Supporting Information

Oxidation of gem-Borylsilylalkylcoppers to Acylsilanes with Air

Junichi Kondo*, Hiroshi Shinokubo**, and Koichiro Oshima*

[*] Department of Material Chemistry, Graduate School of Engineering, Kyoto University,

Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

[**] Department of Chemistry, Graduate School of Science, Kyoto University,

Sakyo-ku, Kyoto 606-8502, Japan

Instrumentation and Materials

¹H NMR (300 MHz), ¹³C NMR (75.3 MHz) were taken on a Varian GEMINI 300 spectrometer in CDCl₃ as a solvent, and chemical shifts of ¹H and ¹³C nuclides were given in δ value with tetramethylsilane as an internal standard. IR spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. Mass spectra were determined on a JEOL JMS-700 spectrometer. TLC analyses were performed on commercial glass plates bearing 0.25 mm layer of Merck Silica gel 60F₂₅₄. Column chromatography was done with silica gel (Wakogel 200 mesh). The analyses were carried out at the Elemental Analysis Center of Kyoto University. Tetrahydrofuran (THF) sealed and stored under argon without stabilizer was commercially available from KANTO Chemical, INC. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Experimental and Compound Data

ProcedurefortheSynthesisof[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dichloromethyl]methyldiphenylsilane(2a)

n-BuLi (0.31 mL, 1.6 M solution in hexane, 0.50 mmol) was added to a solution of Ph₂MeSiCHCl₂ (1a, 140.6 mg, 0.50 mmol) in THF (5 mL) at -78 °C, and the mixture was stirred for 30 min. Addition of methoxypinacolatoborane (95 mg, 0.6 mmol, MW=158.00) in THF solution to the resulting solution at -78 °C was followed by stirring for 1.5 h at the same temperature. The reaction was quenched with dilute HCl aq. The mixture was extracted with ethyl acetate (10 mL \times 3), and the organic layers were dried over anhydrous Na₂SO₄ and were concentrated in vacuo. Purification by silicagel flash column chromatography provided [(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dichloromethyl]methyldiphenylsilane (2a, 187.3 mg, 0.46 mmol) in 92% yield as a white solid: $R_{\rm f} = 0.62$ (hexane/ethyl acetate = 10/1); IR (KBr) 3072, 2984, 1428, 1353, 1320, 1274, 1254, 1138, 1107, 971, 846, 800, 732, 697, 629 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (s, 3H), 1.14 (s, 12H), 7.34-7.48 (m, 6H), 7.74-7.79 (m, 4H); ¹³C NMR (CDCl₃) δ -4.38, 24.45, 85.45, 127.57, 130.02, 132.41, 135.77; Found: C, 59.07; H, 6.09%. Calcd for C₂₀H₂₅BCl₂O₂Si: C, 58.99; H, 6.19%.

[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dichloromethyl]dimethylphenylsilane (2b)

 $R_{\rm f} = 0.68$ (hexane/ethyl acetate = 10/1), as a white solid; IR (KBr) 2980, 1428, 1374, 1353, 1321, 1252, 1138, 1113, 971, 847, 784, 742, 705, 629 cm⁻¹; ¹H NMR (CDCl₃) δ 0.61 (s, 6H), 1.23 (s, 12H), 7.33-7.45 (m, 3H), 7.71 (d, *J*= 8 Hz, 2H); ¹³C NMR (CDCl₃) δ -5.10, 24.44, 85.35, 127.57, 130.05, 133.66, 135.11; HRMS (FAB⁺, Matrix: NBA/acetone) (*m/z*) Observed: 345.1080 (Δ = +0.8 ppm). Calcd for C₁₅H₂₄BCl₂O₂Si [MH⁺]: 345.1016.

[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dichloromethyl](*tert*-butyl)dimethylsilan e (2c)

 $R_{\rm f} = 0.73$ (hexane/ethyl acetate = 10/1), as a white solid; IR (KBr) 2932, 2861, 1472, 1323, 1325, 1261, 1142, 975, 848, 780, 708, 673, 624 cm⁻¹; ¹H NMR (CDCl₃) δ 0.25 (s, 6H), 1.01 (s, 9H), 1.30 (s, 12H); ¹³C NMR (CDCl₃) δ -6.91, 18.60, 24.55, 27.81, 85.26; HRMS (FAB⁺, Matrix: NBA/acetone) (*m/z*) Observed: 325.1325 (Δ = -1.2 ppm). Calcd for C₁₃H₂₈BCl₂O₂Si [MH⁺]: 325.1329.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(methyldiphenylsilyl)pentane (5aa)

 $R_{\rm f} = 0.53$ (hexane/ethyl acetate = 10/1), as colorless oil; IR (neat) 3069, 2930, 2854, 1428, 1261, 1104, 989, 808, 733, 699, 640, 486, 472 cm⁻¹; ¹H NMR (CDCl₃) δ 0.63 (s, 3H), 0.82 (t, *J*= 7 Hz, 3H), 1.01 (s, 6H), 1.10 (s, 6H), 1.19-1.33 (m, 4H), 1.33-1.50 (m, 2H), 1.58-1.74 (m, 1H), 7.30-7.36 (m, 6H), 7.54-7.60 (m, 4H); ¹³C NMR (CDCl₃) δ -4.21, 14.11, 22.47, 24.63, 24.99, 25.90, 35.64, 82.71, 127.42, 127.49, 128.83, 134.58, 134.71, 137.04, 137.11. HRMS (DI-EI⁺) (*m/z*) Observed: 394.2500 (Δ = +0.2 ppm). Calcd for

C₂₄H₃₅B0₂Si [M⁺]: 394.2499.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-1-(methyldiphenylsilyl)meth ane (5ab)

 $R_{\rm f} = 0.26$ (hexane/ethyl acetate = 20/1), as colorless oil; ¹H NMR (CDCl₃) δ 0.59 (s, 3H), 0.98 (s, 6H), 1.07 (s, 6H), 2.60 (s, 1H), 6.99-7.03 (m, 1H), 7.05-7.13 (m, 4H), 7.20-7.25 (m, 2H), 7.27-7.39 (m, 6H), 7.60-7.65 (m, 2H); ¹³C NMR (CDCl₃) δ -4.80, 24.47, 24.91, 83.17, 123.74, 127.34, 127.51, 127.75, 128.95, 129.21, 129.30, 134.80, 135.17, 136.00, 136.57, 139.13. HRMS (DI-EI⁺) (*m*/*z*) Observed: 414.2182 (Δ = -1.1 ppm). Calcd for C₂₆H₃₁B0₂Si [M⁺]: 414.2186.

2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(methyldiphenylsilyl)hexane (6aa) $Ph_2MeSi \times B_{-0}$

 $R_{\rm f} = 0.61$ (hexane/ethyl acetate = 10/1), as colorless oil; ¹H NMR (CDCl₃) δ 0.62 (s, 3H), 0.85 (t, *J*= 8 Hz, 3H), 1.11 (s, 6H), 1.13 (s, 6H), 1.17 (s, 3H), 1.18-1.34 (m, 4H), 1.35-1.44 (m, 1H), 1.85-1.92 (m, 1H), 7.29-7.39 (m, 6H), 7.59 (d, *J*= 7 Hz, 2H), 7.68 (d, *J*= 7 Hz, 2H); ¹³C NMR (CDCl₃) δ -4.59, 14.17, 16.55, 23.48, 24.91, 24.99, 29.54, 33.85, 82.92, 127.29, 127.34, 128.76, 128.85, 135.74, 136.57, 136.67. HRMS (DI-EI⁺) (*m/z*) Observed: 408.2655 (Δ = -0.1 ppm). Calcd for C₂₅H₃₇B0₂Si [M⁺]: 408.2656.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-1-(methyldiphenylsilyl)ethan e (6ab)

 $R_{\rm f} = 0.69$ (hexane/ethyl acetate = 10/1), as colorless oil; ¹H NMR (CDCl₃) δ 0.61 (s, 3H), 1.13 (s, 6H), 1.15 (s, 6H), 1.56 (s, 3H), 7.05-7.13 (m, 1H), 7.16-7.25 (m, 6H), 7.28-7.42 (m, 6H), 7.50-7.56 (m, 2H); ¹³C NMR (CDCl₃) δ –3.76, –0.59, 17.45, 24.65, 24.91, 83.24, 123.96, 127.05, 127.24, 127.37, 127.71, 127.96, 128.81, 129.00, 133.97, 135.78, 135.93, 143.63. HRMS (DI-EI⁺) (*m*/*z*) Observed: 428.2343 (Δ = -0.1 ppm). Calcd for C₂₇H₃₃B0₂Si [M⁺]: 428.2343.

General Procedure for the Synthesis of acylsilane (7ab) via Aerobic Oxidation $Ph_2MeSi \bigvee Ph$

n-BuLi (0.31 mL, 1.6 M solution in hexane, 0.50 mmol) was added to a solution of **2a** (204 mg, 0.50 mmol) in THF (5 mL) dropwise at -78 °C, and the mixture was stirred for 5 min. To the resulting yellow solution at -78 °C were sequentially added CuCN•2LiCl (0.55 mL, 1.0 M solution in THF, 0.55 mmol) and PhMgBr (0.55 mL, 1.0 M solution in THF, 0.55 mmol). After stirring for 5 min, the mixture was allowed to warm gradually to 0 °C. Pyridine (0.13 mL, 2.0 mmol) was added to the mixture, which was vigorously stirred under air for 1 h at 0 °C. After quenching by aqueos NH₄Cl, the mixture was extracted with ethyl acetate, and the organic layers were dried over anhydrous Na₂SO₄. Concentration and purification provided benzoyl(methyl)diphenylsilane (**7ab**, 130 mg, 0.43 mmol) in 86% yield as clear, yellow oil.

 $R_{\rm f}$ = 0.44 (hexane/ethyl acetate = 10/1); IR (neat) 1612, 1589, 1576, 1447, 1429, 1252, 1209, 1173, 1111, 794, 729, 698 cm⁻¹; ¹H NMR (CDCl3) δ 0.87 (s, 3H), 7.31-7.50 (m, 9H), 7.60 (dd, J = 1.5, 7.5 Hz, 4H), 7.77 (dd, J = 1.5, 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ -3.3, 128.2, 128.2, 128.5, 130.0, 132.9, 133.7, 135.1, 141.7, 232.0. Found: C, 79.68; H, 6.06%. Calcd for C₂₀H₁₈OSi: C, 79.43; H, 6.00%.

(2,4,6-trimethylbenzoyl)methyldiphenylsilane (7ac)

 $R_{\rm f} = 0.38$ (hexane/ethylacetate = 10/1), as pale yellow oil; IR (neat) 2978, 1612, 1591, 1578, 1340, 1250, 1142, 1113, 838, 785, 734, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 0.80 (s, 3H), 1.85 (s, 6H), 2.26 (s, 3H), 6.73 (s, 2H), 7.34-7.39 (m, 6H), 7.41-7.46 (m, 4H); ¹³C NMR (CDCl₃) δ –5.20, 19.01, 20.72, 128.00, 128.52, 129.97, 132.02, 132.69, 134.96, 138.16, 143.20, 249.48. HRMS (DI-EI⁺) (*m*/*z*) Observed: 344.1590 (Δ = –1.7 ppm). Calcd for C₂₃H₂₄0Si [M⁺]: 344.1596.

Methyldiphenylsilyl 2-thienyl ketone (7ad)

 $R_{\rm f} = 0.53$ (hexane/ethyl acetate = 5/1); yellow oil; IR (KBr) 3068, 1570, 1512, 1428, 1406, 1230, 1113, 1051, 788, 731, 706 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (s, 3H), 6.97 (t, *J*= 4.5 Hz, 1H), 7.34 (d, *J*= 4.5 Hz, 1H), 7.38–7.48 (m, 6H), 7.59 (d, *J*= 4.5 Hz, 1H), 7.61–7.65 (m, 4H); ¹³C NMR (CDCl₃) δ –3.8, 128.2, 130.2, 133.2, 133.6, 134.6, 135.2, 151.2, 221.0. Found: C, 70.10; H, 5.33%. Calcd for C₁₈H₁₆OSSi: C, 70.09; H, 5.23%.

[4-(Phenylethynyl)benzoyl]diphenylsilane (7ae)

 $R_{\rm f} = 0.35$ (hexane/ethyl acetate = 10/1); yellow oil; IR (neat) 3071, 2957, 1589, 1427, 1209, 1111, 756, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (s, 3H), 7.19–7.33 (m, 9H), 7.35–7.42 (m,

4H), 7.59–7.64 (m, 4H), 7.76 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃) δ –3.3, 128.2, 128.2, 128.5, 130.0, 132.9, 133.7, 135.1, 141.7, 232.0. Found: C, 83.70; H, 5.41%. Calcd for C₂₈H₂₂OSi: C, 83.54; H, 5.51%.

[4-(4-Methoxyphenylethynyl)benzoyl]methyldiphenylsilane (7af)

 $R_{\rm f} = 0.22$ (hexane/ethylacetate = 10/1), as yellow oil; IR (neat) 3071, 2959, 2214, 1587, 1514, 1429, 1288, 1250, 1211, 1174, 1136, 1111, 1030, 833, 793, 727, 698, 486 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (s, 3H), 3.83 (s, 3H), 6.88 (d, J = 9 Hz, 2H), 7.37-7.42 (m, 4H), 7.43-7.48 (m, 6H), 7.58-7.62 (m, 4H), 7.74 (d, J = 9 Hz, 2H); ¹³C NMR (CDCl₃) δ -3.36, 55.31, 87.65, 92.97, 114.06, 114.72, 128.12, 128.26, 128.32, 130.09, 131.46, 133.23, 133.60, 135.12, 140.29, 159.99, 231.12. HRMS (DI-EI⁺) (*m/z*) Observed: 432.1538 (Δ = -1.8 ppm). Calcd for C₂₉H₂₄0₂Si [M⁺]: 432.1546.

Dimethylphenylpentanoylsilane (7ba)

 $R_{\rm f} = 0.62$ (hexane/ethylacetate = 20/1), as colorless oil; IR (neat) 2959, 1643, 1429, 1340, 1250, 1111, 837, 820, 782, 735, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 0.50 (s, 6H), 0.83 (t, *J*= 8 Hz, 3H), 1.16-1.24 (m, 6H), 1.44 (quint, *J*= 8 Hz, 2H), 2.57 (t, *J*= 8 Hz, 2H), 7.36-7.46 (m, 3H), 7.54-7.58 (m, 2H); ¹³C NMR (CDCl₃) δ -4.73, 13.84, 22.29, 24.21, 48.54, 128.11, 129.81, 133.94, 134.59, 246.62.

Benzoyldimethylphenylsilane (7bb)

 $\overset{PhMe_2Si}{\bigvee} \overset{Ph}{\overset{Ph}{\overset{}}}$

 $R_{\rm f} = 0.57$ (hexane/ethyl acetate = 10/1), as yellow oil; IR (neat) 2978, 1612, 1591, 1578, 1340, 1250, 1142, 1113, 838, 785, 734, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 0.63 (s, 6H), 7.35-7.43 (m, 5H), 7.46-7.51 (m, 1H), 7.59-7.63 (m, 2H), 7.74-7.78 (m, 2H); ¹³C NMR (CDCl₃) δ –2.94, 127.81, 128.24, 128.53, 129.80, 132.74, 133.96, 135.61, 141.25, 233.79.

 $R_{\rm f} = 0.67$ (hexane/ethylacetate = 20/1), as colorless oil; IR (neat) 2957, 2860, 1641, 1466, 1340, 1250, 1144, 837, 775, 671 cm⁻¹; ¹H NMR (CDCl₃) δ 0.17 (s, 6H), 0.88 (t, *J*= 8 Hz, 3H), 0.92 (s, 9H), 1.23-1.31 (m, 4H), 1.48 (quint, *J*= 8 Hz, 2H), 2.58 (t, *J*= 8 Hz, 2H); ¹³C NMR (CDCl₃) δ –6.96, 13.96, 22.42, 24.01, 26.43, 50.00, 247.98.

Benzoyl-tert-butyldimethylsilane (7cb)

 $R_{\rm f} = 0.67$ (hexane/ethyl acetate = 10/1), as yellow oil; IR (neat) 2955, 2930, 2858, 1612, 1576, 1472, 1339, 1250, 1210, 1144, 839, 810, 777, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 0.37 (s, 6H), 0.96 (s, 9H), 7.44-7.54 (m, 3H), 7.78-7.82 (m, 2H); ¹³C NMR (CDCl₃) δ -4.72, 16.91, 26.72, 127.55, 128.52, 132.49, 142.71, 235.89.

