Supplementary Material

Electrostatic vs Steric Effects in Peptidomimicry. Synthesis and Secondary Structure Analysis of Gramicidin S Analogs with (E)-

Alkene Peptide Isosteres

Abstract

Jingbo Xiao, ${ }^{\S}$ Bernard Weisblum, ${ }^{\#}$ and Peter Wipf ${ }^{\S}$,*

Department of Chemistry and Center for Chemical Methodologies \& Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, ${ }^{\text {s }}$ and Pharmacology Department, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706* pwipf@pitt.edu

Experimental procedures and spectral data for all new compounds, including copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{2 a - b}, \mathbf{4 a - b}, \mathbf{5 a}-\mathbf{b}, \mathbf{7 a - b}, \mathbf{9 a - b}$ and $\mathbf{C b z}_{\mathbf{2}} \mathbf{G S}$. Crystal information files (CIF) for compounds 5a and 9b. Variable temperature ${ }^{1} \mathrm{H}$ NMR shifts for GS, 9a, and 9b. NOESY spectra for $\mathbf{9 a}$, $\mathbf{9 b}$ and $\mathbf{C b z}_{2} \mathbf{G S}\left(600 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right)$. Xray crystallographic data for $\mathbf{9 b}$.

General. All moisture-sensitive reactions were performed using syringe-septum cap techniques under an N_{2} atmosphere and all glassware was dried in an oven at $150^{\circ} \mathrm{C}$ for 2 h prior to use. Reactions carried out at $-78^{\circ} \mathrm{C}$ employed a CO_{2}-acetone bath. THF was distilled over sodium / benzophenone ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled from CaH_{2}. $\mathrm{Me}_{2} \mathrm{Zn}$ was purchased from Aldrich Company.

Reactions were monitored by TLC analysis (EM Science pre-coated silica gel 60 F_{254} plates, $250 \mu \mathrm{~m}$ layer thickness) and visualization was accomplished with a 254 nm UV light and by staining with a Vaughn's reagent ($4.8 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Mo}, 0.2 \mathrm{~g} \mathrm{CeSO} 4410 \mathrm{~mL}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $90 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$). Flash chromatography on SiO_{2} was used to purify the crude reaction mixtures.

Melting points were determined using a Laboratory Devices Mel-Temp II. Infrared spectra were determined on a Nicolet Avatar 360 FT-IR spectrometer. Circular dichroism spectra were obtained on a JASCO 715 spectrometer at 0.1 mM concentration in EtOH solution. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker Avance 300, 500 or 600 MHz instruments. ${ }^{19} \mathrm{~F}$ NMR spectra were obtained on a Bruker Avance 300 instrument. Variable temperature NMR and NOESY spectra were recorded on Bruker Avance 500 or 600 MHz instruments. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. ${ }^{1} \mathrm{H}$ NMR spectra are tabulated as follows: chemical shift, multiplicity $(\mathrm{b}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet), number of protons, and coupling constant(s). Mass spectra were obtained on a Waters Autospec double focusing mass spectrometer (EI) or a Waters Q-Tof mass spectrometer (ESI). A Varian HPLC system equipped with a semiprep C_{18} column ($10 \mathrm{~mm} \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$ particle size, $60 \AA$) and a fraction collector was used for purification.

(R)-2-Benzyl-3-benzyloxypropan-1-ol (A). Prepared as a colorless oil according to a literature procedure: ${ }^{1}[\alpha]^{25}{ }_{\mathrm{D}}+32.9$ (c 1.0, CHCl_{3}); IR (neat) $3415,3028,2861,1495$, 1453, 1363, 1088, 1030, 740, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.23(\mathrm{~m}, 10$

[^0]H), 4.58, 4.53 (AB, $2 \mathrm{H}, J=11.9 \mathrm{~Hz}$), $3.82-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, 1 \mathrm{H}, J=9.2,4.4 \mathrm{~Hz})$, $3.55(\mathrm{dd}, 1 \mathrm{H}, J=9.2,6.5 \mathrm{~Hz}), 2.82(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.74(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.25-$ $2.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,138.0,129.0,128.3,128.2,127.6$, 127.5, 125.9, 73.3, 72.2, 64.7, 42.6, 34.4; EIMS $m / z 256\left(\mathrm{M}^{+}, 1.5\right), 238$ (1), 220 (1.3), 208 (2.2), 197 (3.7), 180 (5.3), 165 (3.5), 148 (32), 117 (75), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} 256.1463$, found 256.1456 .

(S)-(2-Benzyl-3-benzyloxypropoxy)-tert-butyldiphenylsilane (B). A solution of 16.0 g (62.4 mmol) of \mathbf{A} in 200 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $18.0 \mathrm{~g}(65.5 \mathrm{mmol})$ of t-butylchlorodiphenylsilane. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and treated in one portion with $6.37 \mathrm{~g}(93.6 \mathrm{mmol})$ of imidazole followed by 762 mg (6.24 mmol) of DMAP. The resulting mixture was stirred at room temperature overnight. The white precipitate was filtered and washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with 1 N HCl and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (10:1, hexanes/EtOAc) to yield $27.8 \mathrm{~g}(90 \%)$ of \mathbf{B} as a light yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}+11.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $3069,3027,2950,2930,2883,2857,1495,1472,1428,1112,1028,823,739,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{t}, 4 \mathrm{H}, J=6.3 \mathrm{~Hz}), 7.59-7.49(\mathrm{~m}, 10 \mathrm{H}), 7.46-7.33$ $(\mathrm{m}, 6 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=9.9,4.8 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=9.8,5.3 \mathrm{~Hz})$, $3.75-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, 1 \mathrm{H}, J=13.5,7.3 \mathrm{~Hz}), 2.93(\mathrm{dd}, 1 \mathrm{H}, J=14.1,7.4 \mathrm{~Hz})$, 2.40-2.32 (m, 1 H), $1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4,138.7$, 135.6, $133.8,129.5,129.2,128.2,128.2,127.6,127.5,127.3,125.8,73.0,69.8,63.1,43.4,34.3$, 26.9, 19.3; EIMS $m / z 437$ ([M- C4H9] ${ }^{+}$2), 359 (4), 289 (3.5), 269 (100), 199 (30), 139 (30); HRMS (EI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 437.1937, found 437.1917.

OTBDPS

(S)-2-Benzyl-3-(tert-butyldiphenylsilanyloxy)-propan-1-ol (C). A solution of 10.0 g (20.2 mmol) of \mathbf{B} in 262 mL of EtOAc was hydrogenated (ballon) with 1.16 g of
$\mathrm{Pd}(\mathrm{OH})_{2}(\sim 20 \% \mathrm{Pd})$ at room temperature for 14 h . The mixture was filtered through a thin pad of silica and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(4: 1\right.$, hexanes/EtOAc) to yield $7.70 \mathrm{~g}(94 \%)$ of \mathbf{C} as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}-8.2$ (c 0.6, CHCl_{3}); IR (neat) 3418, 3070, 3026, 2930, 2889, 2857, 1472, 1428, 1112, 1082, 1049, 823, 789, 740, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $4 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.50-7.41 (m, 6 H), 7.30-7.20 (m, 3 H), 7.17 (d, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $3.84(\mathrm{dd}, 1 \mathrm{H}, J=10.2$, $4.1 \mathrm{~Hz}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=9.7,5.0 \mathrm{~Hz}), 3.78-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $2.38(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,135.6,133.1,129.8,129.0,128.2,128.3,127.8,125.9,65.8,64.7,44.3,34.0$, 26.9, 19.2; EIMS m/z 347 ([M-C4H9] , 27), 269 (27), 229 (21), 199 (100), 181 (13), 131 (70), 91 (55), 77 (15); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 347.1467$, found 347.1468.

(R)-2-Benzyl-3-(tert-butyldiphenylsilanyloxy)-propionaldehyde (D). A solution of $1.08 \mathrm{~g}(2.66 \mathrm{mmol})$ of \mathbf{C} in 20.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with $1.36 \mathrm{~g}(3.20$ mmol) of Dess-Martin Periodinane. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 h , quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in saturated NaHCO_{3} solution, stirred for 15 min at room temperature, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}(10: 1$, hexanes/EtOAc) to yield $960 \mathrm{mg}(90 \%)$ of \mathbf{D} as a colorless oil: IR (neat) 3070, 3028, 2956, 2931, 2858, 1728, 1472, 1428, 1112, 1049, 823, 740, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84(\mathrm{~d}, 1 \mathrm{H}$, $J=1.5 \mathrm{~Hz}), 7.67-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2$ H), $3.98(\mathrm{dd}, 1 \mathrm{H}, J=10.5,4.2 \mathrm{~Hz}), 3.85(\mathrm{dd}, 1 \mathrm{H}, J=10.5,5.4 \mathrm{~Hz}), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=$ $14.0,6.3 \mathrm{~Hz}$), $2.89\left(\mathrm{dd}, 1 \mathrm{H}, J=14.0,8.2 \mathrm{~Hz}\right.$), 2.80-2.73 (m, 1 H), $1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.4,138.8,135.6,133.1,133.0,129.9,129.8,129.0,128.5$, 127.8, 126.3, 61.6, 55.7, 31.2, 26.8, 19.3; EIMS m/z 345 ([M-C44 $\left.{ }_{4}\right]^{+}, 7.4$), 315 (6.6), 289 (3.6), 267 (60), 259 (25), 199 (100), 129 (47), 91 (75), 77 (17); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 345.1311, found 345.1316 .

(S)-(2-Benzyl-4,4-dibromobut-3-enyloxy)-tert-butyldiphenylsilane (E). A solution of $950 \mathrm{mg}(2.36 \mathrm{mmol})$ of \mathbf{D} in 50.0 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $3.13 \mathrm{~g}(9.44 \mathrm{mmol})$ of $\mathrm{CBr}_{4}, 617 \mathrm{mg}(9.44 \mathrm{mmol})$ of zinc dust and 2.48 $\mathrm{g}(9.44 \mathrm{mmol})$ of PPh_{3}. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for another 1 h , diluted with 100 mL of hexane, filtered through a thin pad of silica gel, washed with hexane, and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}(50: 1$, hexanes/EtOAc) to yield $1.25 \mathrm{~g}(95 \%)$ of \mathbf{E} as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+24.8$ (c 1.0, CHCl_{3}); IR (neat) 3070, 3027, 2999, 2930, 2857, 1495, 1471, 1427, 1112, 1049, 823, 789, $740,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}$), 7.46-7.37 (m, 6 H), 7.30-7.20 (m, 3 H), $7.15(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.62(\mathrm{dd}, 1 \mathrm{H}$, $J=10.1,5.2 \mathrm{~Hz}$), 3.58 (dd, $1 \mathrm{H}, J=10.1,4.9 \mathrm{~Hz}$), 2.92 (dd, $1 \mathrm{H}, J=13.1,7.0 \mathrm{~Hz}$), 2.88$2.81(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=13.1,6.8 \mathrm{~Hz}), 1.10(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,138.9,135.6,133.4,129.8,129.2,128.4,127.8,126.3,89.7,64.1,47.8,36.2$, 26.9, 19.3; EIMS m/z 499 ([M-C44 $\left.\mathrm{H}_{9}\right]^{+}$, 1.5), 421 (1), 315 (2.7), 263 (10), 199 (8), 159 (10), 121 (100), 91 (27), 77 (10); HRMS (EI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21}{ }^{79} \mathrm{Br}_{2} \mathrm{OSi}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 498.9728, found 498.9727.

(S)-(2-Benzylpent-3-ynyloxy)-tert-butyldiphenylsilane (2a). A solution of 1.42 g (2.54 mmol) of \mathbf{E} in 28.0 mL of dried THF was treated at $-78{ }^{\circ} \mathrm{C}$ with 3.50 mL (5.59 $\mathrm{mmol})$ of $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexane). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for an additional 1 h , cooled to $-78{ }^{\circ} \mathrm{C}$, and treated dropwise with $1.58 \mathrm{~mL}(25.4 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$. The solution was warmed to room temperature, stirred overnight, quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}(20: 1$,
hexanes/EtOAc) to yield $1.02 \mathrm{~g}(97 \%)$ of $\mathbf{2 a}$ as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+4.1(c 0.44$, CHCl_{3}); IR (neat) $3070,3028,2956,2930,2857,1471,1428,1112,823,740,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H})$, 3.74 (dd, $1 \mathrm{H}, J=9.8,4.5 \mathrm{~Hz}$), 3.62-3.59 (m, 1 H$), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2$ H), $1.74(\mathrm{~d}, 3 \mathrm{H}, J=2.0 \mathrm{~Hz}), 1.11(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7$, 135.6 , 133.7, 133.6, 129.6, 129.4, 128.0, 127.6, 126.1, 79.5, 78.4, 65.7, 37.6, 36.7, 26.9, 19.3, 3.5; EIMS $m / z 411$ ([M-H], 0.7), 355 (40), 277 (47), 221 (48), 199 (100), 183 (50), 155 (38), 135 (24), 91 (37); HRMS (EI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{OSi}$ (M-H) 411.2144, found 411.2167.

[(4S)-Benzyl-5-(tert-butyldiphenylsilanyloxy)-1-isobutyl-2-methylpent-(2E)-enyl]-carbamic acid tert-butyl ester (3a). A solution of $1.20 \mathrm{~g}(2.91 \mathrm{mmol})$ of $\mathbf{2 a}$ in 20.0 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $1.20 \mathrm{~g}(4.65 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$. The reaction mixture was stirred at room temperature for $20 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo and 20.0 mL of toluene was added. The resulting yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$, treated over a period of 30 min with $1.45 \mathrm{~mL}(2.90 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene), stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , warmed to $0^{\circ} \mathrm{C}$ over a period of 5 min and treated in one portion with $1.08 \mathrm{~g}(5.82 \mathrm{mmol})$ of N -Boc-isovaleraldimine ${ }^{2}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, filtered through a thin pad of Celite, and extracted with EtOAc. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}(20: 1$, hexanes/EtOAc) to yield $1.22 \mathrm{~g}(70 \%)$ of $\mathbf{3 a}$ as a colorless, oily $1: 1.5$ mixture of diastereomers: IR (neat) 3442, 3361, 3270, 3069, 2957, 2931, 2860, 1702, 1495, 1472, 1388, 1366, 1248, 1170, 1110, 823, 741, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.69-7.67(m, 4 H$), 7.43-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, 0.4 \mathrm{H}, J=$

[^1]$9.5 \mathrm{~Hz}), 5.13(\mathrm{~b}, 0.6 \mathrm{H}), 4.33(\mathrm{~b}, 0.6 \mathrm{H}), 4.30(\mathrm{~b}, 0.4 \mathrm{H}), 3.99(\mathrm{~b}, 0.6 \mathrm{H}), 3.94(\mathrm{~b}, 0.4 \mathrm{H})$, 3.57 (b, 1.2 H), 3.56 ($\mathrm{s}, 0.8 \mathrm{H}$), 2.99 (b, 0.4 H), 2.98 (dd, $0.6 \mathrm{H}, J=13.1,4.6 \mathrm{~Hz}$), 2.80$2.60(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 5.4 \mathrm{H}), 1.41(\mathrm{~s}, 3.6 \mathrm{H})$, 1.27-1.2 (m, 1 H$), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=5.7 \mathrm{~Hz}), 0.82(\mathrm{~d}, 3$ $\mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,140.4,136.8,136.5,135.5,133.7$, $129.5,129.3,129.1,127.8,127.5,126.4,125.5,78.6,66.4,55.5,42.7,42.6,37.9,28.3$, 26.8, 24.7, 24.6, 22.5, 22.4, 19.2, 12.6; EIMS $m / z 542$ ([M-C4 $\left.\mathrm{H}_{9}\right]^{+}, 0.2$), 499 (0.8), 486 (3), 442 (55), 425 (37), 364 (14), 199 (100), 135 (42), 91 (44); HRMS (EI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NOSi}\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right) 499.3270$, found 499.3261 .

((4S)-Benzyl-5-hydroxy-1-isobutyl-2-methylpent-(2E)-enyl)-carbamic acid tertbutyl ester. A solution of $889 \mathrm{mg}(1.48 \mathrm{mmol})$ of $\mathbf{3 a}$ in 5.00 mL of dried THF was treated at $0{ }^{\circ} \mathrm{C}$ with $2.22 \mathrm{~mL}(2.20 \mathrm{mmol})$ of TBAF (1.0 M solution in THF). The reaction mixture was stirred at room temperature for 7 h , and diluted with EtOAc, washed with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (4:1, hexanes/EtOAc) to yield $375 \mathrm{mg}(70 \%)$ of ((4S)-benzyl-5-hydroxy-1-isobutyl-2-methylpent-(2E)-enyl)-carbamic acid tert-butyl ester as a colorless, foamy $1: 1.5$ mixture of diastereomers: IR (neat) 3339, 2955, 2930, 1690, 1497, 1366, 1250, 1170, 1045, 1030, 746, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.11$ $(\mathrm{m}, 5 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~b}, 0.6 \mathrm{H}), 4.50(\mathrm{~b}, 0.4 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.70-$ 3.62 (m, 0.4 H$), 3.59(\mathrm{dd}, 0.6 \mathrm{H}, J=10.5,5.0 \mathrm{~Hz}), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H})$, 2.95-2.71 (m, 2 H$)$, 2.51-2.38 (m, 1 H), 2.05 (b, 1 H), 1.58-1.49 (m, 1 H), 1.45 (s, 5.4 H), 1.41 (s, 3.6 H), 1.37 $(\mathrm{s}, 1.8 \mathrm{H}), 1.33(\mathrm{~s}, 1.2 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, 3.6 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.84(\mathrm{~d}, 1.2 \mathrm{H}$, $J=4.5 \mathrm{~Hz}), 0.82(\mathrm{~d}, 1.2 \mathrm{H}, J=5.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,155.3$, $140.1,140.0,139.3,137.5,129.2,129.0,128.0,125.8,125.7,125.2,79.4,79.2,66.0,57.5$, $55.6,43.1,42.9,41.5,38.0,37.7,28.4,28.3,24.9,24.3,23.0,22.8,22.2,22.0,13.9,11.0$;

EIMS $m / z 362\left([\mathrm{M}+\mathrm{H}]^{+}, 0.2\right), 331$ (8), 304 (8), 275 (25), 248 (22), 214 (85), 130 (60), 91 (79), 57 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{3} 361.2617$, found 361.2614 .

Acetic acid 2-benzyl-(5S)-tert-butoxycarbonylamino-(4E)-7-dimethyloct-3-enyl

ester. A solution of $500 \mathrm{mg}(1.38 \mathrm{mmol})$ of ((4S)-benzyl-5-hydroxy-1-isobutyl-2-methylpent-($2 E$)-enyl)-carbamic acid tert-butyl ester in 15.0 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with $386 \mu \mathrm{~L}(2.77 \mathrm{mmol})$ of TEA, $522 \mu \mathrm{~L}(5.53 \mathrm{mmol})$ of $\mathrm{Ac}_{2} \mathrm{O}$ and 16.8 $\mathrm{mg}(0.138 \mathrm{~mol})$ of DMAP. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , diluted with EtOAc, and washed with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}\left(30: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$ to yield 273 mg (49%) and $240 \mathrm{mg}(43 \%)$, respectively, of the two diasteromers of acetic acid 2-benzyl-(5S)-tert-butoxycarbonylamino-(4E)-7-dimethyloct-3-enyl ester.

Acetic acid (2R)-benzyl-(5S)-tert-butoxycarbonylamino-(4E)-7-dimethyloct-3enyl ester (less polar, major epimer): Colorless foam; $[\alpha]^{25}{ }_{\mathrm{D}}+35.9$ (c 1.0, CHCl_{3}); IR (neat) $3370,2956,2869,1742,1702,1497,1366,1244,1170,1038,748,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=9.0$ $\mathrm{Hz}), 4.42(\mathrm{~b}, 1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.77$ (dd, $1 \mathrm{H}, J=13.3,5.6 \mathrm{~Hz}$), $2.53(\mathrm{dd}, 1 \mathrm{H}, J=13.0,8.6 \mathrm{~Hz}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 1$ H), $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,155.0,139.5,137.8,129.3,128.1$, $125.9,125.5,78.9,67.1,55.7,42.6,39.3,38.2,28.4,24.8,22.6,22.4,20.8,12.5$; EIMS $m / z 403\left(\mathrm{M}^{+}, 0.5\right), 346$ (13), 303 (8), 290 (15), 246 (23), 186 (93), 169 (32), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{4} 403.2723$, found 403.2713.

Acetic acid (2S)-benzyl-(5S)-tert-butoxycarbonylamino-(4E)-7-dimethyl-oct-3enyl ester (4a): (more polar, minor epimer): Colorless foam; $[\alpha]^{25}{ }_{\mathrm{D}}+7.4$ (c 1.0, CHCl_{3}); IR (neat) $3367,2956,2868,1741,1701,1497,1383,1366,1240,1170,1033,747,700$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{~d}, 1 \mathrm{H}$, $J=8.7 \mathrm{~Hz}), 4.48(\mathrm{~b}, 1 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, 1 \mathrm{H}, J=13.4$, $5.5 \mathrm{~Hz}), 2.59(\mathrm{dd}, 1 \mathrm{H}, J=13.4,8.8 \mathrm{~Hz}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45-$ $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 171.1,154.9,139.5,137.8,129.1,128.1,126.0,125.4,79.0,67.0,55.6,42.6,39.1,38.2$, 28.4, 24.6, 22.6, 22.5, 20.9, 12.7; EIMS $m / z 403\left(\mathrm{M}^{+}, 0.4\right), 346$ (2.3), 303 (1.5), 290 (3.4), 246 (40), 186 (100), 169 (18), 91 (63); HRMS (EI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{4}$ 403.2723, found 403.2725.

(4S)-Benzyl-5-hydroxy-(1S)-isobutyl-2-methylpent-(2E)-enyl)-carbamic acid tert-butyl ester (5a). A solution of $300 \mathrm{mg}(0.743 \mathrm{mmol})$ of $\mathbf{4 a}$ in 25.0 mL of MeOH was treated at $0{ }^{\circ} \mathrm{C}$ with $51.4 \mathrm{mg}(0.372 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and at room temperature for an additional 3 h , diluted with EtOAc, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}(4: 1$, hexanes/EtOAc) to yield $242 \mathrm{mg}(90 \%)$ of $\mathbf{5 a}$ as a colorless solid: $\mathrm{Mp} 103-105{ }^{\circ} \mathrm{C}$ (hexanes); $[\alpha]^{25}{ }_{\mathrm{D}}-4.1\left(c 0.56, \mathrm{CHCl}_{3}\right)$; IR (neat) $3331,3244,2958,2923,2868,1671,1551,1453,1365,1065,1031,745,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=9.5$ $\mathrm{Hz}), 4.53(\mathrm{~b}, 1 \mathrm{H}), 3.88(\mathrm{~b}, 1 \mathrm{H}), 3.63(\mathrm{~b}, 1 \mathrm{H}), 3.43$ (t, $1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 2.88-2.72(\mathrm{~m}, 3$
H), 2.41 (dd, $1 \mathrm{H}, J=13.2,9.5 \mathrm{~Hz}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.31$ (s, 3 H), $1.22-1.13$ (m, 3 H), 0.82 (d, $3 \mathrm{H}, J=6.3 \mathrm{~Hz}$), $0.81(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3$, 140.0, 137.2, 129.3, 128.9, 127.9, 125.6, 79.2, 65.9, 57.4, 43.1, 41.3, 37.6, 28.3, 24.2, 23.0, 22.0, 10.9; EIMS $m / z 331$ ([M-CH2O] ${ }^{+}$11), 304 (5), 275 (30), 248 (25), 214 (100), 187 (19), 130 (75), 91 (80), 57 (97); HRMS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2}\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{O}\right)$ 331.2511 , found 331.2513 .

Boc-Leu- $\boldsymbol{\Psi}\left[(E)-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathbf{C H}\right]-{ }^{\boldsymbol{D}}$ Phe-Pro-Val-Orn(Cbz)-OMe (7a). A solution of $121 \mathrm{mg}(0.335 \mathrm{mmol})$ of $\mathbf{5 a}$ in 12.0 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with 284 mg $(0.670 \mathrm{mmol})$ of Dess-Martin Periodinane. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3.5 h , quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in saturated NaHCO_{3} solution, stirred for 30 min at room temperature, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo to give a yellow foam and subsequently dissolved in 10.0 mL of THF, and treated at $0{ }^{\circ} \mathrm{C}$ with $1.00 \mathrm{~mL}(2.00 \mathrm{mmol})$ of 2-methyl-2-butene (2.0 M solution in THF) followed by a solution of $96.3 \mathrm{mg}(1.07 \mathrm{mmol})$ of NaClO_{2} and $92.5 \mathrm{mg}(0.679$ mmol) of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in 10.0 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and room temperature for an additional 4 h , extracted with EtOAc, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to yield crude $\mathbf{6 a}$ as a yellow foam.

A solution of crude 6a in 10.0 mL of CHCl_{3} was treated at $0{ }^{\circ} \mathrm{C}$ with 53.5 mg $(0.402 \mathrm{mmol})$ of HOBt, $70.7 \mathrm{mg}(0.396 \mathrm{mmol})$ of EDC, a solution of $319 \mathrm{mg}(0.670$ $\mathrm{mmol})$ of H -Pro-Val-Orn(Cbz)-OMe ($\mathbf{1 0})^{3}$ in 5.00 mL of CHCl_{3} and $3.8 \mathrm{mg}(0.031 \mathrm{mmol})$ of DMAP. The reaction mixture was stirred at room temperature for 4 d , diluted with

[^2]CHCl_{3}, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (2 : 1, hexanes/EtOAc; 50 : 1, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ to yield $263 \mathrm{mg}(94 \%)$ of $7 \mathbf{a}$ as a colorless foam: $[\alpha]{ }_{\mathrm{D}}^{25}-5.8$ (c 1.0, CHCl_{3}); IR (neat) 3316, 2957, 2871, 1709, 1653, 1522, 1453, 1366, 1253, 1173, 1020, $754,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~b}, 1 \mathrm{H}), 7.29-7.06(\mathrm{~m}, 10 \mathrm{H}), 6.62(\mathrm{~d}$, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.20(\mathrm{~b}, 1 \mathrm{H}), 5.86(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 5.02$, 4.99 (AB, $2 \mathrm{H}, J=12.7 \mathrm{~Hz}$), $4.63(\mathrm{~b}, 1 \mathrm{H}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.40-4.45(\mathrm{~m}, 1 \mathrm{H})$, 4.00-3.90 (m, 1 H$), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~b}, 2 \mathrm{H}), 3.24-3.14(\mathrm{~m}, 3 \mathrm{H}), 3.05(\mathrm{dd}, 1 \mathrm{H}, J=$ 13.3, 5.6 Hz), $2.61(\mathrm{dd}, 1 \mathrm{H}, J=13.3,8.3 \mathrm{~Hz}$), 2.08-2.03 (m, 2 H), $1.98-1.80(\mathrm{~m}, 4 \mathrm{H})$, 1.73-1.67 (m, 1 H), 1.63-1.55 (m, 2 H), 1.45 (s, 9 H), 1.39-1.36 (m, 1 H$), 1.27$ (s, 3 H), $1.24-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,172.2,171.4,170.6,156.7,155.3,141.6$, 139.2, 136.7, 129.3, 128.2, 128.0, 127.9, 127.6, 125.9, 120.2, 78.4, 66.2, 60.6, 57.6, 54.7, $52.1,52.0,51.7,46.4,42.8,40.5,37.6,31.4,29.1,28.9,28.3,28.2,26.1,24.9,24.5,23.0$, 21.6, 18.9, 17.9, 14.3; HRMS (ESI) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na}$) 856.4836, found 856.4832.

Boc-Leu- $\Psi\left[(E)-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right]-{ }^{D}$ Phe-Pro-Val-Orn(Cbz)-Leu- $\boldsymbol{\psi}[(E)-$

$\left.\mathbf{C}\left(\mathbf{C H}_{3}\right)=\mathbf{C H}\right]-{ }^{\boldsymbol{D}}$ Phe-Pro-Val-Orn(Cbz)-OMe (8a). A solution of $250 \mathrm{mg}(299 \mu \mathrm{~mol})$ of 7 a in 1.88 mL of MeOH was treated at $0{ }^{\circ} \mathrm{C}$ with $598 \mu \mathrm{~L}(598 \mu \mathrm{~mol})$ of 1 N NaOH . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , at room temperature for an additional 2 h , and treated at $0{ }^{\circ} \mathrm{C}$ with $598 \mu \mathrm{~L}(598 \mu \mathrm{~mol})$ of 1 N HCl . The solution was extracted with CHCl_{3} and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give crude acid as a colorless foam.

Another solution of $250 \mathrm{mg}(299 \mu \mathrm{~mol})$ of $7 \mathbf{a}$ in $2.07 \mathrm{~mL}(8.28 \mathrm{mmol})$ of $\mathrm{HCl}(4.0$ N solution in 1,4-dioxane) was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and at room temperature for an additional 40 min . 1,4-Dioxane was removed in vacuo and a solution of the resulting colorless, foamy residue in 50.0 mL of CHCl_{3} was washed with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the crude amine as a yellowish foam.

A solution of acid and amine in 3.00 mL of CHCl_{3} was treated at room temperature with $46.1 \mathrm{mg}(341 \mu \mathrm{~mol})$ of HOBt, $57.3 \mathrm{mg}(299 \mu \mathrm{~mol})$ of EDC and $3.7 \mathrm{mg}(30 \mu \mathrm{~mol})$ of DMAP. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 2 d , diluted with CHCl_{3}, and washed with 5% citric acid, $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (2: 1, hexanes/EtOAc; $\left.50: 1, \mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ to yield $445 \mathrm{mg}(97 \%)$ of $\mathbf{8 a}$ as a colorless foam which was used directly without any further purification.

Cyclo[(Val-Orn(Cbz)-Leu- $\boldsymbol{\psi}\left[(E)-\mathbf{C}\left(\mathbf{C H}_{3}\right)=\mathbf{C H}\right]-{ }^{\text {D }}$ Phe-Pro) $\left.)_{2}\right]$ (9a). A solution of $68.0 \mathrm{mg}(44.3 \mu \mathrm{~mol})$ of $\mathbf{8 a}$ in 3.61 mL of MeOH was treated at $0{ }^{\circ} \mathrm{C}$ with $443 \mu \mathrm{~L}(443$ $\mu \mathrm{mol}$) of 1 N NaOH . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and at room temperature for an additional 8 h . The solvents were removed in vacuo and the residue was dissolved at $0{ }^{\circ} \mathrm{C}$ in $3.61 \mathrm{~mL}(14.4 \mathrm{mmol})$ of $\mathrm{HCl}(4.0 \mathrm{~N}$ solution in 1,4-dioxane). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min and at room temperature for an additional $1 \mathrm{~h} .1,4$-Dioxane was removed in vacuo and the resulting colorless, foamy residue was dissolved in 20.0 mL of benzene, treated at room temperature with 37.2 mg (443 $\mu \mathrm{mol}$) of NaHCO_{3}, and evaporated to dryness by azeotropic distillation with benzene at $25{ }^{\circ} \mathrm{C}$. The solid residue was dissolved in 36.9 mL of CHCl_{3}, and treated at
room temperature with $6.6 \mathrm{mg}(48.7 \mu \mathrm{~mol})$ of $\mathrm{HOBt}, 10.2 \mathrm{mg}(53.2 \mu \mathrm{~mol})$ of EDC and $5.4 \mathrm{mg}(44.2 \mu \mathrm{~mol})$ of DMAP. The reaction mixture was stirred at room temperature for 2.5 d, diluted with CHCl_{3}, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (3:1, hexanes/EtOAc; $\left.10: 1, \mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ and repurified by RP-HPLC $\left(\mathrm{C}_{18} ; 20 \% \mathrm{H}_{2} \mathrm{O}, 80 \% \mathrm{CH}_{3} \mathrm{CN}, 5\right.$ $\mathrm{mL} / \mathrm{min}$) to yield $26.1 \mathrm{mg}(42 \%)$ of $\mathbf{9 a}$ as a colorless soild: $\mathrm{Mp} 105-107{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d) $\delta 9.01$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 7.95 (d, $2 \mathrm{H}, J=9.4 \mathrm{~Hz}$), 7.27-7.22 (m, 12 H), 7.18-7.11 (m, 10 H), $6.31(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.24(\mathrm{~d}, 2 \mathrm{H}, J=10.1$ $\mathrm{Hz}), 4.89,4.86(\mathrm{AB}, 4 \mathrm{H}, J=12.6 \mathrm{~Hz}), 4.69(\mathrm{q}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.61(\mathrm{dd}, 2 \mathrm{H}, J=8.2$, $4.9 \mathrm{~Hz}), 4.34(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.14(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}), 3.60(\mathrm{q}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, 3.55-3.49 (m, 2 H), 3.30-3.26 (m, 2 H), 3.11-3.05 (m, 4 H), 2.96 (dd, $2 \mathrm{H}, J=13.3,4.8$ $\mathrm{Hz}), 2.47(\mathrm{dd}, 2 \mathrm{H}, J=13.6,9.1 \mathrm{~Hz}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.77$ (m, 4 H$), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $11.0 \mathrm{~Hz}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.17-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.77(\mathrm{~m}, 4 \mathrm{H}), 0.73(\mathrm{t}, 12 \mathrm{H}, J=6.7 \mathrm{~Hz})$, $0.71(\mathrm{~d}, 12 \mathrm{H}, J=6.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 172.7,170.4,169.6$ (2C), $156.1,141.4,139.5,137.1,129.4,128.2,127.6,125.6,118.8,65.1,60.0,55.3,52.1,51.7$, $45.9,45.3,42.1,40.3,36.6,33.3,30.7,29.5,26.1,24.9,24.1,23.1,20.5,18.6,17.6,15.0$; HRMS (ESI) m / z calcd for $\mathrm{C}_{80} \mathrm{H}_{111} \mathrm{~N}_{10} \mathrm{O}_{12}(\mathrm{M}+\mathrm{H})$ 1403.8383, found 1403.8369 .

(S)-[2-Benzyl-4-(tributylstannanyl)-but-3-ynyloxy]-tert-butyldiphenylsilane

(2b). A solution of $685 \mathrm{mg}(1.23 \mathrm{mmol})$ of \mathbf{E} in 10.0 mL of dried THF was treated at -78 ${ }^{\circ} \mathrm{C}$ with $1.69 \mathrm{~mL}(2.71 \mathrm{mmol})$ of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for an additional 1 h , cooled to $-78{ }^{\circ} \mathrm{C}$ and treated dropwise with $0.350 \mathrm{~mL}(1.29 \mathrm{mmol})$ of $\mathrm{Bu}_{3} \mathrm{SnCl}$. The solution was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 30 min , quenched with saturated NaHCO_{3} solution, extracted with ether, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and concentrated in vacuo to yield 860 mg (quant) of crude $\mathbf{2 b}$ as a light yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}+11.8$ (c 1.0, CHCl_{3}); IR (neat) 3070, 3028, 2956, 2929, 2856, 2146, 1463, 1428, 1112, 824, 740, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.72(\mathrm{~m}$,

4 H), 7.47-7.41 (m, 6 H), 7.34-7.20 (m, 5 H), 3.80 (dd, $1 \mathrm{H}, J=9.8,4.9 \mathrm{~Hz}$), 3.66 (dd, 1 $\mathrm{H}, J=9.8,7.7 \mathrm{~Hz}$), $3.14(\mathrm{dd}, 1 \mathrm{H}, J=13.0,4.9 \mathrm{~Hz}$), 2.94-2.88 (m, 1 H), 2.81 (dd, $1 \mathrm{H}, J$ $=13.0,8.5 \mathrm{~Hz}), 1.57-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 6 \mathrm{H})$, $0.91(\mathrm{t}, 9 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4,135.6,135.5,133.6,133.5$, $129.5,129.5,127.8,127.6,126.0,111.4,84.5,65.5,38.0,37.6,28.8,26.9,26.8,19.3$, 16.3, 13.6, 10.8; EIMS m/z 631 ([M-C4 $\left.\mathrm{H}_{9}\right]^{+}, 60$), 575 (80), 539 (10), 517 (13), 461 (10), 341 (15), 263 (30), 199 (68), 135 (40), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{OSi}^{116} \mathrm{Sn}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 627.2414, found 627.2386.

[(2S)-Benzyl-(4E)-iodo-4-(tributylstannanyl)-but-3-enyloxy]-tert-

butyldiphenylsilane. A solution of $1.53 \mathrm{~g}(2.22 \mathrm{mmol})$ of $\mathbf{2 b}$ in 15.0 mL of dried THF was treated at room temperature with $802 \mathrm{mg}(3.11 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$. The reaction mixture was stirred at room temperature for 40 min and treated with a solution of 597 mg (2.35 mmol) of I_{2} in 5.0 mL of dried THF. The mixture was stirred at room temperature for 1 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (100:1, hexanes/EtOAc) to yield $1.46 \mathrm{~g}(80 \%)$ of [(2S)-benzyl-($4 E$)-iodo-4-(tributylstannanyl)-but-3-enyloxy]-tert-butyldiphenylsilane as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+29.1$ (c 1.0, CHCl_{3}); IR (neat) 3070, 3027, 2956, 2929, 2856, 1463, 1427, 1112, 823, 740, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.69-7.65 (m, 4 H), 7.46-7.37 (m, 6 H), 7.32-7.13 (m, 6 H), $3.54(\mathrm{~d}, 2 \mathrm{H}, J=$ 5.2 Hz), $2.95(\mathrm{dd}, 1 \mathrm{H}, J=13.3,6.2 \mathrm{~Hz}), 2.63(\mathrm{dd}, 1 \mathrm{H}, J=13.3,7.7 \mathrm{~Hz}), 2.36-2.29(\mathrm{~m}, 1$ H), 1.46-1.37 (m, 6 H$), 1.32-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{t}, 9 \mathrm{H}$, $J=7.2 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,139.5,135.7,133.5,133.4,129.7$, $129.5,128.3,127.8,127.7,126.2,103.3,65.6,52.6,37.3,28.7,27.3,27.0,19.4,13.6$, 12.6; EIMS m/z 815 ($\mathrm{M}^{+}, 0.13$), 759 (25), 631 (40), 361 (100), 305 (32), 263 (35), 199 (62), 135 (47); HRMS (EI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{IOSi}^{120} \mathrm{Sn}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 759.1541$, found 759.1526.

[(4S)-Benzyl-5-(tert-butyldiphenylsilanyloxy)-1-isobutyl-2-(tributylstannanyl)-pent-(2E)-enyl]-carbamic acid tert-butyl ester (3b). A solution of $810 \mathrm{mg}(0.993 \mathrm{mmol})$ of [(2S)-benzyl-(4E)-iodo-4-(tributylstannanyl)-but-3-enyloxy]-tert-butyldiphenylsilane in 5.00 mL of dried $\mathrm{Et}_{2} \mathrm{O}$ was treated dropwise at $-78^{\circ} \mathrm{C}$ with $1.46 \mathrm{~mL}(2.48 \mathrm{mmol})$ of t BuLi (1.7 M solution in pentane). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and treated at $-78{ }^{\circ} \mathrm{C}$ with $552 \mathrm{mg}(2.98 \mathrm{mmol})$ of N-Boc-isovaleraldimine 7^{2}. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}(60: 1$, hexanes/EtOAc) to yield $610 \mathrm{mg}(70 \%)$ of $\mathbf{3 b}$ as a colorless, oily $1: 1.5$ mixture of diastereomers: IR (neat) 3449, 3264, 2956, 2929, 2857, 1718, 1699, 1494, $1472,1428,1389,1356,1247,1172,1112,1051,741,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.71-7.63 (m, 4 H), 7.46-7.35 (m, 6 H$), 7.27-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{~d}, 0.4 \mathrm{H}, J=$ $9.4 \mathrm{~Hz}), 6.09(\mathrm{~d}, 0.6 \mathrm{H}, J=9.1 \mathrm{~Hz}), 4.35-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.00(\mathrm{~m}$, 1 H), 2.71 (dd, $0.4 \mathrm{H}, J=12.6,5.9 \mathrm{~Hz}$), 2.63 (dd, $0.6 \mathrm{H}, J=13.1,7.5 \mathrm{~Hz}$), $2.40(\mathrm{~b}, 1 \mathrm{H})$, 1.68-1.34 (m, 15 H), 1.32-1.21 (m, 9 H), $1.13(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.79(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,146.9,146.6,141.1,140.0,135.7,135.7,135.7,133.7,133.7$, $133.6,133.5,129.6,128.1,127.6,125.9,78.6,66.3,66.1,56.9,56.7,48.8,48.6,45.5$, $45.4,39.9,38.2,38.1,34.8,29.7,29.2,28.5,27.8,27.4,27.0,26.3,25.3,24.9,24.8,24.1$, 22.8, 22.6, 21.6, 19.4, 13.6, 10.8; EIMS m/z 818 ([M-C44 $\left.\mathrm{H}_{9}\right]^{+}, 31$), 762 (80), 718 (47), 428 (47), 330 (20), 250 (25), 199 (100), 135 (45); HRMS (EI) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{68} \mathrm{NO}_{3} \mathrm{Si}^{120} \mathrm{Sn}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 818.3990, found 818.4018.

[(4S)-Benzyl-5-(tert-butyldiphenylsilanyloxy)-(2Z)-iodo-1-isobutylpent-2-enyl]carbamic acid tert-butyl ester. A solution of $1.17 \mathrm{~g}(1.34 \mathrm{mmol})$ of $\mathbf{3 b}$ in 20.0 mL of
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with $391 \mathrm{mg}(1.74 \mathrm{mmol})$ of NIS in one portion. The mixture was rapidly stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in saturated NaHCO_{3} solution and stirred until a clear solution formed. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by chromatography on SiO_{2} (20:1, hexanes/Et O) to yield $758 \mathrm{mg}(80 \%)$ of [(4S)-benzyl-5-(tert-butyldiphenylsilanyloxy)-(2Z)-iodo-1-isobutylpent-2-enyl]-carbamic acid tert-butyl ester as a colorless, oily $1: 1.5$ mixture of diastereomers: IR (neat) 3435, 3339, 3070, $3026,2957,2931,2858,1705,1494,1472,1366,1244,1169,1112,823,741,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71-7.64 (m, 4 H$), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H})$, $5.95(\mathrm{~d}, 0.4 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.74(\mathrm{~d}, 0.6 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.62(\mathrm{~d}, 0.4 \mathrm{H}, J=9.1 \mathrm{~Hz}), 4.59$ (d, $0.6 \mathrm{H}, ~ J=8.7 \mathrm{~Hz}$), $3.90-3.80(\mathrm{~m}, 0.4 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 0.6 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 2 \mathrm{H})$, 3.10-2.95 (m, 1.4 H), 2.90-2.82 (m, 0.6 H), 2.76-2.60 (m, 1 H), $1.48(\mathrm{~s}, 3.6 \mathrm{H}), 1.40(\mathrm{~s}$, $5.4 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 5.4 \mathrm{H}), 1.09(\mathrm{~s}, 3.6 \mathrm{H}), 0.93-0.90$ $(\mathrm{m}, 2.4 \mathrm{H}), 0.84(\mathrm{~d}, 1.8 \mathrm{H}, J=6.2 \mathrm{~Hz}), 0.79(\mathrm{~d}, 1.8 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 154.4,154.2,139.2,139.0,137.8,137.2,135.5,133.4,129.5,129.3,129.1$, $128.0,127.6,125.9,115.6,109.3,79.2,64.7,64.6,57.5,50.1,49.9,44.4,44.2,36.6,36.4$, 28.3, 26.8, 26.8, 24.2, 23.9, 23.0, 22.9, 22.1, 21.6, 19.2; EIMS m/z $638\left(\left[\mathrm{M}-\mathrm{OC}_{4} \mathrm{H}_{9}\right]^{+}\right.$, 2.3), 598 (50), 554 (59), 520 (36), 476 (33), 349 (31), 198 (100), 135 (55), 91 (71); HRMS (EI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{INO}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{OC}_{4} \mathrm{H}_{9}\right)$ 638.1951, found 638.1975 .

((4S)-Benzyl-5-hydroxy-(2Z)-iodo-1-isobutylpent-2-enyl)-carbamic acid tertbutyl ester. A solution of $600 \mathrm{mg}(0.843 \mathrm{mmol})$ of [(4S)-benzyl-5-(tert-butyldiphenylsilanyloxy)-(2Z)-iodo-1-isobutylpent-2-enyl]-carbamic acid tert-butyl ester in 10.0 mL of dried THF was treated at $0{ }^{\circ} \mathrm{C}$ with $1.69 \mathrm{~mL}(1.69 \mathrm{mmol})$ of TBAF $(1.0 \mathrm{M}$ solution in THF) and a solution of $96.7 \mu \mathrm{~L}(1.69 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{COOH}$ in 2.00 mL of dried THF. The reaction mixture was stirred at room temperature for 24 h , diluted with EtOAc, and washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in
vacuo, and purified by chromatography on SiO_{2} (4: 1, hexanes/EtOAc) to yield 337 mg (84\%) of ((4S)-benzyl-5-hydroxy-(2Z)-iodo-1-isobutylpent-2-enyl)-carbamic acid tertbutyl ester as a colorless, oily $1: 2$ mixture of diastereomers: IR (neat) 3411, 3324, 3027, 2956, 2869, 1694, 1496, 1366, 1249, 1167, 1042, 1018, 745, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{~d}, 0.33 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.71(\mathrm{~d}, 0.67 \mathrm{H}, J=9.3$ $\mathrm{Hz}), 4.66(\mathrm{~d}, 0.33 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.60(\mathrm{~d}, 0.67 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.90-3.81(\mathrm{~m}, 0.33 \mathrm{H})$, 3.75-3.64 (m, 0.67 H), 3.59-3.40 (m, 2 H), 3.17-3.05 (m, 0.67 H), 2.96-2.85 (m, 0.33 H), 2.83-2.73 (m, 1.34 H$), 2.61$ (dd, $0.66 \mathrm{H}, J=13.5,9.0 \mathrm{~Hz}$), 2.44 (b, 0.33 H), 1.67 (b, 0.67 H), 1.60-1.50 (m, 0.66 H$), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1.34 \mathrm{H}), 1.20-1.08$ $(\mathrm{m}, 1 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~d}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.80(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,154.6,139.0,138.9,136.9,129.3,129.1,128.1,125.9$, $116.7,116.1,79.9,79.4,64.5,64.0,58.0,57.9,51.1,50.1,44.1,42.9,36.5,36.1,28.3$, 24.3, 23.7, 23.1, 22.7, 22.0, 21.5; EIMS $m / z 473$ (${ }^{+}, 0.2$), 443 (2.9), 316 (43), 290 (76), 272 (16), 260 (50), 246 (35), 229 (20), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{INO}_{2}$ $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{O}\right) 443.1321$, found 443.1323 .

Acetic acid (2S)-benzyl-5-tert-butoxycarbonylamino-(4Z)-iodo-7-methyloct-3-
enyl ester. A solution of 310 mg (0.655 mmol) of ((4S)-benzyl-5-hydroxy-(2Z)-iodo-1-isobutylpent-2-enyl)-carbamic acid tert-butyl ester in 15.0 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with $183 \mu \mathrm{~L}(1.31 \mathrm{mmol})$ of TEA, $247 \mu \mathrm{~L}(2.62 \mathrm{mmol})$ of $\mathrm{Ac}_{2} \mathrm{O}$ and 8.0 $\mathrm{mg}(65.5 \mu \mathrm{~mol})$ of DMAP. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for an additional 3 h , diluted with EtOAc, and washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on SiO_{2} (200:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$) to yield 98.0 mg (29\%) and 236 mg (70\%), respectively, of the diastereomers of acetic acid (2S)-benzyl-5-tert-butoxycarbonylamino-(4Z)-iodo-7-methyloct-3-enyl ester.

Acetic acid (2S)-benzyl-5R-tert-butoxycarbonylamino-(4Z)-iodo-7-methyloct-3enyl ester (less polar, minor epimer): Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}+26.3$ (c 1.0, CHCl_{3}); IR (neat) $3365,3027,2957,2927,2869,1743,1713,1496,1366,1245,1167,1040,1018,748,700$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=10.9,5.2 \mathrm{~Hz}), 3.98(\mathrm{dd}, 1 \mathrm{H}, J=$ $10.9,7.1 \mathrm{~Hz}), 3.81(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.05(\mathrm{bq}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.74(\mathrm{~d}, 2 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,154.5,138.3$, 136.6, 129.3, 128.4, 126.3, 116.8, 79.6, 65.4, 57.8, 46.9, 44.2, 36.9, 28.4, 24.4, 23.0, 21.8, 20.8; EIMS m/z 458 ([M-C4 $\left.\mathrm{H}_{9}\right]^{+}, 0.5$), 443 (2.4), 358 (30), 332 (20), 298 (45), 171 (50), 105 (77), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{INO}_{4}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 458.0828$, found 458.0833 .

Acetic acid (2S)-benzyl-5S-tert-butoxycarbonylamino-(4Z)-iodo-7-methyloct-3enyl ester (more polar, major epimer): Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}-4.2\left(c \quad 0.9, \mathrm{CHCl}_{3}\right)$; IR (neat) 3361, 3027, 2957, 2929, 2869, 1743, 1713, 1496, 1366, 1246, 1168, 1040, 1017, 747, 700 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.16(\mathrm{~d}$, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.72(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.07(\mathrm{dd}, 1 \mathrm{H}, J=$ $10.7,5.8 \mathrm{~Hz}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=10.8,6.5 \mathrm{~Hz}), 3.75-3.65(\mathrm{bm}, 1 \mathrm{H}), 3.25-3.10(\mathrm{bm}, 1 \mathrm{H})$, $2.84(\mathrm{dd}, 1 \mathrm{H}, J=13.7,6.5 \mathrm{~Hz}), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=13.7,8.3 \mathrm{~Hz}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9$ H), $1.35-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=5.9$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,154.4,138.4,136.4,129.1,128.3,126.3$, 117.2, 79.6, 65.4, 57.6, 46.6, 44.0, 37.0, 28.3, 24.0, 23.1, 21.7, 20.9; EIMS m/z 458 ([M-
$\left.\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 0.6$), 442 (3.7), 358 (34), 332 (22), 298 (50), 171 (57), 129 (27), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{INO}_{4}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 458.0828$, found 458.0842.

Acetic acid

(2S)-benzyl-(5S)-tert-butoxycarbonylamino-7-methyl-(4Z)-
trifluoromethyloct-3-enyl ester (4b). A solution of $10.0 \mathrm{mg}(19.4 \mu \mathrm{~mol})$ of acetic acid (2S)-benzyl-5S-tert-butoxycarbonylamino-(4Z)-iodo-7-methyloct-3-enyl ester in 0.80 mL of DMF was treated at room temperature with $20.3 \mathrm{mg}(107 \mu \mathrm{~mol})$ of CuI and $42.4 \mu \mathrm{~L}$ ($243 \mu \mathrm{~mol}$) of HMPA followed by $24.7 \mu \mathrm{~L}(194 \mu \mathrm{~mol})$ of methyl-2,2-difluoro-2-(fluorosulfonyl)-acetate. The reaction mixture was warmed to $70-80^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature, diluted with EtOAc , washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(2: 1\right.$, hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ to yield $8.2 \mathrm{mg}(92 \%)$ of $\mathbf{4 b}$ as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+2.0\left(c \quad 0.5, \mathrm{CHCl}_{3}\right.$); IR (neat) 3368, 3029, 2960, 2932, 2871, 1745, 1705, $1497,1455,1383,1367,1245,1160,1119,1041,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=11.0$ $\mathrm{Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.13(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=10.8,5.3 \mathrm{~Hz})$, 4.02 (dd, $1 \mathrm{H}, J=10.4,7.3 \mathrm{~Hz}$), 3.33-3.25 (m, 1 H$), 2.80(\mathrm{dd}, 1 \mathrm{H}, J=13.5,6.9 \mathrm{~Hz}), 2.68$ (dd, $1 \mathrm{H}, J=13.5,7.2 \mathrm{~Hz}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.29(\mathrm{~m}$, $2 \mathrm{H}), 0.90(\mathrm{t}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,154.6,138.6,137.8$, $132.5(\mathrm{q}, ~ J=27.5 \mathrm{~Hz}), 129.0,128.4,126.5,124.0(\mathrm{q}, ~ J=243 \mathrm{~Hz}), 79.5,65.6,51.9,43.4$, 39.5, 37.8, 28.3, 24.8, 22.6, 22.1, 20.7; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.7$ (s); EIMS $m / z 400\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 0.8\right), 300(15), 240$ (75), 223 (7), 130 (15), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 400.1736, found 400.1732.

((4S)-Benzyl-5-hydroxy-(1S)-isobutyl-(2Z)-trifluoromethylpent-2-enyl)-
carbamic acid tert-butyl ester (5b). A solution of $80.5 \mathrm{mg}(0.176 \mathrm{mmol})$ of $\mathbf{4 b}$ in 3.00 mL of MeOH was treated at $0{ }^{\circ} \mathrm{C}$ with $9.8 \mathrm{mg}(0.352 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and at room temperature for an additional 2 h , diluted with EtOAc, and washed with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}(1: 1$, hexanes/EtOAc) to yield 74.0 mg (quant) of $\mathbf{5 b}$ as a colorless foam: $[\alpha]^{25}{ }_{\mathrm{D}}+26.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (neat) 3416, 3344, 3064, 3028, 2960, 2871, 1697, 1497, 1392, 1368, 1253, 1158, 1120, 1044, 1022, 748, 700 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 5.84(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.17(\mathrm{q}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $3.65(\mathrm{dd}, 1 \mathrm{H}, J=10.8,4.2 \mathrm{~Hz}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=10.9,6.7 \mathrm{~Hz}), 3.15-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.81$ (dd, $1 \mathrm{H}, J=13.5,6.7 \mathrm{~Hz}$), $2.62(\mathrm{dd}, 1 \mathrm{H}, J=13.4,7.8 \mathrm{~Hz}$), 1.44-1.35 (m, 3 H), 1.42 (s, 9 H), $0.87(\mathrm{t}, 6 \mathrm{H}, J=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,142.3,138.7,131.0$ $(\mathrm{q}, J=26.3 \mathrm{~Hz}), 129.1,128.3,126.2,124.0(\mathrm{q}, J=276 \mathrm{~Hz}), 80.0,64.9,54.4,43.3,42.4$, 37.4, 28.3, 24.8, 22.4, 22.3; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-54.9 (s); EIMS m/z 385 ([M$\left.\mathrm{CH}_{2} \mathrm{O}\right]^{+}, 0.5$), 329 (10), 309 (21), 147 (27), 130 (61), 91 (100); HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 438.2232$, found 438.2244 .

Boc-Leu- $\Psi\left[(E)-C\left(C_{3}\right)=\mathbf{C H}\right]-{ }^{\text {D }}$ Phe-Pro-Val-Orn(Cbz)-OMe (7b). A solution of $47.0 \mathrm{mg}(0.113 \mathrm{mmol})$ of $\mathbf{5 b}$ in 5.00 mL of dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with 27.6
$\mathrm{mg}(0.119 \mathrm{mmol})$ of trichloroisocyanuric acid followed by $1.8 \mathrm{mg}(0.012 \mathrm{mmol})$ of TEMPO. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a pad of celite, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo to give a colorless oil and subsequently dissolved in 6.00 mL of THF, treated at $0{ }^{\circ} \mathrm{C}$ with $0.70 \mathrm{~mL}(1.40 \mathrm{mmol})$ of 2-methyl-2-butene (2.0 M solution in THF) followed by a solution of $30.7 \mathrm{mg}(0.339 \mathrm{mmol})$ of NaClO_{2} and 31.2 $\mathrm{mg}(0.226 \mathrm{mmol})$ of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in 6.00 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and at room temperature for an additional 5 h , extracted with EtOAc, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to yield $\mathbf{6 b}$ as a crude colorless foam.

A solution of crude $\mathbf{6 b}$ in 5.00 mL of CHCl_{3} was treated at $0{ }^{\circ} \mathrm{C}$ with 16.5 mg $(0.122 \mathrm{mmol})$ of $\mathrm{HOBL}, 22.8 \mathrm{mg}(0.119 \mathrm{mmol})$ of EDC, followed by a solution of 118 mg $(0.226 \mathrm{mmol})$ of $\mathrm{H}-\mathrm{Pro-Val-Orn}(\mathrm{Cbz})-\mathrm{OMe}(\mathbf{1 0})$ in 1.00 mL of CHCl_{3} and $1.5 \mathrm{mg}(0.012$ $\mathrm{mmol})$ of DMAP. The reaction mixture was stirred at room temperature for 24 h , diluted with CHCl_{3}, and washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}\left(1: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$ to yield 77.5 mg (77\%) of 7b as a colorless foam: $[\alpha]^{25}{ }_{\mathrm{D}}-56.4$ (c 1.0, CHCl_{3}); IR (neat) $3411,3320,3065$, 2960, 2873, 1716, 1653, 1526, 1454, 1367, 1256, 1159, 1116, 1023, 755, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ Hz), 6.65 (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}$), 6.10 (d, $1 \mathrm{H}, J=10.5 \mathrm{~Hz}$), 5.92 (b, 1 H$), 5.73$ (d, $1 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}), 5.12-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~b}, 1 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~b}, 1 \mathrm{H}), 4.17(\mathrm{t}, 1 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.20(\mathrm{~m}, 2 \mathrm{H})$, $3.11(\mathrm{t}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 2.83-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 2.10-1.95(\mathrm{~m}, 3$ H), $1.80-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.94$ (d, $3 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $0.89-0.87(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,172.2$, 171.1, 170.8, 156.8, 155.2, 138.5, 136.6, 135.2 (q, $J=26.3 \mathrm{~Hz}$), 132.7, 129.0, 128.4, 128.3, 128.2, 127.9, 126.6, $124.0(\mathfrak{q}, J=275 \mathrm{~Hz}), 79.4,66.5,60.7,57.8,52.3,51.8,49.6$, $47.0,46.7,44.1,40.5,38.5,31.3,29.3,28.6,28.3,26.1,25.1,24.4,23.3,21.1,19.0,18.0$; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.5$ (s); HRMS (ESI) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Na}$ ($\mathrm{M}+\mathrm{Na}$) 910.4554, found 910.4544.

Boc-Leu- $\boldsymbol{\psi}\left[(E)-\mathbf{C}\left(\mathrm{CF}_{3}\right)=\mathbf{C H}\right]-{ }_{-}^{D}$ Phe-Pro-Val-Orn(Cbz)-Leu- $\boldsymbol{\Psi}\left[(E)-\mathbf{C}\left(\mathrm{CF}_{3}\right)=\mathbf{C H}\right]-$ ${ }^{\boldsymbol{D}} \mathbf{P h e - P r o - V a l - O r n (C b z) - O M e ~ (8 b) . ~ A ~ s o l u t i o n ~ o f ~} 20.0 \mathrm{mg}(22.5 \mu \mathrm{~mol})$ of $\mathbf{7 b}$ in 0.60 mL of MeOH was treated at room temperature with $225 \mu \mathrm{~L}(225 \mu \mathrm{~mol})$ of $\mathrm{NaOH}(1.0 \mathrm{~N}$ solution in $\mathrm{H}_{2} \mathrm{O}$). The reaction mixture was stirred at room temperature for 7 h , treated with $225 \mu \mathrm{~L}(225 \mu \mathrm{~mol})$ of 1 N HCl and extracted with CHCl_{3}. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the acid as a colorless foam.

Another solution of $20.0 \mathrm{mg}(22.5 \mu \mathrm{~mol})$ of $7 \mathbf{b}$ in $600 \mu \mathrm{~L}(2.40 \mathrm{mmol})$ of $\mathrm{HCl}(4.0$ N solution in 1,4-dioxane) was stirred at $0^{\circ} \mathrm{C}$ for 5 min and at room temperature for an additional 40 min . 1,4-Dioxane was removed in vacuo and the colorless, foamy residue was dissolved in 6.00 mL of CHCl_{3} and washed with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the amine as a light yellowish foam.

A solution of acid and amine in 4.70 mL of CHCl_{3} was treated at room temperature with $3.4 \mathrm{mg}(25 \mu \mathrm{~mol})$ of HOBt , $5.2 \mathrm{mg}(27 \mu \mathrm{~mol})$ of EDC and $1.0 \mathrm{mg}(8.2 \mu \mathrm{~mol})$ of DMAP. The reaction mixture was stirred at room temperature for 2.5 d , diluted with CHCl_{3}, and washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}(2: 1$, hexanes/EtOAc; $20: 1$, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ to yield $31.4 \mathrm{mg}(85 \%)$ of $\mathbf{8 b}$ as a colorless foam that was used directly without any further purification.

Cyclo[(Val-Orn(Cbz)-Leu- $\boldsymbol{\psi}\left[(E)-\mathbf{C}\left(\mathrm{CF}_{3}\right)=\mathbf{C H}\right]-{ }^{\text {D }}$ Phe-Pro $\left.)_{2}\right]$ (9b). A solution of $31.4 \mathrm{mg}(19.1 \mu \mathrm{~mol})$ of $\mathbf{8 b}$ in 1.57 mL of MeOH was treated at room temperature with $191 \mu \mathrm{~L}(191 \mu \mathrm{~mol})$ of 1 N NaOH . The reaction mixture was stirred at room temperature for 9 h . Solvents were removed in vacuo and $1.57 \mathrm{~mL}(6.28 \mathrm{mmol})$ of $\mathrm{HCl}(4.0 \mathrm{~N}$ solution in 1,4-dioxane) was added at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min and at room temperature for an additional 40 min. 1,4-Dioxane was removed in vacuo and the colorless, foamy residue was dissolved in 8.37 mL of benzene, treated at room temperature with $16.2 \mathrm{mg}(191 \mu \mathrm{~mol})$ of NaHCO_{3}, and evaporated to dryness by azeotropic distillation with benzene at $25{ }^{\circ} \mathrm{C}$. The solid residue was diluted with 15.9 mL of CHCl_{3} and treated at room temperature with $2.8 \mathrm{mg}(21.0 \mu \mathrm{~mol})$ of $\mathrm{HOBt}, 4.4 \mathrm{mg}$ $(22.9 \mu \mathrm{~mol})$ of EDC $1.0 \mathrm{mg}(8.2 \mu \mathrm{~mol})$ of DMAP. The reaction mixture was stirred at room temperature for 2.5 d , diluted with CHCl_{3}, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by chromatography on $\mathrm{SiO}_{2}(1$: 1, hexanes/EtOAc; 20 : 1, $\mathrm{CHCl}_{3} / \mathrm{MeOH}$) and repurified by RP-HPLC $\left(\mathrm{C}_{18} ; 100 \%\right.$ $\mathrm{CH}_{3} \mathrm{CN}, 5 \mathrm{~mL} / \mathrm{min}$) to yield $12.0 \mathrm{mg}(42 \%)$ of $9 \mathbf{b}$ as a colorless solid: $\mathrm{Mp} 232{ }^{\circ} \mathrm{C}$ (decomp., $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.18(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}$), 8.10 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.28-7.09(\mathrm{~m}, 22 \mathrm{H}), 6.14(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.01(\mathrm{~d}, 2 \mathrm{H}, J=10.5$ $\mathrm{Hz}), 4.90,4.86(\mathrm{AB}, 4 \mathrm{H}, J=12.6 \mathrm{~Hz}), 4.70-4.64(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, 4.26 (dd, $2 \mathrm{H}, J=9.4,6.2 \mathrm{~Hz}$), 3.91 (b, 2 H), $3.49-3.30$ (m, 4 H), 3.16 (dd, $2 \mathrm{H}, J=13.9$, $9.1 \mathrm{~Hz}), 3.13-3.08(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 10 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 12 \mathrm{H})$, 1.28-1.22 (m, 2 H), 0.86-0.73 (m, 24 H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d $_{6}$) $\delta 170.4,170.3$, $169.8,169.6,156.1,138.6,137.1,134.3(\mathrm{q}, J=25.5 \mathrm{~Hz}), 132.6,128.8,128.2,128.1$, 127.6, 126.2, 123.5 (q, $J=275 \mathrm{~Hz}$), 65.1, 60.7, 55.4, 51.9, 46.3, 45.9, 43.2, 36.7, 33.2, 30.6, 30.5, 29.3, 25.9, 24.8, 24.2, 22.9, 20.1, 18.6, 17.7; ${ }^{19}$ F NMR (282 MHz, DMSO-d ${ }_{6}$)
$\delta-58.0$ (s); HRMS (ESI) m / z calcd for $\mathrm{C}_{80} \mathrm{H}_{105} \mathrm{~F}_{6} \mathrm{~N}_{10} \mathrm{O}_{12}(\mathrm{M}+\mathrm{H})$ 1511.7818, found 1511.7858.

Cyclo[(Val-Orn(Cbz)-Leu- $\left.\left.{ }^{\boldsymbol{D}} \mathbf{P h e - P r o}\right)_{\mathbf{2}}\right]\left(\mathbf{C b z}_{2} \mathbf{G S}\right){ }^{\mathbf{3}}$ A colorless solid: Mp 52-53 ${ }^{\circ} \mathrm{C}$ (hexanes/Et $\mathrm{E}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.94(\mathrm{~d}, 2 \mathrm{H}, J=3.2 \mathrm{~Hz}$), $8.58(\mathrm{~d}, 2$ $\mathrm{H}, J=9.1 \mathrm{~Hz}), 8.38(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 12 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.13-$ 7.10 (m, 4 H), 4.99, 4.96 (AB, $4 \mathrm{H}, J=12.6 \mathrm{~Hz}$), 4.80-4.75 (m, 2 H), 4.57 (q, $2 \mathrm{H}, J=7.9$ $\mathrm{Hz}), 4.42$ (dd, $2 \mathrm{H}, J=9.1,7.2 \mathrm{~Hz}$), 3.35 (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), 4.33-4.30 (m, 2 H), 3.51 (bt, $2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.00-2.90(\mathrm{~m}, 6 \mathrm{H}), 2.83(\mathrm{t}, 2 \mathrm{H}, J=11.4 \mathrm{~Hz}), 2.39(\mathrm{q}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, 2.05-1.95 (m, 2 H), 1.95-1.87 (m, 2 H), 1.75-1.65 (m, 2 H), 1.50-1.35 (m, 12 H), 1.35$1.20(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{~d}, 12 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.78(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.75(\mathrm{~d}, 6 \mathrm{H}, J=6.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d ${ }_{6}$) $\delta 171.7,170.7,170.5,170.4,169.6,155.9,137.2$, $136.3,129.2,128.3,128.1,127.7,127.6,126.7,65.2,59.7,56.6,53.7,51.3,49.5,45.7$, $41.0,40.2,35.7,31.3,29.9,25.2,24.0,23.0,22.7,22.5,19.0,18.0$; HRMS (ESI) m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{104} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 1431.7693, found 1431.7726 .

xjb－4－80 CDCL3 rt 500 MHz H1 NMR delay 6 sec

PL1
F2－Processing parameters

믕융뮹
rd
ra
l
只而吊呈理 ${ }_{\mathrm{A}}^{\mathrm{A}} \mathrm{A}$ OS
SWH
FIDRES NS SOLVENT
 PROBHD
PULPROG Time
INSTRUM 굴
s」afawesed uoṭf！s！̣nbコロ－ट」

昍 00.0
500.1330008 MHz

วasn 00 －9
jasn $00 \cdot$ II
as $00000000 \cdot 9$
Y 0.062
วasn 00.9

 CDC13

0

Current Data Parameters
I
I
0

－ 0 00．0
$\stackrel{\square}{\square}$品 ロ号

品呈
 F2－Acquisition Parameters

EXPNO
Current Data Parameters

65.524
-37.998
$-\quad 37.599$

- 28.790
27.253
26.920
26.820
19.277
——13.630
-10.850

ssazemesed zord thn al arameters
32768
299731 MHz
EM
0
0.40 Hz
0
1.00

Jd
99
日
9SS
MOM
IS
IS
2」
 ONJOHd NAME
EXPNO Current Data Parameters

물 $\xrightarrow{8}$ ता位

Integral ppm

xjb-4-15 CDCL3 rt 500 MHz H1 NMR delay 6sec

$$
\begin{aligned}
& 00^{\circ} \mathrm{O} \\
& O E T \\
& \nabla ट \angle S \\
& 00^{\circ} 9 \\
& 00^{\circ} \angle \\
& 00^{\circ} O \\
& H T
\end{aligned}
$$

3
 jasn 00．001 20 20d0d

凫号
呂
呙
ㅁㅁㅁ
믕

Current Data Parameter
NAME $\quad \times j b-4-15-50$

8 Keโəp $\forall W N$ IH ZHW 009 子」 モาコロコ L6โ－ஏ－q！̣

刍 \quad ppm
-155.33 （
－
＇子」＇E！כрว＇$\angle 6 I-\nabla-q!x$
$125 \mathrm{MHz} \mathrm{C13} \mathrm{d1}=10 \mathrm{sec}$
－ 43
$-\quad 37$
43.10
41.25
37.58
$\begin{array}{r}79.23 \\ \sim \\ 77.26 \\ 76.76 \\ 76 \\ \hline\end{array}$
-57.40
－ 29
28.27
$\begin{array}{r}24.21 \\ - \\ -22.95 \\ 21.95\end{array}$
-10.92

suaqamesed buṭssazand－ $\begin{aligned} & \text {－} \\ & \text { 日f } 00 \%\end{aligned}$
믄忥品
口
믄 Nㅔㅇ 枵号
贸号号品
号品
뭄

ZHW VCLG5
9
$\angle 5$
ZHW BOOOEET 00 S
כasn $00^{\circ} 00 \mathrm{I}$
000000 －01
000000
00.9

0.062 Jesn OOE ST

32679.738
0.99730

总
ELJOJ
B9LZE
c13wonoe ロ F2－Acquisition Parameters

\qquad Current Data Parameters
NAME $\quad \times j b-4-197$
$\begin{array}{lr}\text { I ONOOHD } \\ \text { 己 } & \text { ONdXB }\end{array}$
$L B$
S

믄
\rightarrow

F2 - Acquisition Parameters

EXPNO
PROCNO
NAME
Current Data Parameters
？

品口 zim龍 몸 ㄴ
若荎
R

$$
\text { gP } 000
$$

 ロ
200.
0
0 므뭄
혐ㅁㅁ空 Date＿
Time
Time

$$
\begin{aligned}
& \angle I \\
& 02 L
\end{aligned}
$$

$$
\begin{aligned}
& \text { CHN 8000EEV OOS } \\
& \text { Jasn 00. OOL } \\
& \text { quZコIPM }
\end{aligned}
$$

$$
\begin{aligned}
& 9[Z 7[\mathrm{EM} \\
& 00000000 \cdot 8
\end{aligned}
$$

$$
\begin{aligned}
& 000000 \\
& 00.9
\end{aligned}
$$

$$
000006000
$$

$$
\begin{gathered}
\text { B9LटE } \\
\text { Jas } \downarrow 00 \text { VOG. } 0
\end{gathered}
$$

$$
\text { B9 } \angle 己 E
$$

$$
8
$$

PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
AG
DW
DE
TE
D1
$\begin{array}{cc}\text { AQ } & 3.6438515 \mathrm{sec} \\ \text { RG } & 1 \\ \text { DW } & 55.600 \mathrm{use} \\ \text { DE } & 6.00 \mathrm{usf} \\ \text { TE } & 290.0 \mathrm{~K} \\ \text { D1 } & 6.00000000 \mathrm{sec}\end{array}$
$\begin{array}{cc}\text { AQ } & 3.6438515 \mathrm{sec} \\ \text { RG } & 1 \\ \text { DW } & 55.600 \text { use } \\ \text { DE } & 6.00 \text { uss } \\ \text { TE } & 290.0 \mathrm{~K} \\ \text { D1 } & 6.00000000 \mathrm{sec}\end{array}$
$\begin{array}{cc}\text { AQ } & 3.6438515 \mathrm{sec} \\ \text { AG } & 1 \\ \text { DW } & 55.600 \mathrm{usf} \\ \text { DE } & 6.00 \mathrm{usf} \\ \text { TE } & 290.0 \mathrm{~K} \\ \text { D1 } & 6.00000000 \mathrm{sec}\end{array}$
$\begin{array}{cc}\text { AQ } & 3.6438515 \mathrm{sec} \\ \text { RG } & 1 \\ D W & 55.600 \text { use } \\ \text { DE } & 6.00 \text { use } \\ \text { TE } & 290.0 \mathrm{~K} \\ \text { D1 } & 6.00000000 \mathrm{sec}\end{array}$ 2H 6LCLEI 0
ZH 908 C66

OH8OBd

 ONJOHd

JW＊N Current Data Parameters

F2-Acquisition Parameters
Date
20040302

ONdX3
Current
NAME Current Data Parameters

$00 \cdot 0$

믇
듕뮴

TD
SOLVENT
NS

INSTRUM
PROBHD
PULPROG
 $\begin{array}{ll}\text { F2 - Acquisition Parameters } \\ \text { Date_ } & 500000\end{array}$ ONOOHd Current
NAME
 s.ałauesed ełed queコ儿n

$$
\text { ' } \downarrow \nabla-\nabla-q[x
$$

'ZH LOSTV'00E WJZH

 INヨ 7 フOS 90yd7nd OHBOUd
WחUISNI

ONdX
${ }_{3}^{2}$

שว／2H 9068L OVSl WJZH

 WJWdd 2」d2．

 $x J$
UWN
$0 I$ Suafawesed fotd unn Oi $\begin{array}{r}7 \\ \hline\end{array}$
芯 00.0
000
$8 L^{\circ} \mathrm{g}$
000
$00^{\circ} 0$
5 Ja $\begin{array}{ll}00.2 & \text { Jd } \\ 0 & \text { 日9 }\end{array}$

$\begin{array}{lc}\text { SI } & \text { SF } \\ \text { SF } & 151.0788998 \mathrm{MHz} \\ \text { WDW } & \text { EM }\end{array}$ F2－Processing parameters
SI
65536

$\begin{array}{lr}\text { PL12 } & 12.00 \mathrm{~dB} \\ \text { SF02 } & 600.8336050 \mathrm{MHz}\end{array}$
 29 $3 d 0 d 3$
 $\begin{array}{ll}\text { ววs } 00000100 \text { 0 } & \text { EO } \\ \text { วว5 } 00000000 \text {－} & \text { IO }\end{array}$

 DS
SWH
FIDRES品务号云

WJ／ZH 6OGTt 00E WJZH
dd OWdd 2J d己」
よ」

Jas 00000000 てT Io
$\times 0.062$
$\operatorname{zasn} 00.9$ jesn 009｀95

Jas sicaerg．e

HMS
NS
DS

PROBHD
PULPROG空 Date＿ NAME
EXPNO Current Data Parameters

WJ/ZH 9068L OLG \quad WIZH

S9-Z '子」 'ZUW009 '9p-0SWO 'GEट-จ-q! x

யコ／2H 9068 \angle OLS！WOZH HJ／wdd 00000 0 0

If
dIf
Cl d5
$\times 3$

$00^{\circ} \mathrm{I}$
0
ZH $00^{\circ} 1$
0
Wヨ
ZHN $60068 \angle$
$9 \varepsilon G G 9$
suałame
ZHW 0509EE8 $009 \quad 2045$
 ごロd0d3

拿単 $\begin{array}{cc}\text { EOEOROOC } & \text { afed } \\ \text { SJafawejed uotfrsin－2．}\end{array}$
Jas 00000100.0 m
8
8
8
8
8
8
8
8
0
0
0
n
n
y 0.062
כasn 00.9
วasn 00e．EL
0.8651252 sec
32768

ZH V86LLS 0
2H 68 $2 \cdot 8 \angle 8 \angle E$
EEGE
9EGG9
әouomer
foads

NJOHd
ONAX
Current $-q!x$
Current Data Parameters

9a Variable Temperature NMR in DMSO-d6

9b Variable Temperature NMR in DMSO-d6

Selected Observed nOes for $\mathbf{9 a}, \mathbf{9 b}$ and $\mathbf{C b z}_{2} \mathbf{G S}\left(600 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right)$.

X-ray crystallographic data for $\mathbf{9 b}$ (crystallized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$):

Table 1. Crystal data and structure refinement for $\mathbf{9 b}$.
Identification code pitt1

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections

C80 H104 F6 N10 O12 - 3($\left.\mathrm{H}_{2} \mathrm{O}\right)$
1559.73
100.0(2) K
$0.71073 \AA$
Orthorhombic
P 2 $2_{1} 2_{1}$
$a=9.6390(9) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=23.908(2) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=38.807(4) \AA \quad \gamma=90^{\circ}$.
8943.3(14) \AA^{3}

4
$1.158 \mathrm{Mg} / \mathrm{m}^{3}$
$0.088 \mathrm{~mm}^{-1}$
3312
$0.29 \times 0.06 \times 0.06 \mathrm{~mm}^{3}$
1.35 to 25.00°.
$-9<=\mathrm{h}<=11,-28<=\mathrm{k}<=28,-46<=1<=46$
42826
$15549[\mathrm{R}$ (int) $=0.0760]$

Completeness to theta $=25.00^{\circ}$
Max. and min. transmission Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
99.7 \%
0.9947 and 0.9748

Full-matrix least-squares on F^{2}
15549 / 0 / 988
1.013
$\mathrm{R} 1=0.0999, \mathrm{wR} 2=0.2574$
$R 1=0.1567, w R 2=0.2868$
-0.1(13)
1.593 and -0.439 e. \AA^{-3}

[^0]: ${ }^{1}$ Edmonds, M. K.; Abell, A. D. J. Org. Chem. 2001, 66, 3747.

[^1]: ${ }^{2}$ Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238.

[^2]: ${ }^{3}$ Tamaki, M.; Akabori, S.; Muramatsu, I. Bull. Chem. Soc. Jpn. 1993, 66, 3113.

