Synthesis of 2-Cyclopentenones by Gold(I)-Catalyzed Rautenstrauch Rearrangement

Xiaodong Shi, David J. Gorin and F. Dean Toste* Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley, Berkeley, California 94720

Supporting Information

General Information. Unless otherwise noted all commercial materials were purchased from Aldrich Chemical Company and used without further purification. Reactions were carried out in two dram vials fitted with threaded caps. ACS grade solvents were obtained from EM science and used without purification. TLC analysis of reaction mixtures was preformed on Merck silica gel 60 F₂₅₄ TLC plates. Chromatography was carried out on Merck 60 silica gel (32-63 µm). ¹H and ¹³C NMR spectra were recorded with Bruker AV-300, AVB-400 and AVQ-400 spectrometers and referenced to CDCl₃ unless otherwise noted. Mass spectral were obtained from the Micro-Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. High resolution mass spectra (HRMS) were obtained on VG ProSpec Mass Spectrometer using electron impact (EI) at 70 eV unless otherwise noted. Analytical chiral HPLC was performed with a Shimadzu VP Series Chiral HPLC with detection at 210, 254, and 230 nm using Chiralcel AD and OD columns. Analytical GC was carried out with a Hewlett Packard HP 6850 GC equipped with an Agilent DB-WAX (30.0 m x 0.25 mm) column for achiral separation and a Chiraldex G-TA (30.0 m x 0.25 mm) column for chiral separation. The products were purified and confirmed by NMR spectra before enantioselectivities were measured. The peaks of two enantiomers were located based on the retention times derived from racemic mixture.

General procedure for intramolecular cyclization reactions catalyzed by PPh₃Au⁺ SbF₆: A 2-dram vial containing a magnetic stir bar was charged with a solution of 1ethynyl-2-propenyl pivalates (100 mg, 1 eq) in acetonitrile (0.1 M in substrate). To the resulting solutions was added freshly generated 0.05M solution of PPh₃AuSbF₆ (2 mol%) prepared by mixing stoichiometric amounts of PPh₃AuCl and AgSbF₆ in dichloromethane followed by filtration through a celite plug to remove precipitated AgCl. The reaction mixture was then stirred at room temperature and monitored periodically by TLC. Upon completion, the reaction mixture was loaded directly on to a silica gel column and chromatographed with the appropriate mixture of hexanes and EtOAc to give the cyclopentenone products described below.

O Me

⁵ ^{Me} 3,4-Dimethyl-cyclopent-2-enone (5): Reaction was complete after 8h (2% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (85%): ¹H-NMR (CDCl₃, 400 MHz) δ 5.89 (s, 1H), 2.84-2.80 (m, 1H), 2.65 (dd, 1H, J = 18.5, 6.6 Hz), 2.09 (s, 3H), 2.01 (dd, 1H, J = 18.5, 2.0 Hz), 1.20 (d, 3H, J = 7.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ 209.0, 182.7, 130.3, 44.3, 38.9, 18.8, 17.1 ppm. The ¹H- and ¹³C-NMR data was consistent with literature¹ data.

O n-Bu

7 *3-Butyl-cyclopent-2-enone* (7): Reaction was complete in 8h (2% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (80%): ¹H-NMR (CDCl₃, 400 MHz) δ 5.92 (t, 1H, J = 1.4 Hz), 2.57-2.54 (m, 2H), 2.41-2.36 (m, 4H), 1.61-1.49 (m, 2H), 1.41-1.29 (m, 2H), 0.91 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ 210.6, 183.7, 129.7, 35.6, 33.5, 31.8, 29.4, 27.4, 22.7, 14.1 ppm. The ¹H- and ¹³C-NMR data was consistent with literature² data.

O n-Bu

^{Ph'} **9** *3-Butyl-5-phenyl-cyclopent-2-enone* (**9**): Reaction was complete after 20h (5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as colorless oil (73%): ¹H-NMR (CDCl₃, 400 MHz) δ 7.38-7.17 (m, 5H), 6.07 (s, 1H), 3.65 (dd, *J* = 2.8, 7.2 Hz, 1H), 3.15 (dd, *J* = 7.5, 18.8 Hz, 1H), 2.73 (br d, *J* = 18.8 Hz, 1H), 2.53 (t, *J* = 7.5 Hz, 2H), 1.68 (quintet, *J* = 7.5 Hz, 2H), 1.47 (sextet, *J* = 7.3 Hz, 2H), 1.02 (t, *J* = 7.3 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 209.1, 182.4, 139.9, 128.8, 128.5, 127.6, 126.9, 52.3, 41.4, 33.3, 29.2, 22.5, 13.8 ppm. The ¹H- and ¹³C-NMR data was consistent with literature³ data.

O n-Bu

< 11 3-Butyl-5-cyclopropyl-cyclopent-2-enone (11): Reaction was complete after 20h (5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (85%): ¹H-NMR (CDCl₃, 400 MHz) δ 5.92 (s, 1H), 2.72 (dd, *J* = 6.9, 18.5 Hz, 1H), 2.41 (t, *J* = 7.5 Hz, 2H), 2.28 (d, *J* = 8.7 Hz, 1H), 2.08 (dt, *J* = 2.3, 7.6 Hz, 1H), 1.58 (quintet, *J* = 7.5 Hz, 2H), 1.39 (sextet, *J* = 7.3 Hz, 2H), 0.92 (t, *J* = 7.3 Hz, 3H), 0.90 (m, 1H), 0.58 (m, 1H), 0.43 (m, 2H), 0.19 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ 211.3, 181.6, 128.7, 48.9, 37.5, 33.2, 29.1, 27.0, 13.8, 12.7, 3.1, 1.3 ppm. HRMS (EI) calc'd for [C₁₂H₁₈O]⁺: *m/z* 178.1358, found 178.1358.

¹³ *3-Butyl-5-isopropylidene-cyclopent-2-enone* (13): Reaction was complete after 20h (5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (81%): ¹H-NMR (CDCl₃, 400 MHz) δ 7.75 (s 1H), 2.96 (s, 2H), 2.15 (t, 2H, J = 7.2 Hz), 1.92 (s, 3H), 1.90 (s, 3H), 1.49-1.44 (m, 2H), 1.38-1.33 (m, 2H), 0.94 (t, 3H, J = 7.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ 206.8, 152.4, 141.2, 135.0, 130.0, 38.8, 35.9, 29.9, 22.6, 17.4, 14.0, 10.4 ppm. HRMS (EI) calc.'d for [C₁₂H₁₈O]⁺: *m/z* 178.1358, found 178.1357.

0

15 Ph 3-Phenyl-cyclopent-2-enone (15): Reaction was complete after 8h (2% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as colorless oil (68%): ¹H-NMR (CDCl₃, 400 MHz) δ 7.64-7.62 (m, 2H), 7.48-7.30 (m, 3H), 6.58 (t, 1H, J = 1.7 Hz), 3.06 (m, 2H), 2.60 (m, 2H); ¹³C-NMR (CDCl₃, 100 MHz) δ 209.7, 174.3, 134.3, 131.5, 129.2, 127.8, 127.1, 35.6, 28.9 ppm. ¹H-and ¹³C-NMR data was consistent with literature⁴ data.

O N-Ts

17 *N*-(*Tosyl*)-1,2,3,4,4a,5-hexahydro-[2]pyrindin-6-one (17): Reaction finished in 14 hours (5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow solid (45%): ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (d, 2H, J = 8.3Hz), 7.33 (d, 2H, J = 8.3Hz), 5.99 (s, 1H), 4.72, (d, 1H, J = 13.3Hz), 3.93 (m, 1H), 3.18 (d, 1H, J = 13.3Hz), 2.62-2.38 (m, 3H), 2.43 (s, 3H), 2.12 (m, 1H), 1.99 (dd, 1H, J = 20.3, 4.3Hz), 1.45 (ddd, 1H, J = 20.3, 12.5, 4.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 207.5, 172.5, 144.4, 133.2, 130.2, 129.4, 128.0, 127.3, 47.7, 46.0, 41.6, 39.5, 32.3, 21.8. HRMS (EI) Calcd. for $[C_{15}H_{17}NO_3S]^+$ (M⁺) is 291.092915, Found 291.092849.

3a,4-Dihydro-3H-cyclopenta[c]chromen-2-one (**19**): Reaction was complete after 10h (5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (48%): ¹H NMR (C₆D₆, 400 MHz) δ 7.16 (dd, 1 H, J = 1.5, 7.5 Hz), 7.02 (m, 1 H), 6.9 (dd, 1 H, J = 0.5, 8.0 Hz), 6.68 (m, 1 H), 6.18 (dd, 1H, J = 1.0, 2.0 Hz), 3.81 (dd, 1 H, J = 6.0, 10.5 Hz), 3.11 (dd, 1 H, J = 10.5, 13.5 Hz), 2.54 (m, 1 H), 2.13 (dd, 1 H, J = 7.0, 18 Hz), 1.45 (dd, 1H, J = 4.5, 18 Hz). ¹³C NMR (C₆D₆, 100 MHz) δ 203.6, 201.2, 166.7, 156.2, 132.6, 127.1, 121.9, 121.0, 117.7, 69.7, 37.3, 35.8. Anal. Calcd for C₁₂H₁₀O₂: C, 77.40; H, 5.41. Found: C, 77.14; H, 5.59.

0

23 5,5-Dimethyl-4,5,6,6a-tetrahydro-1H-pentalen-2-one (**23**): Reaction was complete after 8 hours (2% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (78%): ¹H-NMR (CDCl₃, 400 MHz) δ 5.81 (d, 1H, J = 2.2 Hz), 3.16 (m, 1H), 2.58 (dd, 1H, J = 17.8, 6.3 Hz), 2.41 (d, 2H, J = 6.0 Hz), 2.04 (dd, 1H, J = 17.8, 3.0 Hz), 1.91 (dd, 1H, J = 12.4, 8.0 Hz), 1.22 (s, 3H), 1.11 (s, 3H), 1.09 (d, 1H, J = 12 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ 211.2, 191.3, 125.1, 46.4, 45.5, 42.9, 42.7, 41.2, 31.1, 30.9 ppm. ¹H- and ¹³C-NMR data was consistent with literature⁶ data.

0

0:

29

25 *1,4,5,6,7,7a-Hexahydro-inden-2-one* (**25**): Reaction was complete after 8h (2% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (82%): ¹H-NMR (CDCl₃, 400 MHz) δ 5.83 (s, 1H), 2.82 (d, 1H, J = 13.7), 2.70-2.40 (m, 2H), 2.40-1.00 (m, 8H); ¹³C-NMR (CDCl₃, 100 MHz) δ 209.2, 184.9, 126.7, 42.4, 41.8, 35.0, 31.0, 27.0, 25.2 ppm. ¹H- and ¹³C-NMR data was consistent with literature⁵ data.

 \vec{H} 3,3*a*,4,5-*Tetrahydro-cyclopenta[a]naphthalen-2-one* (**27**): Reaction was complete after 10h (5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (78%): ¹H NMR (C₆D₆, 400 MHz) δ 7.35 (m, 1 H), 7.08 (m, 1H), 6.95, (m, 1H), 6.88 (d, 1H, J = 7.6 Hz), 6.38 (d, 1H, J = 1.6 Hz), 2.3-2.6 (m, 4 H), 1.90 (dd, 1 H, J = 4.5, 18.0 Hz), 1.58 (m, 1H), 1.10 (m, 1H). ¹³C NMR (C₆D₆, 100 MHz) δ 205.4, 173.3, 153.8, 138.9, 130.3, 129.3, 126.7, 126.3, 123.8, 42.4, 39.3, 29.6, 29.3. Anal. Calcd for C₁₃H₁₂O: C, 84.75; H, 6.57. Found: C, 84.39; H, 6.60

H³ 4,5,6,7,8,8a-Hexahydro-1H-azulen-2-one (**29**): Reaction was complete after 8h (2.5% catalyst loading). Product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (73%): ¹H NMR (C₆D₆, 400 MHz) δ ¹H NMR (C₆D₆, 400 MHz) δ 5.79 (s, 1H), 2.47 (dd, 1 H, J = 6.8, 18 Hz), 2.3 (m, 1 H), 2.18 (m, 2 H), 1.82 (dd, 1 H, J = 18, 2.8 Hz), 1.4-1.6 (m, 3 H), 1.25 (m, 2 H), 0.9-1.1 (3 H); ¹³C NMR (C₆D₆, 100 MHz) δ 206.0, 184.6, 129.9, 44.2, 43.7, 34.0, 32.0, 30.0, 28.3, 26.1. Anal. Calcd for C₁₀H₁₄O: C, 79.96; H, 9.39. Found: C, 79.70; H, 9.76. 35 Me 2-Ethyl-4-methyl-cyclopent-2-enone (**35**): Reaction carried out with **34** as a mixture of alkene isomers (Z:E = 1:2). Reaction was complete after 20 hours (5% catalyst loading). The reaction was purified by chromatography on silica gel (10:1 hexanes/EtOAc) to afford **35** as light yellow oil (52%, 78% based on starting *E*-isomer of **34**) and recovered *Z*-**34** (28%, 85% based on starting *Z*-isomer of **34**). ¹H-NMR (CDCl₃, 400 MHz) δ 6.99 (s, 1H), 2.87 (m, 1H), 2.62 (dd, *J* = 6.3, 18.7 Hz, 1H), 2.16 (qt, J = 7.3, 1.5 Hz, 2H), 1.98 (dd, J = 18.7, 1.8 Hz, 1H), 1.15 (d, J = 7.1 Hz, 3H), 1.07 (t, J = 7.3 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 209.8, 161.9, 146.9, 43.5, 33.3, 20.4, 17.9, 12.0 ppm; HRMS (EI) calc'd for $[C_8H_{12}O]^+$: *m/z* 124.0888, found 124.0882.

^{Me} 2,2-Dimethyl-propionic acid 2-cyclopropyl-3,4-dimethyl-cyclopenta-1,4dienyl ester (**37**): The cyclization product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (66%): ¹H-NMR (CDCl₃, 400 MHz) δ 5.86 (s, IH), 2.73 (dd, J = 7.6 Hz, 1H), 1.93 (d, J = 1.4 Hz, 3H), 1.33 (s, 9H), 1.19 (d, J = 7.7 Hz, 3H), 0.52-0.19 (m, 4H); ¹³C-NMR (CDCl₃, 100 MHz) δ 176.4, 146.4, 145.1, 1131.6, 123.1 (CH), 48.6 (CH), 38.9, 27.2 (CH₃), 14.4 (CH₃), 14.2 (CH₃), 7.13 (CH), 4.8 (CH₂), 4.7 (CH₂) ppm; HRMS (EI) calc'd [C₁₅H₂₂O₂]⁺ (M⁺): *m/z* 234.1620, found 234.1618.

Scheme S-1: Synthesis of Substrate 20

Me

PivO

Ĥ

Et

21 ^{II} *6-Isopropenyl-1,4,5,6,7,7a-hexahydro-inden-2-one* (**21**): The product was purified by chromatography on silica gel (10:1 hexanes/EtOAc) as light yellow oil (82%). The diastereomeric ratio of **21** was determined by ¹H-NMR and GC (retention times 14.50 min. (major), 14.23 min. (minor)): ¹H-NMR (CDCl₃, 400 MHz) δ 5.87 (s, 1H), 5.06 (s, 1H), 4.98 (s, 1H), 2.89 (m, 1H), 2.70-2.41 (m, 5H), 2.39-2.30 (m, 1H), 2.00 (d, *J* = 18.0 Hz, 1H), 1.97 (s, 3H), 1.41 (dt, J = 2.4, 6.8 Hz, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ 209.1, 185.5, 145.0, 126.5, 111.4, 42.4, 38.5, 37.1, 36.5, 28.6, 26.9, 22.5 ppm; HRMS (EI) calc'd for [C₁₂H₁₆O]⁺: *m/z* 176.1201, found 176.1197.

Entry	Substrate	Conditions	Product	Product ee (%)	Percentage Chirality Transfer (%)
1	27	2% PPh ₃ AuOTf, r. t. 8 h.		68	73
2		2% PPh ₃ AuSbF ₆ , r. t. 8h		77	83
3	93% ee	5% PPh ₃ AuSbF ₆ , -20 °C 12 h.		91	98
4	QH	2% PPh ₃ AuSbF ₆ , r. t. 8h	0=<	65	82
5	79% ee	5% PPh ₃ AuSbF ₆ , -20 °C 12 h.	H H	77	97
6	OPiv	2% PPh ₃ AuSbF ₆ , r. t. 8h	0=	71	81
7	88% ee	5% PPh ₃ AuSbF ₆ , -20 °C 12 h.		82	93

Table S1. Effect of Anion and Temperature on the Chirality Transfer

Table S2. Methods for the Determination of Enantiomeric Excess

Entry	Substrate	Method	Conditions	Retention Time (min)	
1	OH	GC Chiraldex G-TA	40 °C, 0 min 1 °C/min to 90 °C, 10 min	QH	41.91 major (R)
				OH	43.14 minor (S)
2	0=	GC Chiraldex G-TA	90 °C, 0 min 10 °C/min to 140 °C, 20 min	0=	5.22 major (S)
				0	5.69 minor (R)
3	OPiv	HPLC Chiralcel OD	0.5% iPrOH/Hexane 0.5 mL/min	OPiv	8.42 minor (S)
				OPiv	8.77 major (R)
4	0=	HPLC Chiralcel OD	1% iPrOH/Hexane 0.5 mL/min		44.30 minor (R)
				O=√ H	46.39 major (S)

Entry	Substrate	Method	Conditions	Retention Time (mi	n)
5	OH	GC Chiraldex G-TA	TFAA, 40°C, 0 min 2.5 °C/min to 60 °C, 50 min	OH	35.42 minor (S)
				OH	38.17 major (R)
6	0=√	HPLC Chiralcel AD	0.5% iPrOH/Hexane 0.5 mL/min	0=√↓↓ H	41.91minor (R)
				o=√́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	43.14 major (S)
7	OH	GC Chiraldex G-TA	TFAA, 40 °C, 0 min 2.5 °C/min to 60 °C, 50 min	OH U	16.13 major (R)
				OH	15.89 minor (S)
8	0=	GC Chiraldex G-TA	90 °C, 0 min 10 °C/min to 140 °C, 20 min	0=	17.93 minor (R)
				0=€€€	16.88 major (S)
9	OPiv	HPLC Chiralcel AD	1% iPrOH/Hexane 1.0 mL/min	OPiv	38.22 minor (S)
				OPiv	36.40 major (R)
	~				0.05 minor (D)
10	0=	HPLC Chiralcel AD	10% iPrOH/Hexane 1.0 mL/min		9.95 minor (R)
				U=	11.27 major (S)

 Table S2. Methods for the Determination of Enantiomeric Excess (...cont.)

References

- (1) Plenio, H.; Diodone, R. J. Org. Chem. 1993, 58, 8650.
- (2) Doris, E.; Dechoux, L.; Mioskowski, C. J. Am. Chem. Soc. 1995, 117, 12700.
- (3) Hermanson, J. R.; Hershberger, J. W.; Pinhas, A. R. Organometallics 1995, 14, 5426.
- (4) Yu, J.-Q.; Corey, E. J. Org. Lett. 2002, 4, 2727.
- (5) Polo, E.; Bellabarba, R. M.; Prini, G.; Traverso, O.; Green, M. L. H. J. Oranomet. Chem. 1999, 577, 211.
- (6) Jeong, N.; Hwang, S. H.; Lee, Y. J. Am. Chem. Soc. 1994, 116, 3159.