Crown Ethers as Building Blocks for Carbohydrate Receptors

Monika Mazik, ${ }^{*}$ Matthias Kuschel, and Willi Sicking

Page

1. Syntheses of the receptors $\mathbf{1}$ and $\mathbf{2}$. S2
1.1 Synthesis of the receptor 1. S2
1.2 Synthesis of the receptor 2. S3
2. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1}$ with β-glucopyranoside $\mathbf{3 a}$ (chemical shifts of the CH_{3} S4and the pyridine CH protons).
3. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1}$ with α-glucopyranoside $\mathbf{4 a}$ (chemical shifts of the CH_{3} S4and the pyridine CH protons).
4. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1}$ with β - and α-glucopyranoside, $\mathbf{3 a}$ and $\mathbf{4 a}$ (typical titration S5

curves). S6
5. Extraction of β - and α-methyl-glucopyranoside ($\mathbf{3 b}$ and $\mathbf{4 b}$) from the solid state into a CDCl_{3}-solution of receptor $\mathbf{1}$.S6
6. ${ }^{1} \mathrm{H}$ NMR Titration of receptor 2 with α-glucopyranoside $\mathbf{4 a}$ (Chemical shifts of the CH_{3} and CH resonances, protons $\mathrm{C}, \mathrm{E}, \mathrm{H}$, and I).
7. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{2}$ with α-glucopyranoside $\mathbf{4 a}$ (typical titration curve and a representative mole ratio plot).

1 Syntheses of the receptors 1 and 2.

1.1 Synthesis of the receptor 1.

The synthesis of $\mathbf{1}$ started from 1,3,5-tris(bromomethyl)-2,4,6-trimethyl-benzene (5), which was converted into the compound 7 via reaction with two equivalents of 2-amino-4,6-dimethyl-pyridine (6), followed by the reaction with one equivalent of 2-aminomethyl-15-crown-5 (8), as shown in Scheme S1.

SCHEME S1

Compound 7. To a mixture of 1,3,5-tris(bromomethyl)-2,4,6-trimethyl-benzene ($3.00 \mathrm{~g}, 6.80$ mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.88 \mathrm{~g}, 13.60 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{THF}(1: 1 \mathrm{v} / \mathrm{v} ; 40 \mathrm{~mL})$ was added dropwise a $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ solution of 2-amino-4,6-dimethyl-pyridine ($1.66 \mathrm{~g}, 13.60$ mmol).The mixture was stirred at room temperature for 72 h . After filtration and evaporation of solvents, the crude product was purified by column chromatography (ethyl acetate/toluene, $1: 3 \mathrm{v} / \mathrm{v})$. Yield 30%. M.p. $77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.22(\mathrm{t}, 3 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 1.29(\mathrm{t}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.73(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.85(\mathrm{q}, 4 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 4.23(\mathrm{t}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.37(\mathrm{~d}, 4 \mathrm{H}, J=4.2 \mathrm{~Hz}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 6.35$ (s, 2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.4,16.7,21.1,22.8,23.0,24.1,29.6,40.5,103.6$, $113.9,131.9,133.4,143.8,144.9,148.9,156.5,158.0$. HR-MS calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{BrN}_{4}$ 5232.2353; found: 522.2360. $\mathrm{R}_{f=} 0.31$ (ethyl acetate/toluene, $1: 3 \mathrm{v} / \mathrm{v}$).

Receptor 1. To a mixture of compound $7(262.5 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(69.3 \mathrm{mg}, 0.50$ mmol) in $\mathrm{CH}_{3} \mathrm{CN} /$ THF ($1: 1 \mathrm{v} / \mathrm{v} ; 20 \mathrm{~mL}$) was added dropwise a $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ solution of 2-aminomethyl-15-crown-5 ($125 \mathrm{mg}, 0.50 \mathrm{mmol}$).The mixture was stirred at room temperature for 48 h . After filtration and evaporation of solvents, the crude product was purified by column chromatography (chloroform/methanol 7:1 v/v). Yield 62%. M.p. $57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3},[\mathbf{1}]=0.9 \mathrm{mM}\right) \delta=1.23(\mathrm{t}, 9 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H})$, $2.77(\mathrm{~m}, 7 \mathrm{H}), 3.70(\mathrm{~m}, 23 \mathrm{H}), 4.25$ (br. s, 2 H$) 4.36(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}$), 6.08 ($\mathrm{s}, 2 \mathrm{H}), 6.33(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.8,16.9,21.1,22.8,24.1,40.6,47.8,52.1,70.1$, $70.4,70.5,70.6,70.8,70.9,71.0,72.9,78.7,103.5,113.8,132.7,142.9,143.2,148.8,156.5$, 158.2, 162.7. HR-MS calcd for $\mathrm{C}_{40} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{5}$ 691.4667; found: 691.4671. $\mathrm{R}_{f}=0.10$ (chloroform/methanol, 7:1 v/v).

1.2 Synthesis of the receptor 2.

To a solution of benzene-1,3,5-tricarbonyl chloride ($187.4 \mathrm{mg}, 0.70 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{ml})$ was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ solution of 4 '-aminobenzo-15-crown-5 ($200 \mathrm{mg}, 0.70$ $\mathrm{mmol})$ and triethylamine $(0.1 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 45 min and then a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ solution of 2-amino-4,6-dimethylpyridine ($172.5 \mathrm{mg}, 1.41$ mmol) was added. The mixture was stirred at room temperature for 72 h . The organic phase was washed three times with water ($3 \times 10 \mathrm{~mL}$), dried, and the solvent was evaporated. The crude product was was purified by column chromatography (chloroform/methanol 7:1 v / v). Yield 41%. M.p. $200{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} ;[2]=0.9 \mathrm{mM}\right) \delta=2.38(\mathrm{~s}$, $6 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 3.77$ (br.s, 8 H), $3.92(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.90$ (d, 1H, $J=8.5 \mathrm{~Hz}$), $7.10(\mathrm{dd}, 1 \mathrm{H}, J=8.5 / 2.2 \mathrm{~Hz}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 8.02$ $(\mathrm{s}, 2 \mathrm{H}), 8.63(\mathrm{~s}, 2 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.3$, 23.7, $68.7,69.4,69.5,69.6,70.4,70.5,70.9,107.3,112.0,113.1,114.6,121.0,128.9,129.1,131.9$, $135.4,136.2,149.2,150.3,150.4,156.6,163.6,163.9$. HR-MS calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{8}$ 683.2950; found: 683.2958. $\mathrm{R}_{f=} 0.66$ (chloroform/methanol 7:1 v / v).
2. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1}$ with β-glucopyranoside $\mathbf{3 a}$ (chemical shifts of the CH_{3} and the pyridine CH protons).

FIGURE S1. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of $\mathbf{1}$ after addition of (from bottom to top) $0,0.27,0.55,0.83,1.11,1.38,2.08,2.77,3.47$ and 4.16 equiv of $\mathbf{3 a}$ ($[1]=0.87 \mathrm{mM}$). (a) Chemical shifts of the CH_{3} resonances. (b) Chemical shifts of the pyridine CH resonances.
3. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1}$ with α-glucopyranoside $\mathbf{4 a}$ (chemical shifts of the CH_{3} and the pyridine CH protons).
a)
b)

FIGURE S2. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of $\mathbf{1}$ after addition of (from bottom to top) $0,0.44,0.88,1.33,1.77,2.66,3.55,4.44,5.33$ and 6.22 equiv of $4 \mathbf{a}([\mathbf{1}]=0.85 \mathrm{mM})$. (a) Chemical shifts of the CH_{3} resonances. (b) Chemical shifts of the pyridine CH resonances.
4. $\quad{ }^{1} \mathrm{H}$ NMR titration of $\mathbf{1}$ with β - and α-glucopyranoside, 3a and 4a (typical titration curves).
a)

FIGURE S3. Plot of the downfield chemical shifts of the NH^{A}, resonances of $\mathbf{1}$ as a function of added β - and α-glucopyranoside, 3a and $\mathbf{4 a}$ (a) ($[\mathbf{1}]=0.87 \mathrm{mM}$; Equiv of $\mathbf{3 a}=0.00-3.47$; Equiv of $\mathbf{4 a}=$ $0.00-6.22$). Plot of the observed upfield chemical shifts of the $\mathrm{CH}_{2}{ }^{\mathrm{C}}$ (b) and downfield chemical shifts of the pyr-CH resonances (c) of $\mathbf{1}$ as a function of added β-glucopyranoside $\mathbf{3 a}$ ($[\mathbf{1}]=0.87 \mathrm{mM}$; Equiv of $\mathbf{3 a}=0.00-4.18)$. The [receptor]:[sugar] ratio is marked.
5. Extraction of β - and α-methyl-glucopyranoside ($\mathbf{3} \mathbf{b}$ and $\mathbf{4 b}$) from the solid state into a CDCl_{3}-solution of receptor $\mathbf{1}$.

FIGURE S4. ${ }^{1} \mathrm{H}$ NMR spectra showing the NH and the CH_{2} protons of receptor $\mathbf{1}$ before and after the extraction of solid methyl- α-glucopyranoside $\mathbf{4 b}$ or methyl- β-glucopyranoside $\mathbf{3 b}$ by a CDCl_{3}-solution of receptor $\mathbf{1}(0.9 \mathrm{mM})$.
$6 \quad{ }^{1} \mathrm{H}$ NMR Titration of receptor $\mathbf{2}$ with α-glucopyranoside $\mathbf{4 a}$ (chemical shifts of the CH_{3} and CH resonances, protons $\mathrm{C}, \mathrm{E}, \mathrm{H}$, and I).

FIGURE S5. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of $\mathbf{2}$ after addition of (from bottom to top) $0,0.20,0.40,0.60,0.80,1.00,1.50,2.00,2.50$ and 3.01 equiv of $\mathbf{4 a}$ ($[1]=0.87 \mathrm{mM}$). (a) Chemical shifts of the CH_{3} resonances. (b) Chemical shifts of the CH resonances, protons $\mathrm{C}, \mathrm{E}, \mathrm{H}$, and I.
7. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{2}$ with α-glucopyranoside $\mathbf{4 a}$ in CDCl_{3} (typical titration curve and a representative mole ratio plot).

FIGURE S6. (a) Plot of the observed (x) and calculated (一) downfield chemical shifts of the NH^{A} resonances of 2 as a function of added α-glucopyranoside $\mathbf{4 a} ;[2]=0.88 \mathrm{mM}$; Equiv of $\mathbf{4 a}=0,0.20$, $0.30,0.40,0.60,0.80,1.00,1.50,2.00,2.50$. The [receptor]:[sugar] ratio is marked. (b) Mole ratio plot (analysis of the shifts of the NH^{A} of $\mathbf{2}$).

