## SUPPLEMENTARY MATERIAL

Table S1 - Crystal Data and Structure Refinement for 3.

**Table S2** - Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for 3.

Table S3 - Bond lengths (Å) and angles (degrees) for 3.

**Table S4** - Anisotropic Displacement Parameters ( $\mathring{A}^2 \times 10^3$ ) for 3.

Table S5 - Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2\;x\;10^3$  ) for 3.

Figure 1 - ORTEP drawing of 3.

Table S1' - Crystal Data and Structure Refinement for 8.

**Table S2'** - Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for 8.

Table S3' - Bond lengths (Å) and angles (degrees) for 8.

**Table S4'** - Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 8.

**Table S5'** - Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for 8.

Figure 1' - ORTEP drawing of 8.

| Empirical formula               | C <sub>30</sub> H <sub>36</sub> Nb O P S <sub>2</sub> Si <sub>2</sub> |
|---------------------------------|-----------------------------------------------------------------------|
| Formula weight                  | 656.77                                                                |
| Temperature                     | 250(2) K                                                              |
| Wavelength                      | 0.71073 Å                                                             |
| Crystal system, space group     | Monoclinic, $P2_1/c$                                                  |
| Unit cell dimensions            | a = 17.063(8) Å.                                                      |
|                                 | $b = 10.834(8) \text{ Å}$ $\beta = 108.76(4) \text{ deg.}$            |
|                                 | c = 18.488(6)  Å.                                                     |
| Volume                          | 3236(3) Å <sup>3</sup>                                                |
| Z, Calculated density           | 4, $1.348 \text{ g/cm}^3$                                             |
| Absorption coefficient          | $6.46 \text{ cm}^{-1}$                                                |
| Range of transmission factor    | 0.689-1.000                                                           |
| F(000)                          | 1360                                                                  |
| Crystal size                    | $0.4 \ge 0.3 \ge 0.3 \text{ mm}^3$                                    |
| Theta range for data collection | 2.21 to 28 deg.                                                       |
| Limiting indices                | $-22 \le h \le 21, 0 \le k \le 14, 0 \le l \le 20$                    |
| Reflections collected / unique  | 7656 / 7413 [R(int) = 0.0914]                                         |
| Completeness to theta $= 28.00$ | 94.8 %                                                                |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup>                           |
| Data / restraints / parameters  | 7413 / 0 / 334                                                        |
| Goodness-of-fit on $F^2$        | 0.958                                                                 |
| Final R indices [I>2sigma(I)]   | R1 = 0.0863, wR2 = 0.1398                                             |
| R indices (all data)            | R1 = 0.3249, wR2 = 0.2046                                             |
| Largest diff. peak and hole     | 0.747 and -0.671 e.Å <sup>-3</sup>                                    |
|                                 |                                                                       |

**Table S1'.** Crystal data and structure refinement for **3**.

|              | Х        | У         | Z         | U(eq)   |
|--------------|----------|-----------|-----------|---------|
| Nb(1)        | 7965(1)  | 2237(1)   | 8749(1)   | 54(1)   |
| P(1)         | 8360(3)  | 265(4)    | 11459(3)  | 58(1)   |
| <b>S</b> (1) | 7644(2)  | 1186(4)   | 9851(3)   | 55(1)   |
| S(2)         | 9470(3)  | 1378(4)   | 10723(3)  | 80(2)   |
| Si(1)        | 7107(3)  | -1016(4)  | 8030(3)   | 67(2)   |
| Si(2)        | 6425(3)  | 4542(4)   | 9214(3)   | 72(2)   |
| O(1)         | 6089(7)  | 2108(10)  | 7722(6)   | 73(4)   |
| C(1)         | 6783(9)  | 2126(15)  | 8153(9)   | 55(5)   |
| C(2)         | 8493(8)  | 1001(13)  | 10624(9)  | 52(4)   |
| C(3)         | 7906(11) | 228(14)   | 8235(12)  | 65(6)   |
| C(4)         | 7979(11) | 1126(14)  | 7673(10)  | 62(5)   |
| C(5)         | 8728(12) | 1721(16)  | 7919(14)  | 77(6)   |
| C(6)         | 9149(10) | 1228(17)  | 8609(14)  | 78(6)   |
| C(7)         | 8667(12) | 309(15)   | 8788(11)  | 63(5)   |
| C(8)         | 7743(12) | -2447(16) | 8347(13)  | 124(9)  |
| C(9)         | 6557(13) | -1020(20) | 6979(11)  | 132(9)  |
| C(10)        | 6328(9)  | -892(14)  | 8550(10)  | 77(6)   |
| C(11)        | 7435(9)  | 4107(12)  | 9092(11)  | 52(5)   |
| C(12)        | 8182(10) | 3890(13)  | 9665(9)   | 61(5)   |
| C(13)        | 8857(11) | 3906(13)  | 9422(13)  | 68(6)   |
| C(14)        | 8546(12) | 4227(14)  | 8616(13)  | 69(6)   |
| C(15)        | 7674(12) | 4328(13)  | 8397(11)  | 68(6)   |
| C(16)        | 5884(10) | 3313(17)  | 9525(16)  | 147(11) |
| C(17)        | 6609(12) | 5839(19)  | 9866(14)  | 129(9)  |
| C(18)        | 5739(12) | 5132(19)  | 8251(13)  | 135(9)  |
| C(19)        | 7255(8)  | 64(13)    | 11226(9)  | 48(4)   |
| C(20)        | 6820(10) | -1013(15) | 10958(10) | 69(5)   |
| C(21)        | 5987(12) | -1120(17) | 10801(12) | 85(7)   |
| C(22)        | 5571(11) | -160(20)  | 10912(12) | 81(7)   |
| C(23)        | 5927(12) | 930(20)   | 11203(11) | 86(7)   |
| C(24)        | 6780(11) | 989(14)   | 11340(11) | 78(6)   |
| C(25)        | 8708(8)  | -1320(15) | 11383(10) | 52(5)   |
| C(26)        | 9085(10) | -1950(20) | 12064(10) | 71(6)   |
| C(27)        | 9323(11) | -3190(20) | 12049(15) | 90(8)   |
| C(28)        | 9167(13) | -3726(19) | 11298(18) | 93(8)   |
| C(29)        | 8854(12) | -3086(18) | 10684(12) | 71(6)   |
| C(30)        | 8578(10) | -1913(15) | 10684(11) | 65(6)   |

**Table S2'.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for **3**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| $T_{a(1)}-N(1)$                             | 2 327(5)             |
|---------------------------------------------|----------------------|
| Ta(1)-Cl(3)                                 | 2.393(2)             |
| Ta(1)-Cl(2)                                 | 2.407(2)             |
| Ta(1)-Cl(1)                                 | 2.407(2)             |
| Ta(1)-C(14)                                 | 2.431(8)             |
| Ta(1)-C(11)                                 | 2.447(7)             |
| Ta(1)-S(1)                                  | 2.4558(19)           |
| Ta(1)-C(13)                                 | 2.463(8)             |
| Ta(1)-C(10)                                 | 2.472(8)             |
| Ta(1)-C(12)                                 | 2.484(7)             |
| S(1)-C(1)                                   | 1.734(7)             |
| N(1)-C(1)                                   | 1.337(7)             |
| N(1)-C(4)                                   | 1.352(8)             |
| N(2)-C(1)                                   | 1.328(9)             |
| N(2)-C(2)                                   | 1.340(9)             |
| C(2)-C(3)                                   | 1.402(10)            |
| C(2)-C(6)                                   | 1.486(11)            |
| C(3)-C(4)                                   | 1.349(10)            |
| C(4)-C(5)                                   | 1.530(10)            |
| C(10)-C(14)                                 | 1.390(14)            |
| C(10)-C(11)                                 | 1.401(13)            |
| C(10)-C(15)                                 | 1.485(13)            |
| C(11)-C(12)                                 | 1.411(10)            |
| C(11)-C(16)                                 | 1.531(11)            |
| C(12)-C(13)                                 | 1.429(10)            |
| C(12)-C(17)                                 | 1.469(11)            |
| C(13)-C(14)                                 | 1.399(14)            |
| C(13)-C(18)                                 | 1.476(11)            |
| C(14)-C(19)                                 | 1.516(13)            |
| N(1)-Ta(1)-Cl(3)                            | 87.65(13)            |
| N(1)-Ta(1)-Cl(2)                            | 76.30(16)            |
| CI(3)-Ta(1)-CI(2)                           | 85.54(11)            |
| N(1)-Ta(1)-Cl(1)                            | 76.24(15)            |
| CI(3)-Ta(1)- $CI(1)$                        | 85.41(10)            |
| CI(2)-Ta(1)-CI(1)                           | 151.37(8)            |
| N(1)-Ta(1)-C(14)                            | 159.0(3)             |
| CI(3)-Ta(1)-C(14)                           | 83.2(3)              |
| CI(2)-Ia(1)-C(14)                           | 121.6(3)             |
| CI(1)-Ia(1)-C(14)                           | 84.2(3)              |
| N(1)-1a(1)-C(11)                            | 138.2(2)             |
| $C_1(3) - Ta(1) - C(11)$                    | 100 2(2)             |
| $C_1(2)$ -Ta(1)- $C_1(1)$                   | 100.3(2)<br>105.5(2) |
| $C(14) T_0(1) C(11)$                        | 103.3(2)<br>54.7(2)  |
| U(14) - 1a(1) - U(11)<br>$N(1) T_0(1) S(1)$ | 34.7(3)<br>64.21(12) |
| 11(1) - 1a(1) - 3(1)                        | 04.31(12)            |

 Table S3'. Bond lengths [Å] and angles [deg] for 3.

| Cl(3)-Ta(1)-S(1)  | 151.96(7)  |
|-------------------|------------|
| Cl(2)-Ta(1)-S(1)  | 87.49(9)   |
| Cl(1)-Ta(1)-S(1)  | 87.87(8)   |
| C(14)-Ta(1)-S(1)  | 123.1(3)   |
| C(11)-Ta(1)-S(1)  | 74.00(19)  |
| N(1)-Ta(1)-C(13)  | 160.9(2)   |
| Cl(3)-Ta(1)-C(13) | 79.73(17)  |
| Cl(2)-Ta(1)-C(13) | 88.4(2)    |
| Cl(1)-Ta(1)-C(13) | 116.6(2)   |
| C(14)-Ta(1)-C(13) | 33.2(3)    |
| C(11)-Ta(1)-C(13) | 55.2(2)    |
| S(1)-Ta(1)-C(13)  | 127.20(17) |
| N(1)-Ta(1)-C(10)  | 144.0(3)   |
| Cl(3)-Ta(1)-C(10) | 114.5(3)   |
| Cl(2)-Ta(1)-C(10) | 130.6(2)   |
| Cl(1)-Ta(1)-C(10) | 77.7(2)    |
| C(14)-Ta(1)-C(10) | 32.9(3)    |
| C(11)-Ta(1)-C(10) | 33.1(3)    |
| S(1)-Ta(1)-C(10)  | 90.4(3)    |
| C(13)-Ta(1)-C(10) | 55.2(3)    |
| N(1)-Ta(1)-C(12)  | 145.8(2)   |
| Cl(3)-Ta(1)-C(12) | 109.44(17) |
| Cl(2)-Ta(1)-C(12) | 75.81(17)  |
| Cl(1)-Ta(1)-C(12) | 132.77(17) |
| C(14)-Ta(1)-C(12) | 55.2(3)    |
| C(11)-Ta(1)-C(12) | 33.2(2)    |
| S(1)-Ta(1)-C(12)  | 95.03(17)  |
| C(13)-Ta(1)-C(12) | 33.6(2)    |
| C(10)-Ta(1)-C(12) | 55.2(3)    |
| C(1)-S(1)-Ta(1)   | 84.6(2)    |
| C(1)-N(1)-C(4)    | 116.6(6)   |
| C(1)-N(1)-Ta(1)   | 99.5(4)    |
| C(4)-N(1)-Ta(1)   | 143.8(4)   |
| C(1)-N(2)-C(2)    | 116.2(6)   |
| N(2)-C(1)-N(1)    | 127.0(6)   |
| N(2)-C(1)-S(1)    | 121.5(5)   |
| N(1)-C(1)-S(1)    | 111.5(5)   |
| N(2)-C(2)-C(3)    | 120.0(6)   |
| N(2)-C(2)-C(6)    | 117.3(7)   |
| C(3)-C(2)-C(6)    | 122.6(7)   |
| C(4)-C(3)-C(2)    | 120.0(6)   |
| C(3)-C(4)-N(1)    | 120.0(6)   |
| C(3)-C(4)-C(5)    | 119.9(7)   |
| N(1)-C(4)-C(5)    | 120.1(7)   |
| C(14)-C(10)-C(11) | 106.8(7)   |
| C(14)-C(10)-C(15) | 130.1(13)  |
| C(11)-C(10)-C(15) | 122.9(13)  |
|                   |            |

| C(14)-C(10)-Ta(1) | 71.9(5)   |
|-------------------|-----------|
| C(11)-C(10)-Ta(1) | 72.5(4)   |
| C(15)-C(10)-Ta(1) | 125.0(6)  |
| C(10)-C(11)-C(12) | 109.6(7)  |
| C(10)-C(11)-C(16) | 125.4(9)  |
| C(12)-C(11)-C(16) | 122.7(9)  |
| C(10)-C(11)-Ta(1) | 74.4(4)   |
| C(12)-C(11)-Ta(1) | 74.8(4)   |
| C(16)-C(11)-Ta(1) | 131.1(6)  |
| C(11)-C(12)-C(13) | 106.4(7)  |
| C(11)-C(12)-C(17) | 127.8(7)  |
| C(13)-C(12)-C(17) | 124.9(8)  |
| C(11)-C(12)-Ta(1) | 72.0(4)   |
| C(13)-C(12)-Ta(1) | 72.4(4)   |
| C(17)-C(12)-Ta(1) | 128.9(5)  |
| C(14)-C(13)-C(12) | 107.1(7)  |
| C(14)-C(13)-C(18) | 128.6(10) |
| C(12)-C(13)-C(18) | 123.9(9)  |
| C(14)-C(13)-Ta(1) | 72.1(5)   |
| C(12)-C(13)-Ta(1) | 74.0(4)   |
| C(18)-C(13)-Ta(1) | 124.8(6)  |
| C(10)-C(14)-C(13) | 110.0(7)  |
| C(10)-C(14)-C(19) | 125.7(12) |
| C(13)-C(14)-C(19) | 123.9(12) |
| C(10)-C(14)-Ta(1) | 75.1(5)   |
| C(13)-C(14)-Ta(1) | 74.7(5)   |
| C(19)-C(14)-Ta(1) | 122.4(7)  |

|              | U11     | U22     | U33     | U23     | U13     | U12     |
|--------------|---------|---------|---------|---------|---------|---------|
| Nb(1)        | 54(1)   | 47(1)   | 65(1)   | -4(1)   | 24(1)   | -2(1)   |
| P(1)         | 65(3)   | 62(3)   | 43(4)   | -2(3)   | 12(3)   | 3(2)    |
| <b>S</b> (1) | 56(3)   | 62(3)   | 41(3)   | -5(3)   | 10(3)   | 3(2)    |
| S(2)         | 55(3)   | 92(4)   | 80(4)   | 13(3)   | 6(3)    | -6(3)   |
| Si(1)        | 86(4)   | 54(3)   | 66(5)   | -22(3)  | 33(4)   | -6(3)   |
| Si(2)        | 59(3)   | 68(3)   | 88(5)   | -24(4)  | 22(3)   | 2(3)    |
| O(1)         | 86(8)   | 66(7)   | 40(8)   | -1(7)   | -21(7)  | 3(8)    |
| C(1)         | 47(9)   | 74(11)  | 37(12)  | 1(11)   | 4(9)    | -7(10)  |
| C(2)         | 43(9)   | 77(11)  | 35(12)  | 11(10)  | 13(9)   | 17(8)   |
| C(3)         | 83(14)  | 57(11)  | 74(17)  | 14(11)  | 51(13)  | 13(10)  |
| C(4)         | 96(14)  | 43(9)   | 54(14)  | 19(10)  | 34(12)  | 35(10)  |
| C(5)         | 69(14)  | 76(13)  | 100(20) | 5(13)   | 49(14)  | -19(10) |
| C(6)         | 56(12)  | 79(13)  | 110(20) | -6(15)  | 44(14)  | 2(11)   |
| C(7)         | 73(13)  | 66(12)  | 66(16)  | 0(12)   | 43(13)  | -3(11)  |
| C(8)         | 147(17) | 90(14)  | 200(30) | 11(15)  | 150(20) | -13(13) |
| C(9)         | 150(20) | 190(20) | 38(15)  | -28(16) | 1(15)   | -49(17) |
| C(10)        | 74(12)  | 81(12)  | 82(16)  | -36(12) | 36(12)  | -22(10) |
| C(11)        | 47(10)  | 36(8)   | 62(14)  | -6(9)   | 1(10)   | -11(7)  |
| C(12)        | 49(10)  | 55(10)  | 41(13)  | -6(10)  | -40(10) | 13(9)   |
| C(13)        | 76(13)  | 33(9)   | 110(20) | -7(12)  | 57(15)  | -1(9)   |
| C(14)        | 86(15)  | 39(10)  | 94(19)  | -11(12) | 42(15)  | -20(10) |
| C(15)        | 88(15)  | 39(9)   | 61(16)  | -9(10)  | 3(12)   | -22(9)  |
| C(16)        | 66(12)  | 109(15) | 310(40) | 21(19)  | 120(19) | -3(11)  |
| C(17)        | 104(16) | 132(18) | 140(20) | -59(18) | 27(16)  | -5(14)  |
| C(18)        | 100(16) | 135(18) | 120(20) | -3(17)  | -33(16) | 16(14)  |
| C(19)        | 45(10)  | 56(9)   | 36(12)  | -10(9)  | 6(9)    | 6(8)    |
| C(20)        | 65(12)  | 79(12)  | 57(15)  | 19(11)  | 11(11)  | -21(10) |
| C(21)        | 74(13)  | 83(13)  | 110(20) | 13(14)  | 45(14)  | -19(12) |
| C(22)        | 69(14)  | 115(18) | 44(16)  | -8(15)  | -2(12)  | -12(13) |
| C(23)        | 72(14)  | 150(19) | 43(15)  | 4(15)   | 26(12)  | 55(14)  |
| C(24)        | 87(14)  | 65(11)  | 76(17)  | -8(12)  | 19(13)  | 15(11)  |
| C(25)        | 26(8)   | 101(13) | 16(11)  | -16(11) | -13(8)  | -10(9)  |
| C(26)        | 41(10)  | 150(20) | 23(13)  | 5(14)   | 9(10)   | -21(11) |
| C(27)        | 65(13)  | 88(16)  | 110(20) | 68(15)  | 13(15)  | 15(12)  |
| C(28)        | 72(15)  | 72(15)  | 130(30) | -45(17) | 33(18)  | -36(12) |
| C(29)        | 69(13)  | 87(17)  | 54(17)  | -4(12)  | 15(12)  | -12(11) |
| C(30)        | 55(11)  | 66(13)  | 52(15)  | -12(11) | -15(10) | 8(9)    |

**Table S4'.** Anisotropic displacement parameters ( $Å^2 \times 10^3$ ) for **3**. The anisotropic displacement factor exponent takes the form: -2  $\pi^2$  [  $h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$  ]

|        | X    | у     | Z     | U(eq) |
|--------|------|-------|-------|-------|
| H(4)   | 7571 | 1277  | 7208  | 74    |
| H(5)   | 8911 | 2339  | 7663  | 92    |
| H(6)   | 9676 | 1464  | 8915  | 93    |
| H(7)   | 8838 | -181  | 9224  | 76    |
| H(8A)  | 7383 | -3148 | 8285  | 185   |
| H(8B)  | 8070 | -2367 | 8875  | 185   |
| H(8C)  | 8100 | -2558 | 8044  | 185   |
| H(9A)  | 6121 | -1621 | 6860  | 198   |
| H(9B)  | 6941 | -1220 | 6715  | 198   |
| H(9C)  | 6326 | -216  | 6822  | 198   |
| H(10A) | 5959 | -1587 | 8422  | 115   |
| H(10B) | 6016 | -144  | 8403  | 115   |
| H(10C) | 6610 | -883  | 9091  | 115   |
| H(12)  | 8218 | 3746  | 10171 | 74    |
| H(13)  | 9404 | 3744  | 9711  | 82    |
| H(14)  | 8866 | 4346  | 8298  | 83    |
| H(15)  | 7318 | 4501  | 7909  | 81    |
| H(16A) | 5798 | 2633  | 9175  | 221   |
| H(16B) | 5359 | 3613  | 9537  | 221   |
| H(16C) | 6210 | 3045  | 10026 | 221   |
| H(17A) | 6900 | 6475  | 9694  | 194   |
| H(17B) | 6935 | 5574  | 10368 | 194   |
| H(17C) | 6089 | 6157  | 9881  | 194   |
| H(18A) | 5638 | 4477  | 7882  | 203   |
| H(18B) | 6010 | 5803  | 8089  | 203   |
| H(18C) | 5222 | 5412  | 8294  | 203   |
| H(20)  | 7113 | -1697 | 10882 | 83    |
| H(21)  | 5718 | -1858 | 10618 | 102   |
| H(22)  | 5000 | -233  | 10785 | 97    |
| H(23)  | 5626 | 1583  | 11303 | 103   |
| H(24)  | 7042 | 1731  | 11526 | 94    |
| H(26)  | 9181 | -1548 | 12530 | 85    |
| H(27)  | 9564 | -3645 | 12494 | 108   |
| H(28)  | 9296 | -4552 | 11257 | 111   |
| H(29)  | 8817 | -3447 | 10217 | 85    |
| H(30)  | 8307 | -1511 | 10227 | 78    |

**Table S5'.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for **3**.

**Figure 1 -** ORTEP drawing of 3.



| Empirical formula                  | C <sub>29</sub> H <sub>36</sub> I <sub>4</sub> Nb O P Si <sub>2</sub> |
|------------------------------------|-----------------------------------------------------------------------|
| Formula weight                     | 1088.24                                                               |
| Temperature                        | 230(2) K                                                              |
| Wavelength                         | 0.71073 Å                                                             |
| Crystal system, space group        | Triclinic, P-1                                                        |
| Unit cell dimensions               | $a = 11.6080(10)$ Å, $\alpha = 81.77(2)$ deg.                         |
|                                    | b = 12.194(5) Å, $\beta$ = 78.420(10) deg.                            |
|                                    | $c = 14.197(2)$ Å, $\gamma = 72.220(10)$ deg.                         |
| Volume                             | 1867.4(8) Å <sup>3</sup>                                              |
| Z, Calculated density              | 2, 1.935 g/cm <sup>3</sup>                                            |
| Absorption coefficient             | 37.56cm <sup>-1</sup>                                                 |
| Range of transmisión factor        | 0.591-1.000                                                           |
| F(000)                             | 1028                                                                  |
| Crystal size                       | $0.3 \ge 0.3 \ge 0.2 \text{ mm}^3$                                    |
| Theta range for data collection    | 2.17 to 27.99 deg.                                                    |
| Limiting indices                   | $-15 \le h \le 15, -15 \le k \le 16, 0 \le l \le 18$                  |
| Reflections collected / unique     | 9343 / 8989 [R(int) = 0.0218]                                         |
| Completeness to theta $= 27.99$    | 99.7 %                                                                |
| Refinement method                  | Full-matrix least-squares on F <sup>2</sup>                           |
| Data / restraints / parameters     | 8989 / 0 / 343                                                        |
| Goodness-of-fit on $F^2$           | 1.027                                                                 |
| Final R indices $[I > 2\sigma(I)]$ | R1 = 0.0548, $wR2 = 0.1484$                                           |
| R indices (all data)               | R1 = 0.0672, $wR2 = 0.1576$                                           |
| Largest diff. peak and hole        | 4.118 and -4.117 e.Å <sup>-3</sup>                                    |
|                                    |                                                                       |

 Table S1. Crystal data and structure refinement for 8.

|       | X        | v        | Z       | U(eq)  |
|-------|----------|----------|---------|--------|
| Nb(1) | 3159(1)  | 7391(1)  | 2665(1) | 29(1)  |
| I(1)  | 5221(1)  | 4137(1)  | 1658(1) | 46(1)  |
| I(2)  | -2089(1) | 11099(1) | 1332(1) | 117(1) |
| I(3)  | -1964(1) | 8677(1)  | 1929(1) | 72(1)  |
| I(4)  | -1817(1) | 6266(1)  | 2611(1) | 70(1)  |
| P(1)  | 3158(1)  | 5454(1)  | 2158(1) | 33(1)  |
| Si(1) | 3267(2)  | 10627(2) | 1826(2) | 58(1)  |
| Si(2) | 2574(2)  | 8182(2)  | 5349(1) | 54(1)  |
| O(1)  | 5036(4)  | 5960(4)  | 4075(4) | 55(1)  |
| C(1)  | 4377(5)  | 6449(5)  | 3569(4) | 39(1)  |
| C(11) | 3747(6)  | 9019(5)  | 1765(4) | 41(1)  |
| C(12) | 4800(5)  | 8215(5)  | 2103(5) | 42(1)  |
| C(13) | 5078(5)  | 7162(5)  | 1653(5) | 43(1)  |
| C(14) | 4236(6)  | 7316(5)  | 1034(4) | 42(1)  |
| C(15) | 3416(6)  | 8436(5)  | 1096(4) | 43(1)  |
| C(16) | 3604(12) | 10981(9) | 2946(9) | 95(3)  |
| C(17) | 1640(10) | 11254(8) | 1651(9) | 89(3)  |
| C(18) | 4287(12) | 11148(7) | 790(9)  | 104(4) |
| C(21) | 2084(5)  | 7986(5)  | 4210(4) | 37(1)  |
| C(22) | 1751(5)  | 7005(5)  | 4015(4) | 39(1)  |
| C(23) | 1085(5)  | 7335(6)  | 3230(5) | 44(1)  |
| C(24) | 1035(5)  | 8487(6)  | 2909(5) | 43(1)  |
| C(25) | 1635(5)  | 8882(5)  | 3501(4) | 38(1)  |
| C(26) | 1306(13) | 9381(13) | 5879(9) | 135(7) |
| C(27) | 4030(11) | 8572(11) | 5139(9) | 96(3)  |
| C(28) | 2717(11) | 6802(11) | 6137(8) | 92(3)  |
| C(31) | 2536(5)  | 4517(5)  | 3109(4) | 39(1)  |
| C(32) | 3151(6)  | 4037(6)  | 3886(5) | 48(1)  |
| C(33) | 2630(8)  | 3432(7)  | 4662(5) | 61(2)  |
| C(34) | 1473(9)  | 3304(9)  | 4673(6) | 74(2)  |
| C(35) | 877(7)   | 3759(9)  | 3903(7) | 72(2)  |
| C(36) | 1392(6)  | 4389(7)  | 3119(5) | 53(2)  |
| C(41) | 2403(5)  | 5467(5)  | 1151(4) | 37(1)  |
| C(42) | 2547(7)  | 4454(6)  | 728(5)  | 50(2)  |
| C(43) | 1964(7)  | 4486(7)  | -35(6)  | 58(2)  |
| C(44) | 1216(7)  | 5512(8)  | -373(5) | 58(2)  |
| C(45) | 1046(8)  | 6512(6)  | 47(6)   | 58(2)  |
| C(46) | 1644(7)  | 6493(5)  | 799(5)  | 47(1)  |

**Table S2.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for **8**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| Nb(1)-C(1)                     | 2.069(6)               |
|--------------------------------|------------------------|
| Nb(1)-C(22)                    | 2.349(5)               |
| Nb(1)-C(13)                    | 2.356(5)               |
| Nb(1)-C(12)                    | 2 368(5)               |
| Nb(1) - C(25)                  | 2.300(3)<br>2 379(5)   |
| Nb(1) - C(23)                  | 2.377(5)               |
| NU(1)-C(21)                    | 2.307(3)               |
| ND(1)-C(23)                    | 2.399(0)               |
| ND(1)-C(14)                    | 2.401(6)               |
| Nb(1)-C(24)                    | 2.401(6)               |
| Nb(1)-C(11)                    | 2.407(6)               |
| Nb(1)-C(15)                    | 2.414(6)               |
| Nb(1)-P(1)                     | 2.5652(17)             |
| I(1)-P(1)                      | 2.4724(15)             |
| I(2)-I(3)                      | 2.9212(17)             |
| I(3)-I(4)                      | 2.9241(15)             |
| P(1)-C(41)                     | 1.817(6)               |
| P(1)-C(31)                     | 1.823(6)               |
| Si(1)-C(16)                    | 1 849(12)              |
| Si(1) - C(18)                  | 1 860(9)               |
| Si(1) - C(17)                  | 1.861(11)              |
| $S_{i}(1) = C(11)$             | 1.877(6)               |
| Si(1) - C(11)<br>Si(2) - C(27) | 1.877(0)<br>1.850(12)  |
| SI(2) - C(27)<br>Si(2) - C(26) | 1.030(12)<br>1.951(10) |
| SI(2) - C(20)                  | 1.651(10)              |
| S1(2)-C(28)                    | 1.805(11)              |
| $S_1(2)$ - $C_2(21)$           | 1.88/(6)               |
| O(1)-C(1)                      | 1.131(7)               |
| C(11)-C(12)                    | 1.434(9)               |
| C(11)-C(15)                    | 1.435(9)               |
| C(12)-C(13)                    | 1.435(8)               |
| C(13)-C(14)                    | 1.396(9)               |
| C(14)-C(15)                    | 1.409(9)               |
| C(21)-C(25)                    | 1.424(8)               |
| C(21)-C(22)                    | 1.441(8)               |
| C(22)-C(23)                    | 1.424(9)               |
| C(23)-C(24)                    | 1.401(9)               |
| C(24)-C(25)                    | 1.407(9)               |
| C(31)-C(36)                    | 1.380(9)               |
| C(31)-C(32)                    | 1 394(9)               |
| C(32)- $C(33)$                 | 1.377(10)              |
| C(32) = C(33)<br>C(33) = C(34) | 1.377(10)<br>1 305(13) |
| C(34) = C(35)                  | 1.373(13)<br>1.270(14) |
| C(34)-C(33)                    | 1.370(14)<br>1.208(10) |
| C(33)-C(30)                    | 1.398(10)              |
| C(41) - C(40)                  | 1.384(9)               |
| C(41)-C(42)                    | 1.401(8)               |
| C(42)-C(43)                    | 1.377(10)              |
| C(43)-C(44)                    | 1.372(12)              |
| C(44)-C(45)                    | 1.378(11)              |
| C(45)-C(46)                    | 1.379(10)              |

 Table S3.
 Bond lengths [Å] and angles [deg] for 8.

| C(1)-Nb(1)-C(22)          | 80.8(2)  |
|---------------------------|----------|
| C(1)-Nb(1)-C(13)          | 77.2(2)  |
| C(22)-Nb(1)-C(13)         | 157.0(2) |
| C(1)-Nb(1)-C(12)          | 79.8(2)  |
| C(22)-Nb(1)-C(12)         | 145.2(2) |
| C(13)-Nb(1)-C(12)         | 35.4(2)  |
| C(1)-Nb(1)-C(25)          | 109.5(2) |
| C(22)-Nb(1)-C(25)         | 57.4(2)  |
| C(13)-Nb(1)-C(25)         | 137.7(2) |
| C(12)-Nb(1)-C(25)         | 103.1(2) |
| C(1)-Nb(1)-C(21)          | 77.8(2)  |
| C(22)-Nb(1)-C(21)         | 35.4(2)  |
| C(13)-Nb(1)-C(21)         | 141.9(2) |
| C(12)-Nb(1)-C(21)         | 111.6(2) |
| C(25)-Nb(1)-C(21)         | 34.8(2)  |
| C(1)-Nb(1)-C(23)          | 114.0(2) |
| C(22)-Nb(1)-C(23)         | 34.9(2)  |
| C(13)-Nb(1)-C(23)         | 159.7(2) |
| C(12)-Nb(1)-C(23)         | 157.8(2) |
| C(25)-Nb(1)-C(23)         | 56.8(2)  |
| C(21)-Nb(1)-C(23)         | 58.3(2)  |
| C(1)-Nb(1)-C(14)          | 108.2(2) |
| C(22)-Nb(1)-C(14)         | 157.3(2) |
| C(13)-Nb(1)-C(14)         | 34.1(2)  |
| C(12)-Nb(1)-C(14)         | 57.4(2)  |
| C(25)-Nb(1)-C(14)         | 132.8(2) |
| C(21)-Nb(1)-C(14)         | 164.9(2) |
| C(23)-Nb(1)-C(14)         | 127.3(2) |
| C(1)-Nb(1)-C(24)          | 134.5(2) |
| C(22)-Nb(1)-C(24)         | 57.5(2)  |
| C(13)-Nb(1)-C(24)         | 145.6(2) |
| C(12)-Nb(1)-C(24)         | 124.1(2) |
| C(25)-Nb(1)-C(24)         | 34.2(2)  |
| C(21)-Nb(1)-C(24)         | 58.0(2)  |
| C(23)-Nb(1)-C(24)         | 33.9(2)  |
| C(14)-Nb(1)-C(24)         | 117.3(2) |
| C(1)-Nb(1)-C(11)          | 113.0(2) |
| C(22)-Nb(1)-C(11)         | 139.1(2) |
| C(13)-Nb(1)-C(11)         | 58.4(2)  |
| C(12)-Nb(1)-C(11)         | 34.9(2)  |
| C(25)-Nb(1)-C(11)         | 81.8(2)  |
| C(21)-Nb(1)-C(11)         | 107.3(2) |
| C(23)-Nb(1)-C(11)         | 125.0(2) |
| C(14)-Nb(1)-C(11)         | 57.6(2)  |
| C(24)-Nb(1)- $C(11)$      | 91.5(2)  |
| C(1)-IND $(1)$ - $C(15)$  | 135.0(2) |
| U(22)-ND(1)- $U(15)$      | 145.8(2) |
| C(13)-IND $(1)$ - $C(13)$ | 51.0(2)  |
| C(12)-ND(1)- $C(15)$      | 57.2(2)  |

| C(25)-Nb(1)-C(15) | 98.8(2)    |
|-------------------|------------|
| C(21)-Nb(1)-C(15) | 132.5(2)   |
| C(23)-Nb(1)-C(15) | 112.8(2)   |
| C(14)-Nb(1)-C(15) | 34.0(2)    |
| C(24)-Nb(1)-C(15) | 88.8(2)    |
| C(11)-Nb(1)-C(15) | 34.6(2)    |
| C(1)-Nb(1)-P(1)   | 87.33(17)  |
| C(22)-Nb(1)-P(1)  | 84.78(15)  |
| C(13)-Nb(1)-P(1)  | 87.40(15)  |
| C(12)-Nb(1)-P(1)  | 122.74(15) |
| C(25)-Nb(1)-P(1)  | 133.56(15) |
| C(21)-Nb(1)-P(1)  | 119.62(15) |
| C(23)-Nb(1)-P(1)  | 76.78(15)  |
| C(14)-Nb(1)-P(1)  | 75.06(14)  |
| C(24)-Nb(1)-P(1)  | 104.32(16) |
| C(11)-Nb(1)-P(1)  | 132.04(15) |
| C(15)-Nb(1)-P(1)  | 99.73(15)  |
| I(2)-I(3)-I(4)    | 177.39(3)  |
| C(41)-P(1)-C(31)  | 104.1(3)   |
| C(41)-P(1)-I(1)   | 101.6(2)   |
| C(31)-P(1)-I(1)   | 99.90(19)  |
| C(41)-P(1)-Nb(1)  | 118.61(19) |
| C(31)-P(1)-Nb(1)  | 115.55(19) |
| I(1)-P(1)-Nb(1)   | 114.55(6)  |
| C(16)-Si(1)-C(18) | 107.8(6)   |
| C(16)-Si(1)-C(17) | 114.4(6)   |
| C(18)-Si(1)-C(17) | 109.6(6)   |
| C(16)-Si(1)-C(11) | 110.4(4)   |
| C(18)-Si(1)-C(11) | 103.9(3)   |
| C(17)-Si(1)-C(11) | 110.2(4)   |
| C(27)-Si(2)-C(26) | 109.5(7)   |
| C(27)-Si(2)-C(28) | 110.0(6)   |
| C(26)-Si(2)-C(28) | 111.8(7)   |
| C(27)-Si(2)-C(21) | 113.9(4)   |
| C(26)-Si(2)-C(21) | 104.1(4)   |
| C(28)-Si(2)-C(21) | 107.4(4)   |
| O(1)-C(1)-Nb(1)   | 178.2(5)   |
| C(12)-C(11)-C(15) | 105.9(5)   |
| C(12)-C(11)-Si(1) | 125.8(4)   |
| C(15)-C(11)-Si(1) | 125.0(5)   |
| C(12)-C(11)-Nb(1) | 71.0(3)    |
| C(15)-C(11)-Nb(1) | 73.0(3)    |
| Si(1)-C(11)-Nb(1) | 136.8(3)   |
| C(11)-C(12)-C(13) | 108.3(5)   |
| C(11)-C(12)-Nb(1) | 74.0(3)    |
| C(13)-C(12)-Nb(1) | 71.9(3)    |
| C(14)-C(13)-C(12) | 108.0(6)   |
| C(14)-C(13)-Nb(1) | 74.7(3)    |
| C(12)-C(13)-Nb(1) | 72.8(3)    |
| C(13)-C(14)-C(15) | 108.6(5)   |
|                   |            |

| C(1  | 3)-C(14)-Nb(1) | 71.2(3)  |
|------|----------------|----------|
| C(1  | 5)-C(14)-Nb(1) | 73.5(3)  |
| C(1  | 4)-C(15)-C(11) | 109.1(6) |
| C(1- | 4)-C(15)-Nb(1) | 72.5(3)  |
| C(1  | 1)-C(15)-Nb(1) | 72.4(3)  |
| C(2  | 5)-C(21)-C(22) | 105.0(5) |
| C(2  | 5)-C(21)-Si(2) | 125.9(4) |
| C(2  | 2)-C(21)-Si(2) | 126.9(5) |
| C(2  | 5)-C(21)-Nb(1) | 72.3(3)  |
| C(2  | 2)-C(21)-Nb(1) | 70.9(3)  |
| Si(2 | 2)-C(21)-Nb(1) | 134.1(3) |
| C(2  | 3)-C(22)-C(21) | 109.0(5) |
| C(2  | 3)-C(22)-Nb(1) | 74.5(3)  |
| C(2  | 1)-C(22)-Nb(1) | 73.7(3)  |
| C(2  | 4)-C(23)-C(22) | 107.8(5) |
| C(2  | 4)-C(23)-Nb(1) | 73.1(3)  |
| C(2  | 2)-C(23)-Nb(1) | 70.6(3)  |
| C(2  | 3)-C(24)-C(25) | 108.0(5) |
| C(2  | 3)-C(24)-Nb(1) | 73.0(3)  |
| C(2  | 5)-C(24)-Nb(1) | 72.0(3)  |
| C(2  | 4)-C(25)-C(21) | 110.2(5) |
| C(2  | 4)-C(25)-Nb(1) | 73.7(3)  |
| C(2  | 1)-C(25)-Nb(1) | 72.9(3)  |
| C(3  | 6)-C(31)-C(32) | 119.8(6) |
| C(3  | 6)-C(31)-P(1)  | 120.1(5) |
| C(3  | 2)-C(31)-P(1)  | 119.7(5) |
| C(3  | 3)-C(32)-C(31) | 120.6(7) |
| C(3  | 2)-C(33)-C(34) | 119.7(7) |
| C(3  | 5)-C(34)-C(33) | 119.8(7) |
| C(3- | 4)-C(35)-C(36) | 120.9(8) |
| C(3  | 1)-C(36)-C(35) | 119.3(7) |
| C(4  | 6)-C(41)-C(42) | 118.5(6) |
| C(4  | 6)-C(41)-P(1)  | 119.9(4) |
| C(4  | 2)-C(41)-P(1)  | 121.6(5) |
| C(4  | 3)-C(42)-C(41) | 120.5(6) |
| C(4  | 4)-C(43)-C(42) | 120.0(7) |
| C(4  | 3)-C(44)-C(45) | 120.1(6) |
| C(4  | 4)-C(45)-C(46) | 120.2(7) |
| C(4  | 5)-C(46)-C(41) | 120.5(6) |

**Table S4.** Anisotropic displacement parameters ( $Å^2 \times 10^3$ ) for **8**. The anisotropic displacement factor exponent takes the form: -2  $\pi^2$  [  $h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$  ]

|       | U11     | U22     | U33    | U23    | U13    | U12    |
|-------|---------|---------|--------|--------|--------|--------|
| Nb(1) | 29(1)   | 28(1)   | 31(1)  | -3(1)  | -1(1)  | -11(1) |
| I(1)  | 43(1)   | 41(1)   | 51(1)  | -10(1) | -3(1)  | -5(1)  |
| I(2)  | 166(1)  | 117(1)  | 93(1)  | 24(1)  | -63(1) | -68(1) |
| I(3)  | 55(1)   | 108(1)  | 62(1)  | -3(1)  | -19(1) | -34(1) |
| I(4)  | 61(1)   | 88(1)   | 61(1)  | -13(1) | -16(1) | -16(1) |
| P(1)  | 36(1)   | 29(1)   | 34(1)  | -2(1)  | -3(1)  | -13(1) |
| Si(1) | 71(1)   | 31(1)   | 66(1)  | -4(1)  | 11(1)  | -21(1) |
| Si(2) | 53(1)   | 59(1)   | 43(1)  | -17(1) | -14(1) | 4(1)   |
| O(1)  | 46(2)   | 56(3)   | 55(3)  | 4(2)   | -15(2) | -4(2)  |
| C(1)  | 35(3)   | 37(3)   | 42(3)  | -3(2)  | -1(2)  | -11(2) |
| C(11) | 49(3)   | 34(3)   | 43(3)  | 1(2)   | 0(2)   | -22(2) |
| C(12) | 40(3)   | 41(3)   | 48(3)  | -5(2)  | 2(2)   | -24(2) |
| C(13) | 37(3)   | 43(3)   | 46(3)  | -9(3)  | 11(2)  | -16(2) |
| C(14) | 54(3)   | 39(3)   | 35(3)  | -6(2)  | 10(2)  | -24(3) |
| C(15) | 55(3)   | 40(3)   | 37(3)  | 3(2)   | -4(2)  | -23(3) |
| C(16) | 131(10) | 69(6)   | 98(8)  | -29(6) | -10(7) | -44(6) |
| C(17) | 82(6)   | 58(5)   | 106(8) | 23(5)  | -12(6) | -5(4)  |
| C(18) | 126(9)  | 36(4)   | 119(9) | 3(5)   | 51(7)  | -29(5) |
| C(21) | 34(2)   | 38(3)   | 36(3)  | -9(2)  | 1(2)   | -7(2)  |
| C(22) | 35(3)   | 40(3)   | 37(3)  | -5(2)  | 7(2)   | -11(2) |
| C(23) | 31(3)   | 53(3)   | 53(3)  | -16(3) | 1(2)   | -17(2) |
| C(24) | 33(3)   | 47(3)   | 43(3)  | -9(3)  | -6(2)  | -1(2)  |
| C(25) | 34(2)   | 33(3)   | 41(3)  | -4(2)  | 0(2)   | -5(2)  |
| C(26) | 122(9)  | 147(11) | 98(8)  | -83(8) | -59(7) | 73(9)  |
| C(27) | 94(7)   | 113(9)  | 103(8) | -30(7) | -41(6) | -38(7) |
| C(28) | 107(8)  | 101(8)  | 65(6)  | 16(5)  | -34(6) | -23(6) |
| C(31) | 45(3)   | 30(3)   | 40(3)  | -2(2)  | 1(2)   | -15(2) |
| C(32) | 53(3)   | 44(3)   | 45(3)  | 2(3)   | -9(3)  | -15(3) |
| C(33) | 74(5)   | 62(4)   | 41(4)  | 9(3)   | -2(3)  | -20(4) |
| C(34) | 72(5)   | 83(6)   | 52(4)  | 15(4)  | 16(4)  | -25(4) |
| C(35) | 47(4)   | 89(6)   | 75(6)  | 9(5)   | 6(4)   | -31(4) |
| C(36) | 47(3)   | 59(4)   | 52(4)  | 8(3)   | -4(3)  | -24(3) |
| C(41) | 41(3)   | 36(3)   | 37(3)  | 0(2)   | -5(2)  | -18(2) |
| C(42) | 60(4)   | 38(3)   | 55(4)  | -8(3)  | -12(3) | -15(3) |
| C(43) | 66(4)   | 62(4)   | 57(4)  | -22(3) | -10(3) | -25(4) |
| C(44) | 64(4)   | 77(5)   | 46(4)  | -1(3)  | -18(3) | -34(4) |
| C(45) | 69(4)   | 48(4)   | 65(5)  | 7(3)   | -29(4) | -20(3) |
| C(46) | 62(4)   | 35(3)   | 50(4)  | 3(3)   | -19(3) | -19(3) |

|        | Х    | у     | Z    | U(eq) |
|--------|------|-------|------|-------|
| H(12)  | 5230 | 8352  | 2540 | 50    |
| H(13)  | 5708 | 6494  | 1757 | 52    |
| H(14)  | 4220 | 6771  | 645  | 50    |
| H(15)  | 2765 | 8748  | 758  | 52    |
| H(16A) | 4455 | 10625 | 2986 | 142   |
| H(16B) | 3107 | 10698 | 3494 | 142   |
| H(16C) | 3424 | 11804 | 2940 | 142   |
| H(17A) | 1539 | 11035 | 1056 | 133   |
| H(17B) | 1425 | 12081 | 1629 | 133   |
| H(17C) | 1117 | 10969 | 2178 | 133   |
| H(18A) | 4135 | 10967 | 198  | 156   |
| H(18B) | 5128 | 10776 | 855  | 156   |
| H(18C) | 4123 | 11969 | 782  | 156   |
| H(22)  | 1941 | 6276  | 4347 | 47    |
| H(23)  | 744  | 6868  | 2976 | 53    |
| H(24)  | 669  | 8915  | 2395 | 51    |
| H(25)  | 1725 | 9623  | 3438 | 46    |
| H(26A) | 550  | 9179  | 5986 | 202   |
| H(26B) | 1242 | 10069 | 5445 | 202   |
| H(26C) | 1468 | 9517  | 6483 | 202   |
| H(27A) | 4687 | 7951  | 4862 | 144   |
| H(27B) | 4196 | 8708  | 5741 | 144   |
| H(27C) | 3964 | 9260  | 4704 | 144   |
| H(28A) | 3384 | 6203  | 5841 | 138   |
| H(28B) | 1969 | 6591  | 6222 | 138   |
| H(28C) | 2872 | 6902  | 6754 | 138   |
| H(32)  | 3920 | 4126  | 3879 | 57    |
| H(33)  | 3047 | 3111  | 5176 | 74    |
| H(34)  | 1108 | 2912  | 5201 | 89    |
| H(35)  | 120  | 3648  | 3902 | 86    |
| H(36)  | 969  | 4718  | 2610 | 63    |
| H(42)  | 3040 | 3754  | 963  | 60    |
| H(43)  | 2078 | 3812  | -320 | 70    |
| H(44)  | 822  | 5531  | -888 | 70    |
| H(45)  | 526  | 7203  | -177 | 70    |
| H(46)  | 1537 | 7175  | 1070 | 57    |

**Table S5.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for **8**.



