images were collected. A sweep of data was done using ω scans from 130.0 to 190.0° in 5.0° step, at $\chi=45.0^{\circ}$ and $\phi=0.0^{\circ}$. The exposure rate was $110.0\left[\mathrm{sec} . /^{\circ}\right]$. A second sweep was performed using ω scans from 0.0 to 160.0° in 5.0° step, at $\chi=45.0^{\circ}$ and $\phi=180.0^{\circ}$. The exposure rate was $110.0\left[\mathrm{sec} . /^{\circ}\right]$. The crystal-to-detector distance was 127.40 mm . Readout was performed in the 0.100 mm pixel mode.

Data Reduction

A total of 3001 reflections was collected.
The linear absorption coefficient, μ, for $\mathrm{Mo}-\mathrm{K} \alpha$ radiation is $0.8 \mathrm{~cm}^{-1}$. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods ${ }^{7}$ and expanded using Fourier techniques. ${ }^{8}$ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms

[^2]were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{9}$ on F was based on 2539 observed reflections (I > 3.00σ (I)) and 181 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:
\[

$$
\begin{gathered}
\mathrm{R}=\Sigma| | \mathrm{Fo}|-|\mathrm{Fc}|| / \Sigma|\mathrm{Fo}|=0.046 \\
\mathrm{R}_{\mathrm{W}}=\left[\Sigma \mathrm{W}(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2} / \Sigma \mathrm{WFo}^{2}\right]^{1 / 2}=0.064
\end{gathered}
$$
\]

The standard deviation of an observation of unit weight ${ }^{10}$ was 1.34. A Sheldrick weighting scheme was used. Plots of $\Sigma \mathrm{w}(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$ versus $|\mathrm{Fo}|$, reflection order in data collection, $\sin \theta / \lambda$ and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.22 and $-0.39 \mathrm{e}^{-} / \AA^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber. ${ }^{11}$ Anomalous dispersion effects were included in Fcalc; ${ }^{12}$ the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley. ${ }^{13}$ The values for the mass attenuation coefficients are those of Creagh and Hubbell. ${ }^{14}$ All calculations were performed using the CrystalStructure ${ }^{15,16}$ crystallographic software package.

[^3]The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 297116). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html.

Experimental Details

A. Crystal Data

Empirical Formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
Formula Weight	242.32
Crystal Color, Habit	colorless, prism
Crystal Dimensions	$0.52 \times 0.30 \times 0.10 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Indexing Images	3 oscillations @ 30.0 seconds
Detector Position	127.40 mm
Pixel Size	0.100 mm
Lattice Parameters	$\begin{aligned} & \mathrm{a}=7.076(5) \AA \\ & \mathrm{b}=7.693(5) \AA \\ & \mathrm{c}=12.82(1) \AA \\ & \alpha=77.94(3)^{\circ} \\ & \beta=84.96(3)^{\circ} \\ & \gamma=75.35(3)^{\circ} \\ & \mathrm{V}=659.7(8) \AA^{3} \end{aligned}$
Space Group	P-1 (\#2)
Z value	2
D calc	$1.220 \mathrm{~g} / \mathrm{cm}^{3}$
F000	260.00
$\mu(\mathrm{MoK} \alpha)$	$0.77 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku RAXIS-RAPID MoK $\alpha(\lambda=0.71075 ~ A ̊) ~$ graphite monochroma
Radiation	$280 \mathrm{~mm} \times 256 \mathrm{~mm}$
Detector Aperture	44 exposures
Data Images	$130.0-190.0^{\circ}$
ω oscillation Range $((\chi=45.0, \phi=30.0)$	$110.0 \mathrm{sec} . /^{\circ}$
Exposure Rate	$0.0-160.0^{\circ}$
ω oscillation Range $(\chi=45.0, \phi=180.0)$	$110.0 \mathrm{sec} . /^{\circ}$
Exposure Rate	127.40 mm
Detector Position	0.100 mm
Pixel Size	54.9°
2θ max	Total: 3001
No. of Reflections Measured	Lorentz-polarization
Corrections	

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F
Function Minimized	$\Sigma \mathrm{w}(\|\mathrm{Fo}\|-\|\mathrm{Fc}\|)^{2}$
	$\mathrm{w}=1 /\left[0.0010 \mathrm{Fo}^{2}+3.0000 \sigma\left(\mathrm{Fo}^{2}\right)+\right.$
Least Squares Weights	$0.5000]$
2日max cutoff	0.0°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (I>3.00 $\sigma(\mathrm{I})$)	2539
No. Variables	181
Reflection/Parameter Ratio	14.03
Residuals: R (I>3.00 $\sigma(\mathrm{I}))$	0.046
Residuals: Rw (I>3.00 $\sigma(\mathrm{I})$)	0.064
Goodness of Fit Indicator	1.340
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.22 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.39 \mathrm{e}^{-} / \AA^{3}$

[^0]: ${ }^{1}$ Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315.
 ${ }^{2}$ Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1981, 103, 5972.
 ${ }^{3}$ Perri, S. T.; Slater, S. C.; Toske, S. G.; White, J. D. J. Org. Chem. 1990, 55, 6037.
 ${ }^{4}$ Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778.
 ${ }^{5}$ Coulson, D. R. Inorg. Synth. 1972, 13, 121.

[^1]: ${ }^{6}$ Parker, G.; Werner, H. Helv. Chim. Acta 1973, 56, 2819.

[^2]: ${ }^{7}$ SIR92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435.

[^3]: ${ }^{8}$ DIRDIF99: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R; Smits, J. M. M. The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands (1999).
 ${ }^{9}$ Least Squares function minimized: (SHELXL97) $\Sigma w\left(\left|\mathrm{~F}_{\mathrm{O}}\right|-\left|\mathrm{F}_{\mathrm{C}}\right|\right)^{2} \quad$ where $\mathrm{w}=$ Least Squares weights.
 ${ }^{10}$ Standard deviation of an observation of unit weight:
 $\left[\Sigma w\left(\left|\mathrm{~F}_{\mathrm{O}}\right|-\left|\mathrm{F}_{\mathrm{C}}\right|\right)^{2} /\left(\mathrm{N}_{\mathrm{O}}-\mathrm{N}_{\mathrm{V}}\right)\right]^{1 / 2}$
 where: $\mathrm{N}_{\mathrm{O}}=$ number of observations, $\mathrm{N}_{\mathrm{V}}=$ number of variables
 ${ }^{11}$ Cromer, D. T.; Waber, J. T. "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).
 ${ }^{12}$ Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
 ${ }^{13}$ Creagh, D. C.; McAuley, W. J . "International Tables for Crystallography", Vol C, (Wilson, A. J. C., ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
 ${ }^{14}$ Creagh, D. C.; Hubbell, J. H. "International Tables for Crystallography", Vol C, (Wilson, A. J. C., ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
 ${ }^{15}$ CrystalStructure 3.6.0: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2004). 9009 New Trails Dr. The Woodlands TX 77381 USA.
 ${ }^{16}$ CRYSTALS Issue 10: Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W. Chemical Crystallography Laboratory, Oxford, UK. (1996).

