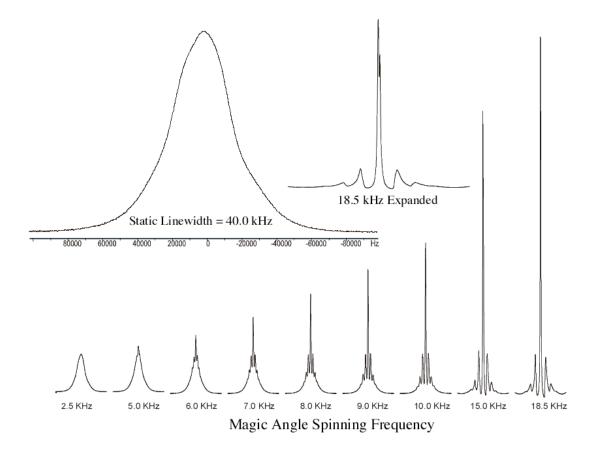
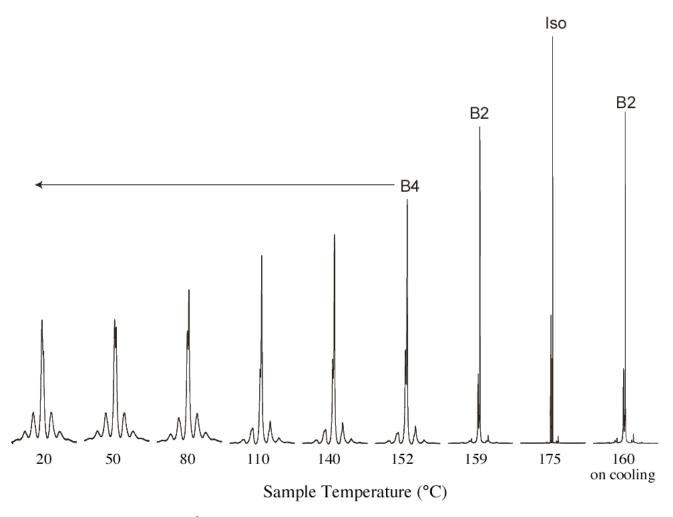
Supporting Information

On the Nature of the B4 Banana Phase: Crystal or not a Crystal?

David M. Walba*, Lior Eshdat, Eva Körblova, and Richard Shoemaker


University of Colorado, Department of Chemistry and Biochemistry, 215 UCB, Boulder, Colorado 80309-

0215


Details on the derivation of $\Delta \omega_{dipolar}$

To estimate the magnitude of the homonuclear dipolar coupling, the second-moment of the ¹H NMR signal of B4 at room temperature was first determined under non-spinning (static) sample conditions (**Figure 1**). For homogeneously broadened lines at intermediate magic-angle-spinning frequencies, the spinning-sideband appearance vs. spinning-frequency is nearly impossible to calculate explicitly. However, by performing variable spinning-speed MAS ¹H NMR experiments at room temperature (**Figure 1**), the spinning sideband pattern of the homogeneously broadened line provides a semi-quantitative determination of the appearance of Δv (dipolar) vs v(MAS).¹ By performing variable temperature MAS ¹H NMR of the sample at constant spinning speed (**Figure 2**), the spinning-sideband pattern (including relative linewidths) was matched to the room-temperature variable-spinning experiments, thereby yielding an estimate of Δv (dipolar)/v(MAS). For example, at 153 °C the line shape in **Figure 2** resembles the one that is obtained at 18.5 kHz in **Figure 1**. Therefore, the $\Delta \omega_{dipolar} / \omega_{rotor}$ ratio is 2.2. The spinning rate at the variable temperatures was ~10 kHz.

¹ See *Solid-State NMR Spectroscopy*, *Principles and Applications*, ed. Melinda J. Duer, Blackwell Science Ltd., **2002** 84-85.

Figure 1. Variable-frequency, ¹H MAS NMR of B4 at 20°C.

Figure 2. Broad range VT ¹H MAS single pulse spectra showing the spinning side bands. Spinning rate ~ 10 kHz.