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1 Genetic neural network method

For a database of physical variables and committor (pB) values, neural networks are used to determine the
functional dependence ofpB on combinations of coordinates, and a genetic algorithm selects the combina-
tion that yields the best fit. Each of the components in the search method is discussed, followed by details
concerning construction of the database.

1.1 Neural network

Artificial neural networks are widely used for model-free non-linear fitting. An example of the specific form
employed in the present study1–3 is shown in the Fig. 1 of the main text. There are three layers:an input
layer, a hidden layer, and an output layer. The values of the nodes in the input layer are those of the physical
variables of interest. The values of the nodes in the remaining two layers are those of the sigmoid function

f =
1

1 + exp(−θ − ∑

iwipi)
(1)

wherepi are the values of the elements in the previous layer, the summation runs over those elements, and
thewi are corresponding weights (represented by lines in Fig. 1).The output is a predictedpB. Training the
neural networks consists of using a scaled conjugate gradients method to vary thewi to minimize the root
mean square (RMS) error in committor values:

RMS error=

√

1

M

∑

i

(pGNN
B,i − pB,i)2. (2)

Here, the summation runs over theM samples in the database,pGNN
B,i is the predicted committor value of

configurationi, andpB is the actual one. As detailed in the main text, in each application, the weights were
optimized with a training set and the quality of the fit was evaluated with an independent test set.
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1.2 Genetic algorithm

As illustrated in the main text, it is important to be able to evaluate combinations of a large number of
physical variables. For example, in the present study, there are5812C3 = 32, 704, 036, 820 possible three-
descriptor models in the explicit solvent case. Consequently, exhaustive enumeration is not feasible, and
we use a genetic algorithm to search the space of coordinate combinations. In this procedure, individuals
in a generation of sizeL consist of combinations of descriptors, and their fitness isdetermined by the RMS
error of the correpsonding trained neural network (Eq. 2). At each cycle of the genetic algorithm, the best
l individuals are kept, the remainder are discarded, andL − l new individuals (children) are created by
duplicating existing combinations (asexual reproductionby parents) and changing (mutating) one descriptor
in the set. In the present study, optimization was performedfor 20 to 30 generations of300 ≤ L ≤ 2000,
depending on the number of physical variables used as inputsto the neural networks. The genetic algorithm
was terminated when the best model persisted for several generations. The results were not very sensitive to
L.

1.3 Sampling pB with uniform distribution

To ensure that the fitting procedure does not reproduce one range ofpB at the expense of others, it is nec-
essary to construct the database in such a way that the distribution of committor values is approximately
uniform. To this end, the following procedure was employed.Each trajectory ofN saved structures har-
vested by transition path sampling (see below) was divided into intervals of roughly

√
N (structures were

saved either every 10 or 20 fs, such that121 ≤ N ≤ 331 depending on the path length). Then, intervals
were searched sequentially to obtainpB in each bin of width 0.1.

For example, for0 ≤ pB < 0.1, pB for the
√
N -th structure was evaluated with a small number of

trials (10 or 20), and, if thatpB was greater than the lower bound of the target range (pB > 0), structures in
that interval were tested one by one with the same number of trials. For the structures with0 ≤ pB < 0.1,
pB was re-evaluated with a large number of trials (typically, 100, as detailed in the main text) until one that
maintainedpB in the target range was found. Then, the target range was increased to correspond to the next
bin (0.1 ≤ pB < 0.2 in the example), and the procedure described immediately above was repeated for
the same interval. If the initially tested endpoint hadpB less than the lower bound of the target range or no
structure withpB in the target range was found, the interval considered was increased (to structures indexed√
N+1 to 2

√
N in the example). The search terminated when eitherpB values in all the bins were obtained

or the end of the trajectory was reached.

1.4 Physical variables to characterize solvent

Here, additional details are provided for the calculation of selected coordinates described in the main text.

1.4.1 Grid-based water densities

Angularly-restricted radial solvent distribution functions were calculated around solute atoms. To this end,
three bonded atoms (denotedA,B, andC; see Table 1) were used to construct local right-handed Cartesian
coordinate systems. Specifically, the origin was placed atA, thez axis was placed along the line joining
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A andB, and thexz plane was defined to contain the three points. Data were binned radially into three
spherical shells:r ≤ 3.4 Å, 3.4 < r ≤ 5.8 Å, and5.8 < r ≤ 8.0 Å. These regions were divided into
four even intervals incos θ and eight even intervals inφ, yielding 96 grid cells around each solute atom
A. Intervals of alternative sizes did not increase the likelihood of selecting these descriptors in the GNN
procedure. For each grid cell, numbers of solvent atoms (oxygen and hydrogen, separately or together) and
total charge (with−0.834e− for oxygen and0.417e− for hydrogen) were evaluated.

1.4.2 Torque calculations

Torques exerted by the solvent around selected bonds were determined. The bonds considered were the
four corresponding to non-trivial dihedral rotations of the peptide backbone: 1C-2N, 2N-2Cα, 2Cα-2C, and
2C-3N. For each bond between atomsA andB, we computed the solvent-associated force on solute atom
C (FC

s ) and then the torque
NA-B = (FC

s × rBC) · r̂AB.

In each case, in addition to the total non-bonded force, separate Coulomb electrostatic and van der Waals
terms were considered. Also, the forces were computed either with all solvent molecules or only those in
spherical shells aroundC of r < 3.4 Å, r < 4.5 Å, r < 6.0 Å, or r < 8.0 Å. Finally, because torques
around a given bond are additive, they were grouped and summed as indicated in Table 2.

2 Dynamic simulation details

2.1 Model

We represented the alanine dipeptide with the CHARMM polar hydrogen topology and parameter sets4,5

and the explicit water molecules with a modified form of TIP3.5,6 In the gas phase simulations, no cutoffs
were introduced. In the explicit solvent simulations, a group-based switching function was used to truncate
the interactions by scaling the potential between 6.0Å and 8.0Å,4 consistent with the short-range spherical
cutoffs employed in the initial parameterization of the water model.6 In the implicit solvent simulations, the
cutoffs employed were those designated for the ACE2 energy term.7–10

2.2 Transition path sampling

The dynamics of the alanine dipeptide isomerizations were simulated with the leap frog Verlet algorithm11

with a time step of 1 fs. The lengths of bonds to hydrogen atomswere constrained with SHAKE.12,13

Due to the relative simplicity of the system, we were able to generate initial paths for the reactions studied
by guessing approximations to the transition states and firing a large number (1̃000) of random trajectories
from those configurations until paths with endpoints in the defined basins were found by chance. Subsequent
paths were generated by making shooting moves14,15 with momentum perturbations of 20% in the vacuum
and implicit solvent cases and 4% in the explicit solvent case. Paths were saved every 100 steps of the
transition path sampling procedure.
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2.3 Umbrella sampling

To harvest putative transition states withpGNN
B ≈ 0.5, we used the Monte Carlo module16 in CHARMM.4

The allowed moves for the peptide were single atom displacements of up to 0.075̊A and torsion rotations
of up to 30◦. Water molecules were simultaneously translated up to 0.25Å and rotated around random axes
up to 25◦. These three types of moves were chosen with relative frequencies of 12:4:125, respectively. One
MC step corresponds to a single application of one of the above moves. In the vacuum and implicit solvent
simulations, the system was equilibrated for107 MC steps and then sampled every103 MC steps for4×107

MC steps at 300 K. The explicit solvent simulations were morecomputationally costly; the system was
equilibrated for106 MC steps and then sampled every103 MC steps for107 MC steps.
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Table 1: Atoms used to define local coordinate systems for angularly-restricted solvation shells

Index A B C
1 2N 2Cα 2C
2 2O 2C 2Cα

3 3N 2C 2Cα

4 1CH3 1C 2N
5 1O 1C 2N
6 2H 2N 2Cα

7 2Cα 2C 3N
8 2Cβ 2Cα 2C
9 2C 2Cα 2N
10 1C 2N 2Cα

11 3H 3N 2C
12 3Cα 3N 2C
13 2Cα 2C 2O
14 2Cα 2Cβ 2N
15 2Cα 2C 2Cβ

16 2Cα 2C 2N
17 2C 2Cα 2O
18 2C 2N 2Cβ

19 2Cα 1C 3N
20 2C 2N 3N
21 2C 2N 3H
22 2C 2N 1O
23 2C 1O 3H
24 3N 1O 3H
25 2C 2O 2N
26 2N 2C 2O
27 3N 2N 2Cα

28 3N 2N 2C
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Table 2: Groupings employed in torque calculations. Forcesbetween the solvent and the indicated atoms
were calculated. The total torque arising from each group ofatoms around each specified bond was then
calculated.

Groups of Atoms Bonds
1C, 1O 2N-2Cα, 2Cα-2C, 2C-3N
2N, 2H 2Cα-2C, 2C-3N
2C, 2O 1C-2N, 2N-2Cα
3N, 3H 1C-2N, 2N-2Cα, 2Cα-2C

3N, 3H, 3Cα 1C-2N, 2N-2Cα, 2Cα-2C
1C, 1O, 2N, 2H 2Cα-2C, 2C-3N
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Table 3: Linear regression statistics for models identifiedin the main text.

Reaction n Inputs Input RMS Model RMS
Train Test Train Test

C7eq → C7ax 1 1C-2N-2Cα-2C (φ) 0.138 0.138 0.138 0.138
(100 trials forpB) 2 1C-2N-2Cα-2C (φ) 0.138 0.138 0.136 0.137

1O-1C-2N-2Cα (θ) 0.293 0.295
3 1C-2N-2Cα-2C (φ) 0.138 0.138 0.136 0.138

1O-1C-2N-2Cα (θ) 0.293 0.295
2N-2Cα-2C-3N(ψ) 0.213 0.272

C7eq → C7ax 1 1C-2N-2Cα-2C (φ) 0.160 0.160 0.160 0.160
(400 trials forpB) 2 1C-2N-2Cα-2C (φ) 0.160 0.160 0.160 0.132

1O-1C-2N-2Cα (θ) 0.267 0.205
3 1C-2N-2Cα-2C (φ) 0.160 0.160 0.160 0.132

1O-1C-2N-2Cα (θ) 0.267 0.205
2Cβ-2C-2Cα-2N (γ) 0.276 0.209

C7eq → αR 1 2N-2Cα-2C-3N(ψ) 0.125 0.125 0.125 0.125
(vacuum) 2 2N-2Cα-2C-3N(ψ) 0.125 0.125 0.114 0.112

2O-2C-3N-3Cα (θ′) 0.290 0.283
C7eq → αR 1 2Cβ-2Cα-2C-2O(ψ′) 0.177 0.156 0.177 0.156

(explict solvent and 2 2Cβ-2Cα-2C-2O(ψ′) 0.177 0.156 0.174 0.149

instant coordinates) N3H
1C-2N 0.225 0.210

3 2Cβ-2Cα-2C-2O(ψ′) 0.177 0.156 0.172 0.141
r2H-2Cβ

0.256 0.252

N3H
1C-2N 0.225 0.210

C7eq → αR 1 2Cβ-2Cα-2C-2O(ψ′) 0.177 0.156 0.177 0.156
(explict solvent and 2 〈r2H-3H〉solute 0.196 0.182 0.169 0.139

average coordinates) 〈N3Cα

1C-2N〉solute 0.179 0.160
3 〈r2H-3H〉solute 0.196 0.182 0.166 0.135

〈N3Cα

1C-2N〉solute 0.179 0.160

〈N3N
1C-2N〉solvent 0.201 0.178

4 〈r2H-3H〉solute 0.196 0.182 0.165 0.132

〈N3Cα

1C-2N〉solute 0.176 0.160

〈N3N
1C-2N〉solvent 0.201 0.178

〈r1O-2H〉solute 0.256 0.251
C7eq → αR 1 2N-2Cα-2C-2O(ψ′′) 0.191 0.184 0.191 0.184

(implicit solvent) 2 2N-2Cα-2C-3N(ψ) 0.190 0.184 0.130 0.123
2O-2C-3N-3Cα (θ′) 0.287 0.289

3 2N-2Cα-2C-3N(ψ) 0.191 0.184 0.093 0.100
2O-2C-3N-3Cα (θ′) 0.287 0.289
2Cβ-2C-2Cα-2N (γ) 0.287 0.289
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