De Novo Enantioselective Synthesis of Galacto-Sugars and DeoxySugars Via the Iterative Dihydroxylation of Dienoate.

Md. Moinuddin Ahmed, Bryan P. Berry, Thomas J. Hunter, Dennis J. Tomcik and George A. O'Doherty*
Department of Chemistry, West Virginia University
Morgantown, WV 26506

Supporting Information:

General Methods and Materials. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Jeol (270 $\mathrm{MHz})$ and Varian VXR-600 (600 MHz) spectrometers. Chemical shifts are reported relative to internal tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$. Infrared (IR) spectra were obtained on a Prospect MIDAC FT-IR spectrometer. Optical rotations were measured with a Jasco DIP-370 digital polarimeter in the solvent specified. Melting points were determined with Electrothermal Mel-Temp apparatus and are uncorrected. Flash column chromatography was performed on ICN reagent 60 (60-200 mesh) silica gel. Analytical thin-layer chromatography was performed with precoated glass-backed plates (Whatman K6F $60 \AA, \mathrm{~F}_{254}$) and visualized by quenching of fluorescence and by charring after treatment with p-anisaldehyde or phosphomolybdic acid or potassium permanganate stain. $\quad R_{f}$ values are obtained by elution in the stated solvent ratios (v/v). Ether, THF, Methylene chloride and triethylamine were dried by passing through activated alumina column with argon gas pressure. Commercial reagents were used without purification unless otherwise noted. Melting points are uncorrected. Air and/ or moisture- sensitive reactions were carried out under an atmosphere of argon/nitrogen using oven-dried glassware and standard syringe/septa techniques.

(E,4S,5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate (2b):

Into a 250 mL round bottom flask was added 60 mL of $t-\mathrm{BuOH}, 60 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(24.7 \mathrm{~g}, 75 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(10.35 \mathrm{~g}, 75 \mathrm{mmol}), \mathrm{MeSO}_{2} \mathrm{NH}_{2}(2.37 \mathrm{~g}, 25$ mmol), (DHQ$)_{2} \mathrm{PHAL}\left(409 \mathrm{mg}, 0.52 \mathrm{mmol}, 2.1 \mathrm{~mol} \%\right.$), and $\mathrm{OsO}_{4}(127 \mathrm{mg}, 0.5 \mathrm{mmol}, 2$ $\mathrm{mol} \%$). The mixture was stirred at room temperature for about 15 minutes and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added (2E,4E)-ethyl 6-(benzyloxy)hexa-2,4dienoate $\mathbf{1 b}(6.15 \mathrm{~g}, 25 \mathrm{mmol})$ and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite (300 mg) at room temperature. Ethyl acetate (40 mL) was added to the reaction mixture, and after separation of the layers, the aqueous phase was further extracted with the organic solvent ($2 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded $6.23 \mathrm{~g}(89 \%$ yield) of (E,4S,5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate 2b as a light yellow oil: $R_{f}(30 \% \mathrm{EtOAc} /$ hexanes $)=0.13 ;[\alpha]^{25}{ }_{\mathrm{D}}$ $20.36^{\circ}\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (thin film, cm^{-1}) 3421, 2985, 2937, 2871, 1715, 1699, 1659, 1455, 1393, 1279, 1179, 1039, $984 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right): \delta 7.33(\mathrm{~m}, 5 \mathrm{H})$, $6.91(\mathrm{dd}, J=15.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=9.1,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2$ H), 3.76 (ddd, $J=9.7,5.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.7$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): ~ \delta 166.2,146.0,137.3,128.5$ (2C), 127.9, 127.8 (2C), 122.4, 73.7, 72.1, 71.7, 71.4, 60.5, 14.1; GCMS: $280\left(\mathrm{M}^{+}\right)$.

(2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate (3b):

Into a 25 mL round bottom flask was added (E,4S,5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate $\mathbf{2 b}(140 \mathrm{mg}, 0.5 \mathrm{mmol})$ and added 1 mL of $t-\mathrm{BuOH}, 1 \mathrm{~mL}$ of acetone and then cooled to $0^{\circ} \mathrm{C}$. To this solution $0.35 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(2.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ was added and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with $20 \mathrm{~mL} \mathrm{50} \mathrm{\%} \mathrm{Ethyl}$ acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{~mL}, 2 \mathrm{mmol})$, pyridine ($0.3 \mathrm{~mL}, 4 \mathrm{mmol}$) and a catalytic amount of DMAP ($2.5 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for an hour, after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with $10 \mathrm{~mL} \mathrm{CuSO}_{4}$ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (4:1 (v/v) hexane / EtOAc) to yield (2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate 3b (144 mg, 5:1 dr, 60% yield in 2 steps) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: white crystalline solid; mp 76-77 ${ }^{\circ} \mathrm{C}$; $R_{f}(30 \% \mathrm{EtOAc} /$ hexanes $)=0.33 ;[\alpha]^{25}{ }_{\mathrm{D}} 7.5^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2983, 2928, 2914, 2872, 1766, 1760, 1748, 1455, 1374, 1213, 1096, 1048, 952; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.57$ (dd, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (dd, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (ddd, $J=6,6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=10.2,6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{dd}, \mathrm{J}=10.2,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.26$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 170.2(2 \mathrm{C}), 169.3,169.1,167.0$,
137.3, 128.5 (2C), 127.8 (3C), 73.3, 69.4, 68.1, 67.9, 67.8, 67.7, 62.0, 20.7, 20.4, 20.3(2C), 13.8; CIHRMS: Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{11}+\mathrm{Na}\right]^{+}: 505.1686$, Found: 505.1697. Minor isomer: $R_{f}(30 \% \mathrm{EtOAc} /$ hexanes $)=0.30 ;[\alpha]^{25} \mathrm{D}-6.1^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2992, 2963, 2931, 2874, 1758, 1454, 1374, 1223, 1115, 1057, 951, 857; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{dd}, J=7.2,3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=7.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.16(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=$ $10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.2,169.5,169.4,166.7$ (2C), 137.3, 128.4 (2C), 127.8 (3C), 73.4, 70.6, 70.0, 69.6, 69.4, 67.4, 61.9, 20.7, 20.5, 20.4 (2C), 13.9; CIHRMS: Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{11}+\mathrm{Na}\right]^{+}: 505.1686$, Found: 505.1674.

(3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2one(5b):

To a stirred solution of ($2 S, 3 R, 4 R, 5 S$)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate $\mathbf{3 b}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ in 1 mL of MeOH at room temperature was added solid LiOH ($35 \mathrm{mg}, 0.85 \mathrm{mmol}$), the reaction was monitored by TLC and after 1 hr the reaction mixture was acidified with $3 \mathrm{M} \mathrm{HCl}(0.4 \mathrm{~mL}, 0.96 \mathrm{mmol})$ and allowed to stirred for 2 hr at room temperature. Then MeOH was removed under reduced pressure, dried under high vaccum and replaced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Then to the solution was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.09 \mathrm{~mL}, 0.8 \mathrm{mmol})$, pyridine $(0.12 \mathrm{~mL}, 1.6 \mathrm{mmol})$ and a catalytic amount of DMAP ($1.3 \mathrm{mg}, 5 \mathrm{~mol} \%$) and stirred for 6 h at room temperature. After which 5 ml Ether and 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with $5 \mathrm{~mL} \mathrm{CuSO}_{4}$ solution, 5 mL brine and the aqueous layer was further extracted with ether ($3 \times 3 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent
was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one $\mathbf{5 b}$ ($51 \mathrm{mg}, 61 \%$ yield in 3 steps) as a viscous oil. $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.3 ;[\alpha]^{25}{ }_{\mathrm{D}} 12.4^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22$ (dddd, $J=7.8,5.4,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta$ $169.8,169.7,169.3,168.4,137.2,128.4$ (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}: 417.1162$, Found: 417.1126.

(3R,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2one:

To a stirred solution of ($2 R, 3 S, 4 R, 5 S$)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate ($23 \mathrm{mg}, 0.04 \mathrm{mmol}$) in 0.5 mL of MeOH at room temperature was added solid LiOH (8.2 $\mathrm{mg}, 0.19 \mathrm{mmol}$) the reaction was monitored by TLC and after 1 hr the reaction mixture was acidified with $3 \mathrm{M} \mathrm{HCl}(0.1 \mathrm{~mL}, 0.24 \mathrm{mmol})$ and allowed to stirred for 2 hr at room temperature. Then MeOH was removed under reduced pressure, dried under high vaccum and replaced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Then to the solution was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.02 \mathrm{~mL}$, $0.2 \mathrm{mmol})$, pyridine ($0.03 \mathrm{~mL}, 0.4 \mathrm{mmol}$) and a catalytic amount of DMAP $(0.25 \mathrm{mg}, 5$ $\mathrm{mol} \%$) and stirred for 6 h at room temperature. After which 3 ml Ether and 3 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 3 mL CuSO_{4} solution, 3 mL brine and the aqueous layer was further extracted with ether (3×3
$\mathrm{mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield $(3 R, 4 S, 5 R)-5-\left(2^{\prime}\right.$-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one ($10.2 \mathrm{mg}, 65 \%$ yield in 3 steps) as a viscous oil. $R_{f}(40 \%$ $\mathrm{EtOAc} /$ hexanes $)=0.3 ;[\alpha]^{25}{ }_{\mathrm{D}} 30^{\circ}\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2953,2922,2876$, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta$ $7.33(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dddd}, J=$ $6.6,6,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 170.1,169.7,169.5,168.5$, $137.3,128.5$ (2C), 127.9, 127.7 (2C), 75.3, 73.5, 72.2, 70.1, 68.0, 66.7, 21.0, 20.4, 20.3; CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}$: 417.1156, Found: 417.1154.

(3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

Into a 25 mL round bottom flask was added ($E, 4 S, 5 S$)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate $\mathbf{2 b}(200 \mathrm{mg}, 0.71 \mathrm{mmol})$ and added 1 mL of $t-\mathrm{BuOH}, 1 \mathrm{~mL}$ of acetone and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution $0.5 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(2.1 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(3.6 \mathrm{mg}, 14 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) was added and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the reaction mixture was filtered through a pad of celite/florisil and eluted with $15 \mathrm{~mL} \mathrm{50} \mathrm{\%}$ Ethyl acetate/ MeOH.. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with benzene $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$. To this solution was added Py.TsOH ($17 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and the mixture was allowed to reflux for 3 h . The
reaction was cooled to room temperature and after removal of the solvents in vacuo, flash chromatography on silica gel (1:9 (v/v) hexanes/EtOAc) afforded (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one 4b (101 mg, 5:1 $\mathrm{dr}, 53 \%$ yield in 2 steps $)$ as a viscous oil. $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.53$; Major isomer: $[\alpha]^{25}{ }_{\mathrm{D}} 29.3^{\circ}$ (c 1.0, MeOH); IR (thin film, cm^{-1}) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 600 \mathrm{MHz}\right) \delta 7.27$ (m, 5H), 4.48 (br s, 2H), 4.40 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dd, $J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=6.6,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52\left(\mathrm{dd}, J=(9.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 67.5 \mathrm{MHz}\right) \delta\right.$ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 291.0845$, Found: 291.0875.

(3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

Into a 25 mL round bottom flask was added (E,4S,5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate $\mathbf{2 b}(300 \mathrm{mg}, 1.1 \mathrm{mmol})$ and added 2 mL of MeOH and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution $0.75 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(3.3 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(5.6$ $\mathrm{mg}, 22 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) was added and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite (150 mg) at room temperature. Then the reaction mixture was filtered through a pad of celite/florisil and eluted with $20 \mathrm{~mL} 50 \%$ Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents in vacuo and flash chromatography on silica gel (1:9 (v/v) hexanes/EtOAc) afforded (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one 4b (201 mg, 5:1 $\mathrm{dr}, 70 \%$ yield $)$ as a viscous oil. $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.53$; Major isomer: $[\alpha]^{25}{ }_{\mathrm{D}}$
29.3° (c 1.0, MeOH); IR (thin film, cm^{-1}) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 600 \mathrm{MHz}\right) \delta 7.27(\mathrm{~m}$, $5 \mathrm{H}), 4.48$ (br s, 2H), $4.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=$ $7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, $J=6.6,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $\left(\mathrm{dd}, J=(9.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 67.5 \mathrm{MHz}\right) \delta\right.$ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 291.0845$, Found: 291.0875.

(3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2one(5b):

To a solution of (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one $\mathbf{4 b}(108 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}$ $(0.2 \mathrm{~mL}, 2 \mathrm{mmol})$, pyridine ($0.3 \mathrm{~mL}, 4 \mathrm{mmol}$) and a catalytic amount of DMAP (2.4 mg , $5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 10 mL CuSO 4 solution, 10 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one $\mathbf{5 b}$ ($151 \mathrm{mg}, 96 \%$ yield) as a viscous oil. $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.3 ;[\alpha]^{25}{ }_{\mathrm{D}} 12.4^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.33$ $(\mathrm{m}, 5 \mathrm{H}), 5.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dddd, $J=7.8,5.4$, $3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 169.8,169.7,169.3,168.4$,
137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3;

CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}$: 417.1162, Found: 417.1126.

$\left(3 R^{*}, 4 R^{*}, 5 S^{*}, 1^{\prime} R^{*}\right)$-5-(2'-Benzyloxy-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one (+/-4b):

Into a 25 mL round bottom flask was added (2E,4E)-ethyl 6-(benzyloxy)hexa-2,4dienoate $\mathbf{1 b}$ ($200 \mathrm{mg}, 0.81 \mathrm{mmol}$) and added 1.6 mL of MeOH and then cooled to $0^{\circ} \mathrm{C}$. To this solution $1.15 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(4.8 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(6.1 \mathrm{mg}, 24 \mu \mathrm{~mol}, 3$ $\mathrm{mol} \%$) was added and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the reaction mixture was filtered through a pad of celite/florisil and eluted with $15 \mathrm{~mL} 50 \%$ Ethyl acetate/ MeOH . The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents in vacuo and flash chromatography on silica gel (1:9 (v/v) hexanes/EtOAc) afforded ($3 R^{*}, 4 R^{*}, 5 S^{*}, 1^{\prime} R^{*}$)-5-(2'-Benzyloxy-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one (+/-4b) (159 mg, $5: 1 \mathrm{dr}, 73 \%$ yield) as a viscous oil. Major isomer: $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.53$; IR (thin film, cm^{-1}) 3396, 2928, 2874, $1779,1455,1366,1316,1215,1179,1092,1027,978,905 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{MeOH}-\mathrm{D}_{4}\right.$, $600 \mathrm{MHz}) \delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.15 (dd, $J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, $J=6.6,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=$ $9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52\left(\mathrm{dd}, J=(9.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 67.5\right.\right.$ $\mathrm{MHz}) \delta 175.1,137.4,128.4$ (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 291.0845$, Found: 291.0875.
$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 1^{\prime} R^{*}\right)$-5-(2'-Benzyloxy-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (+/-5b):

To a solution of $\left(3 R^{*}, 4 R^{*}, 5 S^{*}, 1^{\prime} R^{*}\right)-5-\left(2^{\prime}\right.$-Benzyloxy-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one (+/-4b) $(150 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{~mL}, 2.4 \mathrm{mmol})$, pyridine $(0.4 \mathrm{~mL}, 4.8 \mathrm{mmol})$ and a catalytic amount of DMAP ($3.7 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 15 ml Ether and 15 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 10 mL CuSO_{4} solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 10 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield ($3 R^{*}, 4 S^{*}, 5 S^{*}, 1^{\prime} R^{*}$)-5-(2'-Benzyloxy-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (+/-)5b ($230 \mathrm{mg}, 5: 1 \mathrm{dr}, 97 \%$ yield) as a viscous oil. The compound (+/-)5b was dissolved in minimum amount of EtOAc (0.5 mL)and then diluted with hexanes (2 mL) and kept in freezer for overnight afforded 150 mg of major isomer as white crystal. Major isomer: mp 93-95 ${ }^{\circ} \mathrm{C}$; $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.3$; IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, $1179,1100,1069,1044 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.46 (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dddd, $J=7.8,5.4,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (dd, $J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dd, J $=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 169.8,169.7,169.3,168.4,137.2,128.4$ (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}: 417.1162$, Found: 417.1126.

(E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate

 (not shown, scheme 3):

To a stirred solution of ($E, 4 S, 5 S$)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate 2b (0.8 $\mathrm{g}, 2.85 \mathrm{mmol}$) in 2 mL dichloromethane at room temperature was added 2,2-DMP (0.53 $\mathrm{ml}, 4.2 \mathrm{mmol}$) and CSA ($13 \mathrm{mg}, 2 \mathrm{~mol} \%$). The reaction was stirred for 3 h and quenched with saturated aqueous sodium bicarbonate $(10 \mathrm{~mL})$ and the aqueous layer was extracted with ether ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (9:1 (v/v) hexanes/EtOAc) afforded (E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate as a viscous oil (0.73 g , $80 \%): R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.70 ;[\alpha]_{\mathrm{D}}^{25}-20.1^{\circ}\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right)$ 2988, 2938, 2904, 1721, 1664, 1495, 1453, 1373, 1305, 1096, 1031, $981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{dd}, J=15.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=15.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, J=8.4,5.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{ddd}, J=9,4.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 165.9,144.0,137.7,128.4$ (2C), 127.7, 127.6 (2C), 122.5, 110.2, 79.5, 77.4, 73.6, 69.3, 60.6, 26.9, 26.7, 14.2; CIHRMS: Calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}: 343.1515$, Found: 343.1507.
(2S, 3S)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,3dihydroxypropanoate (6b):

Into a 50 mL round bottom flask was added 4 mL of $t-\mathrm{BuOH}, 4 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($925 \mathrm{mg}, 2.8 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($388 \mathrm{mg}, 2.8 \mathrm{mmol}$), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(90 \mathrm{mg}, 0.93 \mathrm{mmol}$), (DHQD) 2_{2} PHAL ($15 \mathrm{mg}, 0.02 \mathrm{mmol}, 2.1 \mathrm{~mol} \%$), and $\mathrm{OsO}_{4}(5 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%$). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 ${ }^{\circ} \mathrm{C}$. To this solution was added a solution (E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate ($300 \mathrm{mg}, 0.93 \mathrm{mmol}$) in $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with ($2 \times 20 \mathrm{~mL}$) Ethyl acetate. The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (2S, 3S)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,3-dihydroxypropanoate $\mathbf{6 b}$ ($265 \mathrm{mg}, 9: 1 \mathrm{dr}, 81 \%$ yield) as a viscous oil. The major isomer was separated by column chromatography. Major Isomer: $R_{f}(40 \%$ $\mathrm{EtOAc} /$ hexanes $)=0.42 ;[\alpha]^{25}{ }_{\mathrm{D}} 12.1^{\circ}\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3444,2987$, 2936, 1737, 1662, 1496, 1453, 1373, 1215, 1131, 1090, $910,859 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=7.2,6.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.92 (ddd, $J=8.4,7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (ddd, $J=9,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (dd, $J=9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}): \delta 173.2,136.9,128.5$ (2C), 128.1, 127.9 (2C), 109.6, 78.5, 73.8 (2C), 73.7, 70.7,
$70.4,61.9,26.9,26.8,14.1$; CIHRMS: Calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{7}+\mathrm{Na}\right]^{+}: 377.1570$, Found: 377.1580 .

(3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

To a stirred solution of (2S, 3S)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,3-dihydroxypropanoate $\mathbf{6 b}$ ($227 \mathrm{mg}, 0.64 \mathrm{mmol}$) in 2 mL of MeOH at room temperature was added $3 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL}, 1.28 \mathrm{mmol})$ and allowed to stir for 4 hr at room temperature. Then MeOH was removed under reduced pressure, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one 4b as a viscous oil (95 mg, 55\%): $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.53 ;[\alpha]_{\mathrm{D}}^{25} 29.3^{\circ}(c 1.0, \mathrm{MeOH})$; IR (thin film, cm^{-1}) $3396,2928,2874,1779,1455,1366,1316,1215,1179,1092,1027,978,905$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 600 \mathrm{MHz}\right) \delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=6.6$, $6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=(9.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 67.5 \mathrm{MHz}\right) \delta 175.1,137.4,128.4$ (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}:$291.0845, Found: 291.0875.

(3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2one(5b):

To a solution of (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one $\mathbf{4 b}(90 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}$ $(0.17 \mathrm{~mL}, 1.6 \mathrm{mmol})$, pyridine $(0.26 \mathrm{~mL}, 3.3 \mathrm{mmol})$ and a catalytic amount of DMAP (2 $\mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 5 ml Ether and 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 5 mL CuSO 4 solution, 5 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one $\mathbf{5 b}$ ($127 \mathrm{mg}, 96 \%$ yield) as a viscous oil. $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.3 ;[\alpha]^{25}{ }_{\mathrm{D}} 12.4^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, $1808,1749,1373,1234,1179,1100,1069,1044 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.33$ (m, 5H), $5.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dddd, $J=7.8,5.4$, $3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 169.8,169.7,169.3,168.4$, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}: 417.1162$, Found: 417.1126.
(3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

Into a 50 mL round bottom flask was added 4 mL of $t-\mathrm{BuOH}, 2 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(1.41 \mathrm{~g}, 4.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(296 \mathrm{mg}, 2.1 \mathrm{mmol}), \mathrm{NaHCO}_{3}(180 \mathrm{mg}, 2.1 \mathrm{mmol})$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(68 \mathrm{mg}, 0.71 \mathrm{mmol})$, (DHQD$)_{2} \mathrm{PHAL}(66 \mathrm{mg}, 0.08 \mathrm{mmol}, 12 \mathrm{~mol} \%$), and OsO_{4} ($18 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The mixture was stirred at room temperature for about 15 minutes and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added a solution ($E, 4 S, 5 S$)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate 2b ($200 \mathrm{mg}, 0.71 \mathrm{mmol}$) in 1 $\mathrm{mL} \mathrm{CH} \mathrm{Cl}_{2} \mathrm{Cl}_{2}$ and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with $20 \mathrm{~mL} 50 \%$ Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with benzene (2 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$. To this solution was added Py.TsOH ($16 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and the mixture was allowed to reflux for 3 h . The reaction was cooled to room temperature and after removal of the solvents in vacuo, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded $\quad(3 S, 4 S, 5 R)-5-\left(2^{\prime}\right.$-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one $\mathbf{4 b}$ as a viscous oil ($108 \mathrm{mg}, 57 \%$): $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.53 ;[\alpha]^{25}{ }_{\mathrm{D}}$ 29.3° (c 1.0, MeOH); IR (thin film, cm^{-1}) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, $905 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 600 \mathrm{MHz}\right) \delta 7.27(\mathrm{~m}$, $5 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=$ $7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, $J=6.6,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $\left(\mathrm{dd}, J=(9.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 67.5 \mathrm{MHz}\right) \delta\right.$ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}:$291.0845, Found: 291.0875. one(5b):

To a solution of (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one $4 \mathbf{b}(108 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}$ $(0.2 \mathrm{~mL}, 2 \mathrm{mmol})$, pyridine ($0.3 \mathrm{~mL}, 4 \mathrm{mmol}$) and a catalytic amount of DMAP (2.5 mg , $5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 10 mL CuSO 4 solution, 10 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one $\mathbf{5 b}$ ($154 \mathrm{mg}, 97 \%$ yield) as a viscous oil. $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes) $=0.3 ;[\alpha]^{25}{ }_{\mathrm{D}} 12.4^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.33$ $(\mathrm{m}, 5 \mathrm{H}), 5.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dddd, $J=7.8,5.4$, $3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 169.8,169.7,169.3,168.4$, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}$: 417.1162, Found: 417.1126.

(2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxyhexanoate (3a):

Into a 25 mL round bottom flask was added ($E, 4 S, 5 S$)-ethyl 4,5-dihydroxyhex-2-enoate 2a ($200 \mathrm{mg}, 1.15 \mathrm{mmol}$) and added 1 mL of $t-\mathrm{BuOH}, 1 \mathrm{~mL}$ of acetone and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution $0.4 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(3.4 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(5.8 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 2 \mathrm{~mol} \%$) was added and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with $15 \mathrm{~mL} 50 \%$ Ethyl acetate/ MeOH . The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL}, 5.7 \mathrm{mmol})$, pyridine ($0.9 \mathrm{~mL}, 11.5 \mathrm{mmol}$) and a catalytic amount of DMAP ($7 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 3 hour, after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with $10 \mathrm{~mL} \mathrm{CuSO}_{4}$ solution, 10 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel ($4: 1(\mathrm{v} / \mathrm{v})$ hexane / EtOAc) to yield $(2 S, 3 R, 4 R, 5 S)$-ethyl 2,3,4,5-tetraacetoxyhexanoate 3a ($237 \mathrm{mg}, 6: 1 \mathrm{dr}, 55 \%$ yield in 2 steps) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: white crystalline solid; $\mathrm{mp} 86-88^{\circ} \mathrm{C} ; R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.41 ;[\alpha]^{25}{ }_{\mathrm{D}} 3.1^{\circ}(c 1.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2983, 2928, 2872, 1766, 1760, 1748, 1455, 1374, 1213, $1096,1048,952 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): $\delta 5.63$ (dd, $\left.J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24$ (dd, $J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{qd}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 170.4$, $170.3,169.8,169.1,167.0,70.4,69.7,68.1,66.8,62.1,20.9,20.5,20.4(2 \mathrm{C}), 16.2,13.9$; CIHRMS: Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{10}+\mathrm{Na}\right]^{+}: 399.3455$, Found: 399.3476. Minor isomer:
$R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.31 ;[\alpha]^{25}{ }_{\mathrm{D}}-18.5^{\circ}\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2983$, 2928, 2872, 1766, 1760, 1748, 1455, 1374, 1213, 1096, 1048, 952; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 5.59(\mathrm{dd}, J=7.2,3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{qd}, J=6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ $(\mathrm{s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 169.9,169.8,169.7,169.4,166.6,71.9,70.4,69.3$, 68.2, 62.1, 20.9, 20.5, 20.4(2C), 16.1, 13.9; CIHRMS: Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{10}+\mathrm{Na}\right]^{+}$: 399.3455, Found: 399.3497.

(3S,4S,5R)-dihydro-3,4-dihyroxy-5-((1'S)-1'-hydroxyethyl)furan-2(3H)-one (4a):

Into a 25 mL round bottom flask was added ($E, 4 S, 5 S$)-ethyl 4,5-dihydroxyhex-2-enoate 2a ($200 \mathrm{mg}, 1.15 \mathrm{mmol}$) and added 1.5 mL of MeOH and then cooled to $0^{\circ} \mathrm{C}$. To this solution $0.8 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(3.44 \mathrm{mmol})$ and 5.8 mg OsO 4 ($0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%$) was added and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and filtered through a pad of celite/florisil and eluted with 20 mL MeOH . The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and chromatography on silica gel $(9: 1(\mathrm{v} / \mathrm{v}) \mathrm{EtOAc} / \mathrm{MeOH})$ to yield $(3 S, 4 \mathrm{~S}, 5 R)$-dihydro-3,4-dihyroxy-5-((1'S)-1'-hydroxyethyl)furan-2(3H)-one $\mathbf{4 a}(121 \mathrm{mg}, 6: 1 \mathrm{dr}, 65 \%$ yield) as a viscous oil. The major isomer was separated by coloumn chromatography. Major isomer: $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.38 ;[\alpha]^{25}{ }_{\mathrm{D}} 31.4^{\circ}(c 1.5, \mathrm{MeOH})$; IR (thin film, cm^{-1}) 3365, 2965, 2923, 2867, 1776, 1315, 1236, 1140, 1097, 1051, 984; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-\mathrm{D}_{4}$, $600 \mathrm{MHz}): \delta 4.36(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=7.8,3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{qd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(MeOH-D $4,150 \mathrm{MHz}$): $\delta 175.1,80.1,74.7,73.9,65.4,18.3$; CIHRMS: Calculated for $\left[\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{5}+\mathrm{Na}_{2}\right]^{+}: 207.0239$, Found: 207.0278 .

(3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (5a):

To a solution of (3S,4S,5R)-dihydro-3,4-dihyroxy-5-((S)-1-hydroxyethyl)furan-2(3H)-one 4a ($110 \mathrm{mg}, 0.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.27 \mathrm{~mL}, 2.8 \mathrm{mmol})$, pyridine ($0.42 \mathrm{~mL}, 5.6 \mathrm{mmol}$) and a catalytic amount of DMAP ($4.2 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with $10 \mathrm{~mL} \mathrm{CuSO}_{4}$ solution, 10 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one 5a (190 $\mathrm{mg}, 97 \%$ yield) as a viscous oil. $R_{f}(40 \%$ EtOAc/ hexanes $)=0.28 ;[\alpha]^{25}{ }_{\mathrm{D}} 14.5^{\circ}(c 2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, $1100,1069,1044 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 5.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=$ $7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{qd}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta$ 169.8, 169.6, 169.3, 168.3, 80.4, 72.5, 72.1, 67.7, 20.8, 20.5, 20.3, 15.8; CIHRMS: Calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}: 311.0737$, Found: 311.0745.
$\left(3 R^{*}, 4 R^{*}, 5 S^{*}, 1^{\prime} R^{*}\right)$-dihydro-3,4-dihyroxy-5-(1'-hydroxyethyl)furan-2(3H)-one (+/4a):

Into a 25 mL round bottom flask was added ($2 E, 4 E$)-ethyl hexa-2,4-dienoate $\mathbf{1 a}(200 \mathrm{mg}$, 1.43 mmol) and added 1.5 mL of MeOH and then cooled to $0^{\circ} \mathrm{C}$. To this solution 2 ml $50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(8.57 \mathrm{mmol})$ and $10 \mathrm{mg} \mathrm{OsO}_{4}(0.04 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ was added and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and filtered through a pad of celite/florisil and eluted with 20 mL MeOH . The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and chromatography on silica gel (9:1 (v/v) EtOAc/MeOH) to yield ($3 R^{*}, 4 R^{*}, 5 S^{*}, 1^{\prime} R^{*}$)-dihydro-3,4-dihyroxy-5-(1'-hydroxyethyl)furan-2(3H)-one (+/-)4a (162 mg, 6:1 dr, 70\% yield) as a viscous oil. The major isomer was separated by coloumn chromatography. Major isomer: $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.38$; IR (thin film, cm^{-1}) $3365,2965,2923$, 2867, 1776, 1315, 1236, 1140, 1097, 1051, 984; ${ }^{1} \mathrm{H}$ NMR (MeOH-D $4,600 \mathrm{MHz}$): $\delta 4.36$ $(\mathrm{d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=7.8,3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{qd}, J=$ $\left.6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 150 \mathrm{MHz}\right): \delta$ 175.1, 80.1, 74.7, 73.9, 65.4, 18.3; CIHRMS: Calculated for $\left[\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{5}+\mathrm{Na}_{2}\right]^{+}:$207.0239, Found: 207.0278.

To a solution of $\left(3 R^{*}, 4 R^{*}, 5 S^{*}, 1^{\prime} R^{*}\right)$-dihydro-3,4-dihyroxy-5-(1^{\prime}-hydroxyethyl)furan$2(3 \mathrm{H})$-one (+/-)4a ($130 \mathrm{mg}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.33$ $\mathrm{mL}, 3.2 \mathrm{mmol})$, pyridine ($0.5 \mathrm{~mL}, 6.4 \mathrm{mmol}$) and a catalytic amount of DMAP ($4.8 \mathrm{mg}, 5$ $\mathrm{mol} \%$). The reaction was stirred for 6 h , after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 10 mL CuSO 4 solution, 10 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield ($3 R^{*}, 4 S^{*}, 5 S^{*}, 1^{\prime} R^{*}$)-5-(1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (+/-)5a (190 mg, 97\% yield) as a viscous oil. $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.28$; IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 5.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{qd}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}): \delta 169.8,169.6,169.3,168.3,80.4,72.5,72.1,67.7,20.8,20.5,20.3,15.8 ;$ CIHRMS: Calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}: 311.0737$, Found: 311.0745.

(E)-ethyl 3-((4S,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)acrylate (not shown in scheme 3):

To a stirred solution of ($E, 4 S, 5 S$)-ethyl 4,5-dihydroxyhex-2-enoate 2a ($300 \mathrm{mg}, 1.72$ mmol) in 2 mL dichloromethane at room temperature was added 2,2-DMP ($0.42 \mathrm{ml}, 3.44$ mmol) and CSA ($8 \mathrm{mg}, 2 \mathrm{~mol} \%$). The reaction was stirred for 3 h and quenched with saturated aqueous sodium bicarbonate $(10 \mathrm{~mL})$ and the aqueous layer was extracted with ether ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (9:1 (v/v) hexanes/EtOAc) afforded (E)-ethyl 3-((4S,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)acrylate as a viscous oil (310 mg, 83\%): $R_{f}(30 \%$ $\mathrm{EtOAc} /$ hexanes $)=0.56 ;[\alpha]^{25}{ }_{\mathrm{D}} 6.5^{\circ}\left(c 2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2985,2936$, 2876, 1723, 1663, 1454, 1373, 1302, 1249, 1175, 1107, 1036, $980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.85(\mathrm{dd}, J=15.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{qd}, J=6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{ddd}, J=$ $8.4,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 165.9,143.4,122.8,119.2,81.6,76.4,60.6,27.2$, 26.6, 16.6, 14.2; CIHRMS: Calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$: 237.1097, Found: 237.0995.
(2S,3S)-ethyl 2,3-dihydroxy-3-((4S,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)propanoate (6a):

Into a 50 mL round bottom flask was added 2 mL of $t-\mathrm{BuOH}, 2 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(461 \mathrm{mg}, 1.4 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(193 \mathrm{mg}, 1.4 \mathrm{mmol}), \mathrm{NaHCO}_{3}(117 \mathrm{mg}, 1.4 \mathrm{mmol})$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(45 \mathrm{mg}, 0.47 \mathrm{mmol})$, (DHQD) $)_{2}$ PHAL ($7.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 2.1 \mathrm{~mol} \%$), and $\mathrm{OsO}_{4}(2.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%)$. The mixture was stirred at room temperature for about 15 minutes and then cooled to $0^{\circ} \mathrm{C}$. To this solution was added a solution (E)ethyl 3-((4S,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)acrylate ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$) in 1 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with ($2 \times 20 \mathrm{~mL}$) Ethyl acetate. The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (2S,3S)-ethyl 2,3-dihydroxy-3-((4S,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)propanoate $\mathbf{6 a}(110 \mathrm{mg}, 10: 1 \mathrm{dr}, 95 \%$ yield) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: white crystalline solid; $\mathrm{mp} 86-87{ }^{\circ} \mathrm{C}$; $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.42 ;[\alpha]^{25}{ }_{\mathrm{D}} 11.4^{\circ}$ (c 2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 3334, 2987, 2937, 1735, 1662, 1578, 1416, 1331, 1298, $1140,988,884 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.44(\mathrm{dd}, J=4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ $(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{dq}, J=7.8,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=10.2,9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (ddd, $J=9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}): \delta 173.3,108.6,80.9,76.5,73.7,70.7,62.3,27.4,26.9,19.4,14.1 ;$ CIHRMS: Calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}:$271.1152, Found: 271.1163.

(3S,4S,5R)-dihydro-3,4-dihyroxy-5-((1'S)-1'-hydroxyethyl)furan-2(3H)-one (4a):

To a stirred solution of (2S,3S)-ethyl 2,3-dihydroxy-3-((4S,5S)-2,2,5-trimethyl-1,3-dioxolan-4-yl)propanoate $\mathbf{6 a}(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ in 2 mL of MeOH at room temperature was added $3 \mathrm{M} \mathrm{HCl}(0.4 \mathrm{~mL}, 0.8 \mathrm{mmol})$, the reaction was allowed to stir for 4 hr at room temperature. Then MeOH was removed under reduced pressure, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3S,4S,5R)-dihydro-3,4-dihyroxy-5-((1'S)-1'-hydroxyethyl)furan-2(3H)-one $4 \mathbf{4}$ as a viscous oil ($42 \mathrm{mg}, 65 \%$): $R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.38 ;[\alpha]_{\mathrm{D}}^{25} 31.4^{\circ}(c 1.5, \mathrm{MeOH})$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3365$, 2965, 2923, 2867, 1776, 1315, 1236, 1140, 1097, 1051, 984; ${ }^{1} \mathrm{H}$ NMR (MeOH-D 4,600 MHz): $\delta 4.36(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=7.8,3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{qd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (MeOH$\left.\mathrm{D}_{4}, 150 \mathrm{MHz}\right): \delta 175.1,80.1,74.7,73.9,65.4,18.3$; CIHRMS: Calculated for $\left[\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{5}+\mathrm{Na}_{2}\right]^{+}:$207.0239, Found: 207.0278.

(3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (5a):

To a solution of ($3 S, 4 S, 5 R$)-dihydro-3,4-dihyroxy-5-((S)-1-hydroxyethyl)furan-2(3 H)-one 4a ($40 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$, pyridine ($0.15 \mathrm{~mL}, 2 \mathrm{mmol}$) and a catalytic amount of DMAP ($1.5 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 5 ml Ether and 5 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 5 mLCuSO 4 solution, 5 mL brine and the aqueous layer was further extracted with ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one 5a (69 $\mathrm{mg}, 97 \%$ yield) as a viscous oil. $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.28 ;[\alpha]_{\mathrm{D}}^{25} 14.5^{\circ}$ (c 2 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, $1100,1069,1044 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 5.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=$ $7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{qd}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta$ 169.8, 169.6, 169.3, 168.3, 80.4, 72.5, 72.1, 67.7, 20.8, 20.5, 20.3, 15.8; CIHRMS: Calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}: 311.0737$, Found: 311.0745.

(3R,4S,5S)-5-((1'R)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (ent-5a):

Into a 25 mL round bottom flask was added ($E, 4 R, 5 R$)-ethyl 4,5-dihydroxyhex-2-enoate ent-2a ($200 \mathrm{mg}, 1.15 \mathrm{mmol}$) and added 2 mL of MeOH and then cooled to $0^{\circ} \mathrm{C}$. To this solution was added $0.8 \mathrm{ml} 50 \% \mathrm{NMO}$ in $\mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~g}, 3.44 \mathrm{mmol})$ and $5.8 \mathrm{mg} \mathrm{OsO}_{4}(0.02$ $\mathrm{mmol}, 2 \mathrm{~mol} \%$) and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature and filtered through a pad of florisil and eluted with MeOH . The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.6 \mathrm{~mL}, 5.7 \mathrm{mmol})$, pyridine (0.9 $\mathrm{mL}, 11.4 \mathrm{mmol}$) and DMAP ($7 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 4 hr , after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with $10 \mathrm{mLCuSO}_{4}$ solution, 10 mL brine and the aqueous layer was further extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3R,4S,5S)-5-((1'R)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one ($211 \mathrm{mg}, 6: 1 \mathrm{dr}, 64 \%$ yield in 2 steps) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: $R_{f}(40 \% \mathrm{EtOAc} /$ hexanes $)=0.28 ;[\alpha]^{25}{ }_{\mathrm{D}}-17.3^{\circ}\left(c 2.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-} ${ }^{1}$) $2953,2922,2876,2863,1808,1749,1373,1234,1179,1100,1069,1044 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 5.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{qd}, J$ $=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~d}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 169.9,169.6,169.3,168.3,80.5$, $72.5,72.1,67.7,20.8,20.5,20.3,15.8$; CIHRMS: Calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}$: 311.0737, Found: 311.0745.

(E,4R,5R)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate(ent-2b):

Into a 250 mL round bottom flask was added 60 mL of $t-\mathrm{BuOH}, 60 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(24.7 \mathrm{~g}, 75 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(10.35 \mathrm{~g}, 75 \mathrm{mmol}), \mathrm{MeSO}_{2} \mathrm{NH}_{2}(2.37 \mathrm{~g}, 25$ mmol), (DHQD) ${ }_{2}$ PHAL ($409 \mathrm{mg}, 0.52 \mathrm{mmol}, 2.1 \mathrm{~mol} \%$), and OsO_{4} ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$, $2 \mathrm{~mol} \%$). The mixture was stirred at room temperature for about 15 minutes and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added (2E,4E)-ethyl 6-(benzyloxy)hexa-2,4dienoate ($6.15 \mathrm{~g}, 25 \mathrm{mmol}$) and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Ethyl acetate (40 mL) was added to the reaction mixture, and after separation of the layers, the aqueous phase was further extracted with the organic solvent ($2 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded 6.3 g (90% yield) of ($E, 4 R, 5 R$)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate as a light yellow oil: $R_{f}(30 \% \mathrm{EtOAc} /$ hexanes $)=0.13 ;[\alpha]^{25}{ }_{\mathrm{D}}$ 20.5° (c $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 3421, 2985, 2937, 2871, 1715, 1699, 1659, 1455, 1393, 1279, 1179, 1039, $984 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 6.91$ (dd, $J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=9.0,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.76 (ddd, $J=9.6,5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.6,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 166.2,145.9,137.3,128.5(2 \mathrm{C}), 128.0,127.8(2 \mathrm{C}), 122.5$, 73.7, 72.1, 71.7, 71.5, 60.5, 14.2; CIHRMS: Calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}: 303.1202$, Found: 303.1207.
(3R,4R,5R)-5-(2'-Benzyloxy-(1'R)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (ent-4b):

Into a 50 mL round bottom flask was added 4 mL of $t-\mathrm{BuOH}, 2 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(1.41 \mathrm{~g}, 4.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(296 \mathrm{mg}, 2.1 \mathrm{mmol}), \mathrm{NaHCO}_{3}(180 \mathrm{mg}, 2.1 \mathrm{mmol})$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(68 \mathrm{mg}, 0.71 \mathrm{mmol})$, (DHQ) 2 PHAL ($66 \mathrm{mg}, 0.08 \mathrm{mmol}, 12 \mathrm{~mol} \%$), and OsO_{4} ($18 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The mixture was stirred at room temperature for about 15 minutes and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added a solution (E,4R,5R)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate ent-2b ($200 \mathrm{mg}, 0.71 \mathrm{mmol}$) in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with $20 \mathrm{~mL} 50 \%$ Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with benzene (2 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$. To this solution was added Py.TsOH ($16 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and the mixture was allowed to reflux for 3 h . The reaction was cooled to room temperature and after removal of the solvents in vacuo, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3R,4R,5S)-5-(2'-Benzyloxy-(1'R)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one ent-4b as a viscous oil (120 mg, $63 \%): R_{f}(10 \% \mathrm{MeOH} / \mathrm{EtOAc})=0.53$; $[\alpha]^{25}{ }_{\mathrm{D}}-20.3^{\circ}$ (c 1.0, MeOH); IR (thin film, cm^{-1}) 3396, 2928,2874, 1779, 1455, 1366, $1316,1215,1179,1092,1027,978,905 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 600 \mathrm{MHz}\right) \delta 7.27$ (m, 5H), 4.48 (br s, 2H), 4.40 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (dd, $J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=6.6,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52\left(\mathrm{dd}, J=(9.6,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3} / \mathrm{MeOH}-\mathrm{D}_{4}, 67.5 \mathrm{MHz}\right) \delta$ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 291.0845$, Found: 291.0875.

(3R,4S,5S)-5-(2'-Benzyloxy-(1'R)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one(ent-5b):

To a solution of ($3 R, 4 R, 5 S$)-5-(2'-Benzyloxy- $\left(1^{\prime} R\right)-1^{\prime}$-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one ent-4b (108 mg, 0.4 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added excess $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{~mL}, 2 \mathrm{mmol})$, pyridine $(0.3 \mathrm{~mL}, 4 \mathrm{mmol})$ and a catalytic amount of DMAP ($2.5 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction was stirred for 6 h , after which 10 ml Ether and 10 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ was added to remove excess base. The organic layer was washed with 10 mL CuSO_{4} solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3R,4S,5S)-5-(2'-Benzyloxy-(1'R)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one ent-5b (154 mg, 97% yield) as a viscous oil. $R_{f}(40 \%$ EtOAc/ hexanes) $=0.3 ;[\alpha]^{25}{ }_{\mathrm{D}}-13.1^{\circ}\left(c 2.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2953,2922$, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dddd, $J=7.8,5.4,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 169.8$, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}+\mathrm{Na}\right]^{+}: 417.1162$, Found: 417.1126.

(E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2-oxo-1,3-dioxolan-4-yl)acrylate (7b):

Into a 250 mL round-bottom flask was placed $6.5 \mathrm{~g}(23.2 \mathrm{mmol})$ of ($E, 4 S, 5 S$)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate $\mathbf{2 b}$ in 25 mL of dichloromethane and 10 mL $(116 \mathrm{mmol})$ of pyridine. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $7.6 \mathrm{~g}(25.6 \mathrm{mmol})$ of triphosgene in 50 mL of dichloromethane was added slowly with an addition funnel. The reaction was stirred for 1.5 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous sodium bicarbonate (30 mL), brine (25 mL), and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded (E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2-oxo-1,3-dioxolan-4-yl)acrylate 7b as a clear, colorless oil $(6.17 \mathrm{~g}, 87 \%)$: $R_{f}(30 \% \mathrm{EtOAc} /$ hexanes $)=0.37$; $[\alpha]^{25}{ }_{\mathrm{D}}-54.7^{\circ}(c 1.03$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2983, 2938, 2908, 2872, 1806, 1721, 1665, 1496, 1454, 1369, 1304, 1272, 1174, 1111, 1032, $978 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.34(\mathrm{~m}$, $5 \mathrm{H}), 6.83(\mathrm{dd}, J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{ddd}, J=6.6$, $5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=6.6,3.6$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right): \delta 164.9,153.5$, 139.7, 136.7, 128.5 (2C), 128.1, 127.7 (2C), 124.5, 79.3, 76.4, 73.7, 67.7, 61.0, 14.1; CIHRMS: Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 329.1001$, Found: 329.1003.

(R, E)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate (8b):

Into a 100 mL , round bottomed flask fitted with a condenser and maintained under nitrogen was placed $3 \mathrm{~g}(9.8 \mathrm{mmol})$ of (E)-ethyl 3-((4S,5S)-5-ethyl-2-oxo-1,3-dioxolan-4yl)acrylate $7 \mathbf{7 b}, 50.7 \mathrm{mg}(0.05 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ of $\mathrm{Pd}_{2}(\mathrm{DBA})_{3} \cdot \mathrm{CHCl}_{3}, 26 \mathrm{mg}(0.1 \mathrm{mmol}$, $1 \mathrm{~mol} \%$) of PPh_{3}, and 20 mL of THF. Triethylamine 4 mL , (29.4 mmol) and $\mathrm{HCO}_{2} \mathrm{H}$ $0.902 \mathrm{mg}(19.6 \mathrm{mmol})$ were added and the mixture was allowed to reflux for 30 minutes. The reaction was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate (20 mL). The aqueous layer was extracted with ether ($3 \times 30 \mathrm{~mL}$). The organic layer was washed with brine $(20 \mathrm{~mL})$ and dried with anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded (R, E)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate $\mathbf{8 b}$ as a yellow oil ($2.32 \mathrm{~g}, 90 \%$): Mosher ester analysis of this alcohol shows $90 \% \mathrm{ee} ; R_{f}(30 \%$ EtOAc/hexanes) $=0.32 ;[\alpha]^{25}{ }_{\mathrm{D}}-3.2^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 3472, 2981, 2934, 2903, 2867, 1715, 1653, 1454, 1392, 1368, 1319, 1269, 1207, 1166, 1096, 1042, 982; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{ddd}, J=15.6,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.89 (ddd, $J=15.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~m}$, $1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 2 \mathrm{H})$, $2.38(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 166.1$, $144.5,137.6,128.2$ (2C), 127.6, 127.5 (2C), 123.4, 73.5, 73.1, 68.9, 60.0, 36.0, 14.0; GCMS: $264\left(\mathrm{M}^{+}\right), 191\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Et}\right)$.

Into a 50 mL round bottom flask was added 10 mL of $t-\mathrm{BuOH}, 10 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(4.93 \mathrm{~g}, 15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15 \mathrm{mmol}), \mathrm{MeSO}_{2} \mathrm{NH}_{2}(475 \mathrm{mg}, 5 \mathrm{mmol})$, (DHQD$)_{2} \mathrm{PHAL}\left(155 \mathrm{mg}, 0.2 \mathrm{mmol}, 4 \mathrm{~mol} \%\right.$), and $\mathrm{OsO}_{4}(25.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{~mol} \%$). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 ${ }^{\circ} \mathrm{C}$. To this solution was added (R, E)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate $\mathbf{8 b}$ $(1.32 \mathrm{~g}, 5 \mathrm{mmol})$ and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature and stirred for 15 min . Then the mixture was filtered through a pad of celite/florisil and eluted with 50 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded 1.19 g of (2S,3R,5R)-ethyl 6-(benzyloxy)-2,3,5trihydroxyhexanoate $\mathbf{9 b}$ as a viscous oil ($14: 1 \mathrm{dr}, 80 \%$ yield). The major isomer was separated by column chromatography. Major isomer: $R_{f}(100 \% \mathrm{EtOAc})=0.44 ;[\alpha]^{25}{ }_{\mathrm{D}}$ 11.7° (c 2.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 3470, 2982, 2953, 2927, 2867, 1732, 1454, 1396, 1370, 1299, 1260, 1212, 1096, 1027; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.32(\mathrm{~m}, 5 \mathrm{H})$, $4.56(\mathrm{~s}, 2 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=$ 9.6, 3.6 Hz, 1H), 3.42 (dd, $J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (br s, 1H), 2.77 (br s, 1H), 1.81 (ddd, $J=14.4,9.6,3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=14.4,9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 173.2,137.7,128.4$ (2C), 127.8, 127.7 (2C), 74.4, 73.9, 73.3, 69.3, 67.4, 61.9, 36.5, 14.1; GCMS: $298\left(\mathrm{M}^{+}\right), 281\left(\mathrm{M}^{+}-\right.$ $\mathrm{OH}), 253\left(\mathrm{M}^{+}-\mathrm{OEt}\right)$.

(3S,4R,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one (10b):

To a solution of ($2 S, 3 R, 5 R$)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate $9 \mathbf{~} \mathbf{~ (1 5 0 ~ m g , ~}$ 0.50 mmol) in benzene (3 mL), was added Py.TsOH ($6 \mathrm{mg}, 0.03 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and the mixture was allowed to reflux for 5 h . The reaction was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate (2 mL). The aqueous layer was extracted with ether ($3 \times 20 \mathrm{~mL}$). The organic layer was washed with brine $(10 \mathrm{~mL})$ and dried with anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (4:6 (v/v) hexanes/EtOAc) afforded (3S,4R,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one 10b as a viscous oil (118 mg, $95 \%): R_{f}(100 \% \mathrm{EtOAc})=0.33 ;[\alpha]^{25}{ }_{\mathrm{D}}-9.4^{\circ}\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3420$, 2927, 2921, 2869, 1740, 1453, 1367, 1231, 1177, 1096, 1026, 923; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270\right.$ $\mathrm{MHz}) \delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{dddd}, J=10.6,7.9,3.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J$ $=10.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}$, $J=10.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.76$ (br s, 1H), 2.28 (ddd, $J=12.4,4.1,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11$ (ddd, $J=12.4,10.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 172.8,137.4$, 128.5 (2C), 127.9, 127.7 (2C), 76.8, 74.1, 73.5, 71.1, 68.7, 32.1; GCMS: 252(${ }^{+}$), 145 ($\mathrm{M}^{+}-\mathrm{OBn}$).

(2R,3S,5R)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate (11b):

Into a 50 mL round bottom flask was added 10 mL of $t-\mathrm{BuOH}, 10 \mathrm{~mL}$ of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(4.93 \mathrm{~g}, 15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15 \mathrm{mmol}), \mathrm{MeSO}_{2} \mathrm{NH}_{2}(475 \mathrm{mg}, 5 \mathrm{mmol})$, $(\mathrm{DHQ})_{2} \mathrm{PHAL}(155 \mathrm{mg}, 0.2 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and $\mathrm{OsO}_{4}(25.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{~mol} \%)$. The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 ${ }^{\circ} \mathrm{C}$. To this solution was added (R, E)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate $\mathbf{8 b}$ $(1.32 \mathrm{~g}, 5 \mathrm{mmol})$ and the reaction was stirred vigorously at $0^{\circ} \mathrm{C}$ overnight. The reaction was quenched with solid sodium sulfite $(100 \mathrm{mg})$ at room temperature and stirred for 15 min . Then the mixture was filtered through a pad of celite/florisil and eluted with 50 mL 50% Ethyl acetate/ MeOH . The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (2:8 (v/v) hexanes/EtOAc) afforded 1.19 g of (2R,3S,5R)-ethyl 6-(benzyloxy)-2,3,5trihydroxyhexanoate 11b as a viscous oil ($16: 1 \mathrm{dr}, 80 \%$ yield). The major isomer was separated by column chromatography. Major isomer: $R_{f}(100 \%$ EtOAc $)=0.44 ;[\alpha]^{25}{ }_{\mathrm{D}}-$ $7.4^{\circ}\left(c 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$),); IR (thin film, cm^{-1}) 3470, 2982, 2953, 2927, 2867, 1732, 1454, 1396, 1370, 1299, 1260, 1212, 1096, 1027; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.33(\mathrm{~m}, 5 \mathrm{H})$, $4.56(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.49 (dd, $J=9.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=14.4,5.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (ddd, $J=14.4,3.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta$ $172.9,137.6,128.5$ (2C), 127.9, 127.8 (2C), 74.1, 73.6, 73.4, 71.9, 70.1, 61.9, 35.8, 14.1; GCMS: $298\left(\mathrm{M}^{+}\right), 281\left(\mathrm{M}^{+}-\mathrm{OH}\right), 253\left(\mathrm{M}^{+}-\mathrm{OEt}\right)$.

(3R,4S,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one (12b):

To a solution of ($2 R, 3 S, 5 R$)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate $\mathbf{1 1 b}$ (150 mg , 0.50 mmol) in benzene (3 mL), was added Py.TsOH ($6 \mathrm{mg}, 0.03 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and the mixture was allowed to reflux for 5 h . The reaction was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate $(2 \mathrm{~mL})$. The aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic layer was washed with brine $(10 \mathrm{~mL})$ and dried with anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (4:6 (v/v) hexanes/EtOAc) afforded (3R,4S,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one 12b as colorless crystal (118 $\mathrm{mg}, 95 \%): R_{f}(100 \% \mathrm{EtOAc})=0.33 ;[\alpha]_{\mathrm{D}}^{25}-14.9^{\circ}\left(c 0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 57-58{ }^{\circ} \mathrm{C}$; IR (thin film, cm^{-1}) 3420, 2924, 2860, 1747, 1454, 1367, 1328, 1242, 1208, 1126, 1096, 1027,$923 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.74$ (ddd, , $J=9.0,8.4,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, ~ J=8.4,7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, $J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (ddd, $J=14.4,9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=14.4,4.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 173.3,137.3,128.5$ (2C), 127.9, 127.7 (2C), 74.7, 73.6, 73.2, 71.0, 68.8, 32.7; GCMS: 252(M^{+}), $145\left(\mathrm{M}^{+}-\mathrm{OBn}\right)$; The relative and absolute configuration of 13a was confirmed by single-crystal X-ray analysis.

Following the same procedure as mentioned for compound (9b), the ($2 S, 3 R, 5 S$)-ethyl 2,3,5-trihydroxyhexanoate 9a was produced ($0.22 \mathrm{~g}, 1.1 \mathrm{mmol}$) in 81% yield from $(0.23$ $\mathrm{g}, 1.4 \mathrm{mmol})(S, E)$-ethyl 5-hydroxyhex-2-enoate 8 a as a viscous oil (9:1 dr). The major isomer was separated by column chromatography. Major isomer: R_{f} ($50 \% \mathrm{EtOAc} /$ hexane) $=0.16 ;[\alpha]^{25}{ }_{D}-6^{\circ}\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 3485, 2972, 2959, 2936, 1735, 1507, 1465, 1443, 1370, 1287, 1219, 1180, 1108, 1036, 981; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}) \delta 4.29(\mathrm{dd}, J=4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=10.2,6$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dqd, $J=9.6,6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dd, $J=6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (d, $J=6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=15,9.6,3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.62(\mathrm{ddd}, J=15,8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 173.2,73.8,69.7,65.1,62.1,41.5,23.6,14.1$; CIHRMS: Calculated for $\left[\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}: 215.0889$, Found: 215.0892.

(3S,4R,6S)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one (10a):

Following the same procedure as mentioned for compound (10b), the ($3 S, 4 R, 6 S$)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one 10a was produced ($30 \mathrm{mg}, 0.20 \mathrm{mmol}$) in 80% yield from ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) $(2 S, 3 R, 5 S)$-ethyl 2,3,5-trihydroxyhexanoate 9 a as a
viscous oil: $R_{f}(50 \% \mathrm{EtOAc} /$ hexane $)=0.14 ;[\alpha]^{25}{ }_{\mathrm{D}}-2.5^{\circ}\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 3431, 2924, 1642, 1507, 1465, 1443, 1370, 1287, 1180, 1126, 1036; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.47(\mathrm{dqd}, J=12,6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (ddd, $J=13.8,9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (br s, 1H), 2.76 (br s, 1H), 2.28 (ddd, $J=14.4,3.6$, $3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddd}, J=13.8,12,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 173.1,75.0,74.1,69.1,37.5,20.7$; CIHRMS: Calculated for $\left[\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{4}+\mathrm{Na}_{2}\right]^{+}: 191.0291$, Found: 191.0301.

(2R,3S,5S)-ethyl 2,3,5-trihydroxyhexanoate (11a):

Following the same procedure as mentioned for compound (11b), the ($2 R, 3 S, 5 S$)-ethyl 2,3,5-trihydroxyhexanoate 11a was produced ($0.23 \mathrm{~g}, 1.2 \mathrm{mmol}$) in 85% yield from (0.23 $\mathrm{g}, 1.4 \mathrm{mmol})(S, E)$-ethyl 5-hydroxyhex-2-enoate 8 a as a viscous oil ($10: 1 \mathrm{dr}, 85 \%$ yield). The major isomer was separated by column chromatography. Major isomer: $R_{f}(50 \%$ EtOAc/hexane $)=0.16 ;[\alpha]^{25}{ }_{\mathrm{D}} 2.6^{\circ}\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3459,2971,2931$, $1738,1507,1448,1374,1301,1261,1214,1140,1079,1028,939 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}) \delta 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, J=9.6,3,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11$ (dddd, $J=15.6,6.6,6,3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (br s, 2H), 1.82 (ddd, $J=14.4,10.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=14.4,6,3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 172.9$, 73.7, 72.7, 67.8, 61.9, 41.2, 24.0, 14.1; CIHRMS: Calculated for $\left[\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$: 215.0889, Found: 215.0892.

(3R,4S,6S)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one (12a):

Following the same procedure as mentioned for compound (12b), the ($3 R, 4 S, 6 S$)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one $\mathbf{1 2 a}$ was produced ($36 \mathrm{mg}, 0.21 \mathrm{mmol}$) in 83% yield from ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) $(2 R, 3 S, 5 S)$-ethyl $2,3,5$-trihydroxyhexanoate 11 a as a viscous oil: $R_{f}(50 \% \mathrm{EtOAc} /$ hexane $)=0.14 ;[\alpha]^{25} \mathrm{D}-32.1^{\circ}\left(c \quad 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 3431, 2924, 1642, 1507, 1465, 1443, 1370, 1287, 1180, 1126, 1036; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.74(\mathrm{dqd}, J=11.4,6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (ddd, $J=8.4,7.8,3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.13$ (ddd, $J=15,10.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98(\mathrm{ddd}, J=15,3.6,3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta$ 173.7, 73.1, 72.1, 69.6, 38.1, 20.7; CIHRMS: Calculated for $\left[\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{4}+\mathrm{Na}_{2}\right]^{+}$: 191.0291, Found: 191.0301.

