De Novo Enantioselective Synthesis of *Galacto*-Sugars and Deoxy-Sugars Via the Iterative Dihydroxylation of Dienoate.

Md. Moinuddin Ahmed, Bryan P. Berry, Thomas J. Hunter, Dennis J. Tomcik and George A. O'Doherty* Department of Chemistry, West Virginia University

Morgantown, WV 26506

Supporting Information:

General Methods and Materials. ¹H and ¹³C NMR spectra were recorded on Jeol (270 MHz) and Varian VXR-600 (600 MHz) spectrometers. Chemical shifts are reported relative to internal tetramethylsilane (δ 0.00 ppm) or CDCl₃ (δ 7.26 ppm) for ¹H and CDCl₃ (δ 77.0 ppm) for ¹³C. Infrared (IR) spectra were obtained on a Prospect MIDAC FT-IR spectrometer. Optical rotations were measured with a Jasco DIP-370 digital polarimeter in the solvent specified. Melting points were determined with Electrothermal Mel-Temp apparatus and are uncorrected. Flash column chromatography was performed on ICN reagent 60 (60-200 mesh) silica gel. Analytical thin-layer chromatography was performed with precoated glass-backed plates (Whatman K6F 60Å, F₂₅₄) and visualized by quenching of fluorescence and by charring after treatment with *p*-anisaldehyde or phosphomolybdic acid or potassium permanganate stain. R_f values are obtained by elution in the stated solvent ratios (v/v). Ether, THF, Methylene chloride and triethylamine were dried by passing through activated alumina column with argon gas pressure. Commercial reagents were used without purification unless otherwise noted. Melting points are uncorrected. Air and/ or moisture- sensitive reactions were carried out under an atmosphere of argon/nitrogen using oven-dried glassware and standard syringe/septa techniques.

(*E*,4*S*,5*S*)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate (2b):

Into a 250 mL round bottom flask was added 60 mL of t-BuOH, 60 mL of water, K₃Fe(CN)₆ (24.7 g, 75 mmol), K₂CO₃ (10.35 g, 75 mmol), MeSO₂NH₂ (2.37 g, 25 mmol), (DHQ)₂PHAL (409 mg, 0.52 mmol, 2.1 mol%), and OsO₄ (127 mg, 0.5 mmol, 2 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added (2E,4E)-ethyl 6-(benzyloxy)hexa-2,4dienoate 1b (6.15 g, 25 mmol) and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (300 mg) at room temperature. Ethyl acetate (40 mL) was added to the reaction mixture, and after separation of the layers, the aqueous phase was further extracted with the organic solvent (2 x 30 mL). The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded 6.23 g (89 % yield) of (E,4S,5S)-ethyl 6-(benzyloxy)-4,5dihydroxyhex-2-enoate **2b** as a light yellow oil: R_f (30% EtOAc/ hexanes) = 0.13; $[\alpha]^{25}$ D 20.36° (c 1.1, CH₂Cl₂); IR (thin film, cm⁻¹) 3421, 2985, 2937, 2871, 1715, 1699, 1659, 1455, 1393, 1279, 1179, 1039, 984 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz): δ 7.33 (m, 5H), 6.91 (dd, J = 15.6, 4.6 Hz, 1 H), 6.14 (dd, J = 15.6, 1.8 Hz, 1 H), 4.58 (d, J = 11.8 Hz, 1H), 4.53(d, J = 11.8 Hz, 1H), 4.38 (ddd, J = 9.1, 4.6, 1.8 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2)5.5 Hz, 1H), 2.92 (d, J = 4.7 Hz, 1H), 2.70 (d, J = 5.9 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.2, 146.0, 137.3, 128.5 (2C), 127.9, 127.8 (2C), 122.4, 73.7, 72.1, 71.7, 71.4, 60.5, 14.1; GCMS: 280 (M⁺).

(2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate (3b):

Into a 25 mL round bottom flask was added (E,4S,5S)-ethyl 6-(benzvloxy)-4.5dihydroxyhex-2-enoate 2b (140 mg, 0.5 mmol) and added 1 mL of t-BuOH, 1 mL of acetone and then cooled to 0 °C. To this solution 0.35 ml 50% NMO in H₂O (1.5 mmol) and OsO₄ (2.5 mg, 0.01 mmol, 2 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with 20 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with CH₂Cl₂ (2 mL) was added excess Ac₂O (0.2 mL, 2 mmol), pyridine (0.3 mL, 4 mmol) and a catalytic amount of DMAP (2.5 mg, 5 mol%). The reaction was stirred for an hour, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether $(3 \times 5 \text{ mL})$. The combined organic layers were dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (4:1 (v/v) hexane / EtOAc) to yield (2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate **3b** (144 mg, 5:1 dr, 60% yield in 2 steps) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: white crystalline solid; mp 76-77 °C; Rf (30% EtOAc/ hexanes) = 0.33; $[\alpha]_{D}^{25}$ 7.5° (c 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2983, 2928, 2914, 2872, 1766, 1760, 1748, 1455, 1374, 1213, 1096, 1048, 952; ¹H NMR (CDCl₃, 600 MHz); δ 7.29 (m, 5H), 5.57 (dd, J = 10.2, 1.8 Hz, 1H), 5.52 (dd, J = 10.2, 1.8 Hz, 1H), 5.26 (ddd, J = 6, 6, 1.8 Hz, 1H), 5.08 (d, J = 1.8 Hz, 1H), 4.49 (d, J = 12 Hz, 1H), 4.45 (d, J = 12Hz, 1H), 4.18 (q, J = 7.2 Hz, 1H), 4.14 (q, J = 7.2 Hz, 1H), 3.49 (dd, J = 10.2, 6 Hz, 1H), 3.45 (dd, J = 10.2, 6 Hz, 1H), 2.19 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 170.2 (2C), 169.3, 169.1, 167.0,

137.3, 128.5 (2C), 127.8 (3C), 73.3, 69.4, 68.1, 67.9, 67.8, 67.7, 62.0, 20.7, 20.4, 20.3(2C), 13.8; CIHRMS: Calculated for $[C_{23}H_{30}O_{11}+Na]^+$: 505.1686, Found: 505.1697. Minor isomer: R_f (30% EtOAc/ hexanes) = 0.30; $[\alpha]^{25}_{D}$ – 6.1° (*c* 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2992, 2963, 2931, 2874, 1758, 1454, 1374, 1223, 1115, 1057, 951, 857; ¹H NMR (CDCl₃, 600 MHz): δ 7.32 (m, 5H), 5.64 (dd, *J* = 7.2, 3 Hz, 1H), 5.52 (dd, *J* = 7.2, 4.8 Hz, 1H), 5.36(d, *J* = 3 Hz, 1H), 5.13 (dd, *J* = 9, 4.8 Hz, 1H), 4.51 (br s, 2H), 4.16 (q, *J* = 7.2 Hz, 1H), 4.12 (q, *J* = 7.2 Hz, 1H), 3.59 (dd, *J* = 10.8, 4.8 Hz, 1H), 3.53 (dd, *J* = 10.8, 4.8 Hz, 1H), 2.15 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.2, 169.5, 169.4, 166.7 (2C), 137.3, 128.4 (2C), 127.8 (3C), 73.4, 70.6, 70.0, 69.6, 69.4, 67.4, 61.9, 20.7, 20.5, 20.4 (2C), 13.9; CIHRMS: Calculated for [C₂₃H₃₀O₁₁+Na]⁺: 505.1686, Found: 505.1674.

(3*S*,4*R*,5*R*)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one(5b):

To a stirred solution of (2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate **3b** (100 mg, 0.21 mmol) in 1 mL of MeOH at room temperature was added solid LiOH (35 mg, 0.85 mmol), the reaction was monitored by TLC and after 1 hr the reaction mixture was acidified with 3M HCl (0.4 mL, 0.96 mmol) and allowed to stirred for 2 hr at room temperature. Then MeOH was removed under reduced pressure, dried under high vaccum and replaced with CH₂Cl₂ (2 mL). Then to the solution was added excess Ac₂O (0.09 mL, 0.8 mmol), pyridine (0.12 mL, 1.6 mmol) and a catalytic amount of DMAP (1.3 mg, 5 mol%) and stirred for 6 h at room temperature. After which 5 ml Ether and 5 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 5 mL CuSO₄ solution, 5 mL brine and the aqueous layer was further extracted with ether (3 x 3 mL). The combined organic layers were dried over Na₂SO₄ and the solvent

was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3*S*,4*R*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one **5b** (51 mg, 61% yield in 3 steps) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.3; $[\alpha]^{25}_D$ 12.4° (*c* 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.61 (d, *J* = 7.2 Hz, 1H), 5.46 (dd, *J* = 7.2, 7.2 Hz, 1H), 5.22 (dddd, *J* = 7.8, 5.4, 3.0, 3.0 Hz, 1H), 4.71 (dd, *J* = 7.2, 3.0 Hz, 1H), 4.55 (d, *J* = 11.4 Hz, 1H), 4.51 (d, *J* = 11.4 Hz, 1H), 3.68 (dd, *J* = 9.6, 5.4 Hz, 1H), 3.65 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for [C₁₉H₂₂O₉+Na]⁺: 417.1162, Found: 417.1126.

(3*R*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one:

To a stirred solution of (2R,3S,4R,5S)-ethyl 2,3,4,5-tetraacetoxy-6-(benzyloxy)hexanoate (23 mg, 0.04 mmol) in 0.5 mL of MeOH at room temperature was added solid LiOH (8.2 mg, 0.19 mmol) the reaction was monitored by TLC and after 1 hr the reaction mixture was acidified with 3M HCl (0.1 mL, 0.24 mmol) and allowed to stirred for 2 hr at room temperature. Then MeOH was removed under reduced pressure, dried under high vaccum and replaced with CH₂Cl₂ (1 mL). Then to the solution was added excess Ac₂O (0.02 mL, 0.2 mmol), pyridine (0.03 mL, 0.4 mmol) and a catalytic amount of DMAP (0.25 mg, 5 mol%) and stirred for 6 h at room temperature. After which 3 ml Ether and 3 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 3 mL CuSO₄ solution, 3 mL brine and the aqueous layer was further extracted with ether (3 x 3

mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3*R*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (10.2 mg, 65% yield in 3 steps) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.3; $[\alpha]^{25}_{D} 30^{\circ}$ (*c* 0.5, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.70 (d, *J* = 8.4 Hz, 1H), 5.63 (dd, *J* = 8.4, 7.8 Hz, 1H), 5.20 (dddd, *J* = 6.6, 6, 1.8, 1.2 Hz, 1H), 5.12 (dd, *J* = 8.4, 1.8 Hz, 1H), 4.56 (d, *J* = 12 Hz, 1H), 4.51 (d, *J* = 12 Hz, 1H), 3.62 (dd, *J* = 9.6, 7.8 Hz, 1H), 3.58 (dd, *J* = 9.6, 6.6 Hz, 1H), 2.18 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 170.1, 169.7, 169.5, 168.5, 137.3, 128.5 (2C), 127.9, 127.7 (2C), 75.3, 73.5, 72.2, 70.1, 68.0, 66.7, 21.0, 20.4, 20.3; CIHRMS: Calculated for [C₁₉H₂₂O₉+Na]⁺: 417.1156, Found: 417.1154.

(3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

Into a 25 mL round bottom flask was added (*E*,4*S*,5*S*)-ethyl 6-(benzyloxy)-4,5dihydroxyhex-2-enoate **2b** (200 mg, 0.71 mmol) and added 1 mL of *t*-BuOH, 1 mL of acetone and then cooled to 0 °C. To this solution 0.5 ml 50% NMO in H₂O (2.1 mmol) and OsO₄ (3.6 mg, 14 μ mol, 2 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the reaction mixture was filtered through a pad of celite/florisil and eluted with 15 mL 50% Ethyl acetate/ MeOH.. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with benzene (1 mL) and MeOH (1 mL). To this solution was added Py.TsOH (17 mg, 0.07 mmol, 10 mol%) and the mixture was allowed to reflux for 3 h. The reaction was cooled to room temperature and after removal of the solvents *in vacuo*, flash chromatography on silica gel (1:9 (v/v) hexanes/EtOAc) afforded (3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one **4b** (101 mg, 5:1 dr, 53% yield in 2steps) as a viscous oil. R_f (10% MeOH/ EtOAc) = 0.53; Major isomer: $[\alpha]^{25}_{D}$ 29.3° (*c* 1.0, MeOH); IR (thin film, cm⁻¹) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ¹H NMR (CDCl₃/MeOH-D₄, 600 MHz) δ 7.27 (m, 5H), 4.48 (br s, 2H), 4.40 (d, *J* = 8.4 Hz, 1H), 4.37 (dd, *J* = 8.4, 7.8 Hz, 1H), 4.15 (dd, *J* = 7.8, 2.4 Hz, 1H), 3.99 (ddd, *J* = 6.6, 6, 2.4 Hz, 1H), 3.57 (dd, *J* = 9.6, 6.6 Hz, 1H), 3.52 (dd, *J* = (9.6, 6 Hz, 1H), 2.54 (br s, 3H); ¹³C NMR (CDCl₃/MeOH-D₄, 67.5 MHz) δ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for [C₁₃H₁₆O₆+Na]⁺: 291.0845, Found: 291.0875.

(3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

Into a 25 mL round bottom flask was added (*E*,4*S*,5*S*)-ethyl 6-(benzyloxy)-4,5dihydroxyhex-2-enoate **2b** (300 mg, 1.1 mmol) and added 2 mL of MeOH and then cooled to 0 °C. To this solution 0.75 ml 50% NMO in H₂O (3.3 mmol) and OsO₄ (5.6 mg, 22 µmol, 2 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (150 mg) at room temperature. Then the reaction mixture was filtered through a pad of celite/florisil and eluted with 20 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo* and flash chromatography on silica gel (1:9 (v/v) hexanes/EtOAc) afforded (3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one **4b** (201 mg, 5:1 dr, 70% yield) as a viscous oil. R_f (10% MeOH/ EtOAc) = 0.53; Major isomer: $[\alpha]^{25}_{D}$ 29.3° (*c* 1.0, MeOH); IR (thin film, cm⁻¹) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ¹H NMR (CDCl₃/MeOH-D₄, 600 MHz) δ 7.27 (m, 5H), 4.48 (br s, 2H), 4.40 (d, *J* = 8.4 Hz, 1H), 4.37 (dd, *J* = 8.4, 7.8 Hz, 1H), 4.15 (dd, *J* = 7.8, 2.4 Hz, 1H), 3.99 (ddd, *J* = 6.6, 6, 2.4 Hz, 1H), 3.57 (dd, *J* = 9.6, 6.6 Hz, 1H), 3.52 (dd, *J* = (9.6, 6 Hz, 1H), 2.54 (br s, 3H); ¹³C NMR (CDCl₃/MeOH-D₄, 67.5 MHz) δ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for [C₁₃H₁₆O₆+Na]⁺: 291.0845, Found: 291.0875.

(3*S*,4*R*,5*R*)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one(5b):

To a solution of (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxydihydro-furan-2-one **4b** (108 mg, 0.4 mmol) in CH₂Cl₂ (2 mL) was added excess Ac₂O (0.2 mL, 2 mmol), pyridine (0.3 mL, 4 mmol) and a catalytic amount of DMAP (2.4 mg, 5 mol%). The reaction was stirred for 6 h, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed in *vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v)) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4diacetoxy-dihydro-furan-2-one **5b** (151 mg, 96% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.3; $[\alpha]_{D}^{25}$ 12.4° (c 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.61 (d, J = 7.2 Hz, 1H), 5.46 (dd, J = 7.2, 7.2 Hz, 1H), 5.22 (dddd, J = 7.8, 5.4, 3.0, 3.0 Hz, 1H), 4.71 (dd, J = 7.2, 3.0 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.51 (d, J = 1.4 Hz, 1H), 4.51 (d 11.4 Hz, 1H), 3.68 (dd, J = 9.6, 5.4 Hz, 1H), 3.65 (dd, J = 9.6, 7.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $[C_{19}H_{22}O_9+Na]^+$: 417.1162, Found: 417.1126.

(3*R**,4*R**,5*S**,1'*R**)-5-(2'-Benzyloxy-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydrofuran-2-one (+/-4b):

Into a 25 mL round bottom flask was added (2E,4E)-ethyl 6-(benzyloxy)hexa-2,4dienoate 1b (200 mg, 0.81 mmol) and added 1.6 mL of MeOH and then cooled to 0 °C. To this solution 1.15 ml 50% NMO in H₂O (4.8 mmol) and OsO₄ (6.1 mg, 24 µmol, 3 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the reaction mixture was filtered through a pad of celite/florisil and eluted with 15 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo* and flash chromatography on silica gel (1:9 (v/v))hexanes/EtOAc) afforded $(3R^*, 4R^*, 5S^*, 1'R^*)$ -5-(2'-Benzyloxy-1'-hydroxy-ethyl)-3,4dihydroxy-dihydro-furan-2-one (+/-4b) (159 mg, 5:1 dr, 73% yield) as a viscous oil. Major isomer: R_f (10% MeOH/EtOAc) = 0.53; IR (thin film, cm⁻¹) 3396, 2928, 2874. 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ¹H NMR (CDCl₃+MeOH-D₄ 600 MHz) δ 7.27 (m, 5H), 4.48 (br s, 2H), 4.40 (d, J = 8.4 Hz, 1H), 4.37 (dd, J = 8.4, 7.8 Hz, 1H), 4.15 (dd, J = 7.8, 2.4 Hz, 1H), 3.99 (ddd, J = 6.6, 6, 2.4 Hz, 1H), 3.57 (dd, J =9.6, 6.6 Hz, 1H), 3.52 (dd, J = (9.6, 6 Hz, 1H), 2.54 (br s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) & 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $[C_{13}H_{16}O_6 + Na]^+$: 291.0845, Found: 291.0875.

(3*R**,4*S**,5*S**,1'*R**)-5-(2'-Benzyloxy-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (+/-5b):

To a solution of $(3R^*, 4R^*, 5S^*, 1'R^*)$ -5-(2'-Benzyloxy-1'-hydroxy-ethyl)-3,4-dihydroxydihydro-furan-2-one (+/-4b) (150 mg, 0.6 mmol) in CH₂Cl₂ (2 mL) was added excess Ac₂O (0.2 mL, 2.4 mmol), pyridine (0.4 mL, 4.8 mmol) and a catalytic amount of DMAP (3.7 mg, 5 mol%). The reaction was stirred for 6 h, after which 15 ml Ether and 15 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL $CuSO_4$ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield $(3R^*, 4S^*, 5S^*, 1'R^*)$ -5-(2'-Benzyloxy-1'-acetoxyethyl)-3,4-diacetoxy-dihydro-furan-2-one (+/-)5b (230 mg, 5:1 dr, 97% yield) as a viscous oil. The compound (+/-)5b was dissolved in minimum amount of EtOAc (0.5 mL)and then diluted with hexanes (2 mL) and kept in freezer for overnight afforded 150 mg of major isomer as white crystal. Major isomer: mp 93-95 °C; R_f (40% EtOAc/ hexanes) = 0.3; IR (thin film, cm^{-1}) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.61 (d, J = 7.2Hz, 1H), 5.46 (dd, J = 7.2, 7.2 Hz, 1H), 5.22 (dddd, J = 7.8, 5.4, 3.0, 3.0 Hz, 1H), 4.71 (dd, J = 7.2, 3.0 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.51 (d, J = 11.4 Hz, 1H), 3.68 (dd, J)= 9.6, 5.4 Hz, 1H), 3.65 (dd, *J* = 9.6, 7.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $[C_{19}H_{22}O_9+Na]^+$: 417.1162, Found: 417.1126.

(*E*)-ethyl 3-((4*S*,5*S*)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate (not shown, scheme 3):

To a stirred solution of (E, 4S, 5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate **2b** (0.8) g, 2.85 mmol) in 2 mL dichloromethane at room temperature was added 2,2-DMP (0.53 ml, 4.2 mmol) and CSA (13 mg, 2 mol%). The reaction was stirred for 3 h and guenched with saturated aqueous sodium bicarbonate (10 mL) and the aqueous layer was extracted with ether (3 x 15 mL). The combined organic layers were washed with brine (25 mL), and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (9:1 (v/v) hexanes/EtOAc) afforded (E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate as a viscous oil (0.73 g, 80%): R_f (40% EtOAc/ hexanes) = 0.70; $[\alpha]^{25}_{D}$ -20.1° (c 1, CH₂Cl₂); IR (thin film, cm⁻¹) 2988, 2938, 2904, 1721, 1664, 1495, 1453, 1373, 1305, 1096, 1031, 981 cm⁻¹; ¹H NMR $(CDCl_{3}, 600 \text{ MHz}) \delta 7.34 \text{ (m, 5H)}, 6.89 \text{ (dd, } J = 15.6, 6 \text{ Hz}, 1\text{H}), 6.09 \text{ (dd, } J = 15.6, 1.2 \text{ Hz})$ Hz, 1H), 4.61 (d, J = 12 Hz, 1H), 4.58 (d, J = 12 Hz, 1H), 4.43 (ddd, J = 8.4, 5.4, 1.8 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.95 (ddd, J = 9, 4.8, 4.2 Hz, 1H), 3.64 (dd, J = 10.8, 1.8 Hz, 1H), 3.62 (dd, J = 10.8, 1.8 Hz, 1H), 1.45 (s, 3H), 1.43 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 165.9, 144.0, 137.7, 128.4 (2C), 127.7, 127.6 (2C), 122.5, 110.2, 79.5, 77.4, 73.6, 69.3, 60.6, 26.9, 26.7, 14.2; CIHRMS: Calculated for $[C_{18}H_{24}O_5 + Na]^+$: 343.1515, Found: 343.1507.

(2*S*, 3*S*)-ethyl 3-((4*S*,5*S*)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,3dihydroxypropanoate (6b):

Into a 50 mL round bottom flask was added 4 mL of t-BuOH, 4 mL of water, K₃Fe(CN)₆ (925 mg, 2.8 mmol), K₂CO₃ (388 mg, 2.8 mmol), MeSO₂NH₂ (90 mg, 0.93 mmol), (DHQD)₂PHAL (15 mg, 0.02 mmol, 2.1 mol%), and OsO₄ (5 mg, 0.02 mmol, 2 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added a solution (E)-ethyl 3-((4S,5S)-5-((benzyloxy)))-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate (300 mg, 0.93 mmol) in 1 mL CH₂Cl₂ and the reaction was stirred vigorously at 0 °C for 12h. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with (2 x 20 mL) Ethyl acetate. The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (2S, 3S)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3dioxolan-4-yl)-2,3-dihydroxypropanoate 6b (265 mg, 9:1 dr, 81% yield) as a viscous oil. The major isomer was separated by column chromatography. Major Isomer: R_f (40%) EtOAc/ hexanes) = 0.42; $[\alpha]^{25}_{D}$ 12.1° (c 1.1, CH₂Cl₂); IR (thin film, cm⁻¹) 3444, 2987, 2936, 1737, 1662, 1496, 1453, 1373, 1215, 1131, 1090, 910, 859 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 7.31 (m, 5H), 4.61 (d, J = 12 Hz, 1H), 4.57 (d, J = 12 Hz, 1H), 4.39 (d, J = 12 6.6 Hz, 1H), 4.30 (q, J = 7.2 Hz, 1H), 4.27 (q, J = 7.2 Hz, 1H), 4.12 (ddd, J = 7.2, 6.6, 4.8 Hz, 1H), 3.92 (ddd, J = 8.4, 7.2, 6.6 Hz, 1H), 3.89 (ddd, J = 9, 4.8, 1.2 Hz, 1H), 3.73 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.73 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H), 3.89 (dd, J = 9, 4.8, 1.2 Hz, 1H)J = 9, 4.8 Hz, 1H), 3.55 (dd, J = 9, 7.2 Hz, 1H), 3.35 (d, J = 4.8 Hz, 1H), 3.11 (d, J = 7.2Hz, 1H), 1.40 (s, 3H), 1.39 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): 8 173.2, 136.9, 128.5 (2C), 128.1, 127.9 (2C), 109.6, 78.5, 73.8 (2C), 73.7, 70.7,

70.4, 61.9, 26.9, 26.8, 14.1; CIHRMS: Calculated for [C₁₈H₂₆O₇+Na]⁺: 377.1570, Found: 377.1580.

(3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

To a stirred solution of (2*S*, 3*S*)-ethyl 3-((4*S*,5*S*)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,3-dihydroxypropanoate **6b** (227 mg, 0.64 mmol) in 2 mL of MeOH at room temperature was added 3M HCl (0.5 mL, 1.28 mmol) and allowed to stir for 4 hr at room temperature. Then MeOH was removed under reduced pressure, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2-one **4b** as a viscous oil (95 mg, 55%): R_f (10% MeOH/EtOAc) = 0.53; $[\alpha]^{25}_D$ 29.3° (*c* 1.0, MeOH); IR (thin film, cm⁻¹) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ¹H NMR (CDCl₃/MeOH-D₄, 600 MHz) δ 7.27 (m, 5H), 4.48 (br s, 2H), 4.40 (d, *J* = 8.4 Hz, 1H), 4.37 (dd, *J* = 8.4, 7.8 Hz, 1H), 4.15 (dd, *J* = 7.8, 2.4 Hz, 1H), 3.99 (ddd, *J* = 6.6, 6, 2.4 Hz, 1H), 3.57 (dd, *J* = 9.6, 6.6 Hz, 1H), 3.52 (dd, *J* = (9.6, 6 Hz, 1H), 2.54 (br s, 3H); ¹³C NMR (CDCl₃/MeOH-D₄, 67.5 MHz) δ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for [C₁₃H₁₆O₆+Na]⁺: 291.0845, Found: 291.0875.

(3*S*,4*R*,5*R*)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one(5b):

To a solution of (3S, 4S, 5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxydihydro-furan-2-one **4b** (90 mg, 0.33 mmol) in CH₂Cl₂ (1 mL) was added excess Ac₂O (0.17 mL, 1.6 mmol), pyridine (0.26 mL, 3.3 mmol) and a catalytic amount of DMAP (2 mg, 5 mol%). The reaction was stirred for 6 h, after which 5 ml Ether and 5 mL of NH_4Cl was added to remove excess base. The organic layer was washed with 5 mL CuSO₄ solution, 5 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed in *vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v)) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4diacetoxy-dihydro-furan-2-one **5b** (127 mg, 96% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.3; $[\alpha]^{25}_{D}$ 12.4° (c 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.61 (d, J = 7.2 Hz, 1H), 5.46 (dd, J = 7.2, 7.2 Hz, 1H), 5.22 (dddd, J = 7.8, 5.4, 3.0, 3.0 Hz, 1H), 4.71 (dd, J = 7.2, 3.0 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.51 (d, J = 1.4 Hz, 1H), 4.51 (11.4 Hz, 1H), 3.68 (dd, J = 9.6, 5.4 Hz, 1H), 3.65 (dd, J = 9.6, 7.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $[C_{19}H_{22}O_9+Na]^+$: 417.1162, Found: 417.1126.

(3*S*,4*S*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (4b):

Into a 50 mL round bottom flask was added 4 mL of t-BuOH, 2 mL of water, K₃Fe(CN)₆ (1.41 g, 4.2 mmol), K₂CO₃ (296 mg, 2.1 mmol), NaHCO₃ (180 mg, 2.1 mmol), MeSO₂NH₂ (68 mg, 0.71 mmol), (DHQD)₂PHAL (66 mg, 0.08 mmol, 12 mol%), and OsO₄ (18 mg, 0.07 mmol, 10 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added a solution (E,4S,5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate **2b** (200 mg, 0.71 mmol) in 1 mL CH₂Cl₂ and the reaction was stirred vigorously at 0 °C for 4h. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with 20 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with benzene (2 mL) and MeOH (2 mL). To this solution was added Py.TsOH (16 mg, 0.07 mmol, 10 mol%) and the mixture was allowed to reflux for 3 h. The reaction was cooled to room temperature and after removal of the solvents *in vacuo*, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydrofuran-2-one **4b** as a viscous oil (108 mg, 57%): R_f (10% MeOH/ EtOAc) = 0.53; $[\alpha]^{25}_D$ 29.3° (c 1.0, MeOH); IR (thin film, cm⁻¹) 3396, 2928, 2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ¹H NMR (CDCl₃/MeOH-D₄ 600 MHz) δ 7.27 (m, 5H), 4.48 (br s, 2H), 4.40 (d, J = 8.4 Hz, 1H), 4.37 (dd, J = 8.4, 7.8 Hz, 1H), 4.15 (dd, J =7.8, 2.4 Hz, 1H), 3.99 (ddd, J = 6.6, 6, 2.4 Hz, 1H), 3.57 (dd, J = 9.6, 6.6 Hz, 1H), 3.52 (dd, J = (9.6, 6 Hz, 1H), 2.54 (br s, 3H); ¹³C NMR (CDCl₃/MeOH-D₄, 67.5 MHz) δ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $[C_{13}H_{16}O_6 + Na]^+$: 291.0845, Found: 291.0875.

(3*S*,4*R*,5*R*)-5-(2'-Benzyloxy-(1'*S*)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one(5b):

To a solution of (3S,4S,5R)-5-(2'-Benzyloxy-(1'S)-1'-hydroxy-ethyl)-3,4-dihydroxydihydro-furan-2-one 4b (108 mg, 0.4 mmol) in CH₂Cl₂ (2 mL) was added excess Ac₂O (0.2 mL, 2 mmol), pyridine (0.3 mL, 4 mmol) and a catalytic amount of DMAP (2.5 mg, 5 mol%). The reaction was stirred for 6 h, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed in *vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v)) hexane / EtOAc) to yield (3S,4R,5R)-5-(2'-Benzyloxy-(1'S)-1'-acetoxy-ethyl)-3,4diacetoxy-dihydro-furan-2-one **5b** (154 mg, 97% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.3; $[\alpha]^{25}_{D}$ 12.4° (c 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.61 (d, J = 7.2 Hz, 1H), 5.46 (dd, J = 7.2, 7.2 Hz, 1H), 5.22 (dddd, J = 7.8, 5.4, 3.0, 3.0 Hz, 1H), 4.71 (dd, J = 7.2, 3.0 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.51 (d, J = 1.4 Hz, 1H), 4.51 (11.4 Hz, 1H), 3.68 (dd, J = 9.6, 5.4 Hz, 1H), 3.65 (dd, J = 9.6, 7.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for $[C_{19}H_{22}O_9+Na]^+$: 417.1162, Found: 417.1126.

(2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxyhexanoate (3a):

Into a 25 mL round bottom flask was added (E,4S,5S)-ethyl 4,5-dihydroxyhex-2-enoate 2a (200 mg, 1.15 mmol) and added 1 mL of t-BuOH, 1 mL of acetone and then cooled to 0 °C. To this solution 0.4 ml 50% NMO in H₂O (3.4 mmol) and OsO₄ (5.8 mg, 0.02 mmol, 2 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was guenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with 15 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with CH₂Cl₂ (1 mL) was added excess Ac₂O (0.5 mL, 5.7 mmol), pyridine (0.9 mL, 11.5 mmol) and a catalytic amount of DMAP (7 mg, 5 mol%). The reaction was stirred for 3 hour, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na_2SO_4 and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (4:1 (v/v) hexane / EtOAc) to yield (2S,3R,4R,5S)-ethyl 2,3,4,5-tetraacetoxyhexanoate **3a** (237 mg, 6:1 dr, 55% yield in 2 steps) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: white crystalline solid; mp 86-88 °C; R_f (40% EtOAc/ hexanes) = 0.41; $[\alpha]^{25}_D$ 3.1° (c 1.1, CH₂Cl₂); IR (thin film, cm⁻¹) 2983, 2928, 2872, 1766, 1760, 1748, 1455, 1374, 1213, 1096, 1048, 952; ¹H NMR (CDCl₃, 600 MHz): δ 5.63 (dd, J = 9.6, 1.8 Hz, 1H), 5.24 (dd, J = 9.6, 1.8 Hz, 1H, 5.14 (d, J = 1.8 Hz, 1H), 5.06 (qd, J = 7.2, 2.4 Hz, 1H), 4.19 (q, J = 1.8 Hz, 1H), 5.06 (qd, J = 7.2, 2.4 Hz, 1H), 4.19 (q, J = 1.8 Hz, 1H), 5.06 (qd, J = 7.2, 2.4 Hz, 1H), 4.19 (q, J = 1.8 Hz, 1H), 5.06 (qd, J = 7.2, 2.4 Hz, 1H), 4.19 (q, J = 1.8 Hz, 1H), 5.06 (qd, J = 7.2, 2.4 Hz, 1H), 5.06 (qd, J = 1.8 Hz, 100 Hz, 100 Hz), 5.06 (qd, J = 7.2, 2.4 Hz, 100 Hz, 107.2 Hz, 1H), 4.14 (q, J = 7.2 Hz, 1H), 2.17(s, 3H), 2.12 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.15 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 170.4, 170.3, 169.8, 169.1, 167.0, 70.4, 69.7, 68.1, 66.8, 62.1, 20.9, 20.5, 20.4(2C), 16.2, 13.9; CIHRMS: Calculated for $[C_{16}H_{24}O_{10}+Na]^+$: 399.3455, Found: 399.3476. Minor isomer:

R_f (40% EtOAc/ hexanes) = 0.31; $[\alpha]^{25}_{D}$ -18.5° (*c* 0.8, CH₂Cl₂); IR (thin film, cm⁻¹) 2983, 2928, 2872, 1766, 1760, 1748, 1455, 1374, 1213, 1096, 1048, 952; ¹H NMR (CDCl₃, 600 MHz): δ 5.59 (dd, *J* = 7.2, 3 Hz, 1H), 5.25 (dd, *J* = 7.2, 4.8 Hz, 1H), 5.18 (d, *J* = 2.4 Hz, 1H), 5.05 (qd, *J* = 6, 4.8 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 1H), 2.19 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.25 (d, *J* = 6 Hz, 3H) ; ¹³C NMR (CDCl₃, 150 MHz): δ 169.9, 169.8, 169.7, 169.4, 166.6, 71.9, 70.4, 69.3, 68.2, 62.1, 20.9, 20.5, 20.4(2C), 16.1, 13.9; CIHRMS: Calculated for [C₁₆H₂₄O₁₀+Na]⁺: 399.3455, Found: 399.3497.

(3S,4S,5R)-dihydro-3,4-dihyroxy-5-((1'S)-1'-hydroxyethyl)furan-2(3H)-one (4a):

Into a 25 mL round bottom flask was added (*E*,4*S*,5*S*)-ethyl 4,5-dihydroxyhex-2-enoate **2a** (200 mg, 1.15 mmol) and added 1.5 mL of MeOH and then cooled to 0 °C. To this solution 0.8 ml 50% NMO in H₂O (3.44 mmol) and 5.8 mg OsO₄ (0.02 mmol, 2 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and filtered through a pad of celite/florisil and eluted with 20 mL MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and chromatography on silica gel (9:1 (v/v) EtOAc/MeOH) to yield (3*S*,4*S*,5*R*)-dihydro-3,4-dihyroxy-5-((1'*S*)-1'-hydroxyethyl)furan-2(3*H*)-one **4a** (121 mg, 6:1 dr, 65% yield) as a viscous oil. The major isomer was separated by coloumn chromatography. Major isomer: R_f (10% MeOH/EtOAc) = 0.38; $[\alpha]^{25}_{\ D} 31.4^\circ$ (*c* 1.5, MeOH); IR (thin film, cm⁻¹) 3365, 2965, 2923, 2867, 1776, 1315, 1236, 1140, 1097, 1051, 984; ¹H NMR (MeOH-D₄, 600 MHz): δ 4.36 (d, *J* = 9 Hz, 1H), 4.19 (dd, *J* = 9, 7.8 Hz, 1H), 3.94 (dd, *J* = 7.8, 3 Hz, 1H), 3.91 (qd, *J* = 6.6, 3.6 Hz, 1H), 3.34 (br s, 3H), 1.33 (d, *J* = 6.6, 3H); ¹³C NMR

(MeOH-D₄, 150 MHz): δ 175.1, 80.1, 74.7, 73.9, 65.4, 18.3; CIHRMS: Calculated for $[C_6H_9O_5+Na_2]^+$: 207.0239, Found: 207.0278.

(3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (5a):

To a solution of (3S,4S,5R)-dihydro-3,4-dihyroxy-5-((S)-1-hydroxyethyl)furan-2(3H)-one 4a (110 mg, 0.7 mmol) in CH₂Cl₂ (2 mL) was added excess Ac₂O (0.27 mL, 2.8 mmol), pyridine (0.42 mL, 5.6 mmol) and a catalytic amount of DMAP (4.2 mg, 5 mol%). The reaction was stirred for 6 h, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one 5a (190) mg, 97% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.28; $[\alpha]^{25}_{D}$ 14.5° (c 2, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 5.60 (d, J = 7.2 Hz, 1H), 5.39 (dd, J = 7.2, 6.6 Hz, 1H), 5.13 (qd, J = 6.6, 3.0 Hz, 1H), 4.36 (dd, J = 6.6, 3.6 Hz, 1H), 2.16 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 1.36 (d, J = 6.6, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 169.8, 169.6, 169.3, 168.3, 80.4, 72.5, 72.1, 67.7, 20.8, 20.5, 20.3, 15.8; CIHRMS: Calculated for $[C_{12}H_{16}O_8+Na]^+$: 311.0737, Found: 311.0745.

(3*R**,4*R**,5*S**,1'*R**)-dihydro-3,4-dihyroxy-5-(1'-hydroxyethyl)furan-2(3*H*)-one (+/-4a):

Into a 25 mL round bottom flask was added (2E,4E)-ethyl hexa-2,4-dienoate 1a (200 mg, 1.43 mmol) and added 1.5 mL of MeOH and then cooled to 0 °C. To this solution 2 ml 50% NMO in H₂O (8.57 mmol) and 10 mg OsO₄ (0.04 mmol, 3 mol%) was added and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and filtered through a pad of celite/florisil and eluted with 20 mL MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and chromatography on silica gel (9:1 (v/v) EtOAc/MeOH) to yield $(3R^*, 4R^*, 5S^*, 1'R^*)$ dihydro-3,4-dihyroxy-5-(1'-hydroxyethyl)furan-2(3H)-one (+/-)4a (162 mg, 6:1 dr, 70% yield) as a viscous oil. The major isomer was separated by coloumn chromatography. Major isomer: R_f (10% MeOH/EtOAc) = 0.38; IR (thin film, cm⁻¹) 3365, 2965, 2923, 2867, 1776, 1315, 1236, 1140, 1097, 1051, 984; ¹H NMR (MeOH-D₄, 600 MHz): δ 4.36 (d, J = 9 Hz, 1H), 4.19 (dd, J = 9, 7.8 Hz, 1H), 3.94 (dd, J = 7.8, 3 Hz, 1H), 3.91 (qd, J = 6.6, 3.6 Hz, 1H), 3.34 (br s, 3H), 1.33 (d, J = 6.6, 3H); ¹³C NMR (CDCl₃, 150 MHz); δ 175.1, 80.1, 74.7, 73.9, 65.4, 18.3; CIHRMS: Calculated for [C₆H₉O₅+Na₂]⁺: 207.0239, Found: 207.0278.

(3*R**,4*S**,5*S**,1'*R**)-5-(1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (+/-5a):

To a solution of $(3R^*, 4R^*, 5S^*, 1'R^*)$ -dihydro-3,4-dihyroxy-5-(1'-hydroxyethyl)furan-2(3H)-one (+/-)4a (130 mg, 0.8 mmol) in CH₂Cl₂ (2 mL) was added excess Ac₂O (0.33 mL, 3.2 mmol), pyridine (0.5 mL, 6.4 mmol) and a catalytic amount of DMAP (4.8 mg, 5 mol%). The reaction was stirred for 6 h, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed in *vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield $(3R^*, 4S^*, 5S^*, 1'R^*)$ -5-(1'-acetoxy-ethyl)-3,4-diacetoxydihydro-furan-2-one (+/-)5a (190 mg, 97% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.28; IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 5.60 (d, J = 7.2 Hz, 1H), 5.39 (dd, J = 7.2, 6.6 Hz, 1H), 5.13 (qd, J = 6.6, 3.0 Hz, 1H), 4.36 (dd, J = 6.6, 3.6 Hz, 1H),2.16 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 1.36 (d, J = 6.6, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 169.8, 169.6, 169.3, 168.3, 80.4, 72.5, 72.1, 67.7, 20.8, 20.5, 20.3, 15.8; CIHRMS: Calculated for $[C_{12}H_{16}O_8 + Na]^+$: 311.0737, Found: 311.0745.

(*E*)-ethyl 3-((4*S*,5*S*)-2,2,5-trimethyl-1,3-dioxolan-4-yl)acrylate (not shown in scheme 3):

To a stirred solution of (*E*,4*S*,5*S*)-ethyl 4,5-dihydroxyhex-2-enoate **2a** (300 mg, 1.72 mmol) in 2 mL dichloromethane at room temperature was added 2,2-DMP (0.42 ml, 3.44 mmol) and CSA (8 mg, 2 mol%). The reaction was stirred for 3 h and quenched with saturated aqueous sodium bicarbonate (10 mL) and the aqueous layer was extracted with ether (3 x 15 mL). The combined organic layers were washed with brine (25 mL), and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, flash chromatography on silica gel (9:1 (v/v) hexanes/EtOAc) afforded (*E*)-ethyl 3-((4*S*,5*S*)-2,2,5-trimethyl-1,3-dioxolan-4-yl)acrylate as a viscous oil (310 mg, 83%): R_f (30% EtOAc/ hexanes) = 0.56; [α]²⁵_D 6.5° (*c* 2.2, CH₂Cl₂); IR (thin film, cm⁻¹) 2985, 2936, 2876, 1723, 1663, 1454, 1373, 1302, 1249, 1175, 1107, 1036, 980 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 6.85 (dd, *J* = 15.6, 6 Hz, 1H), 6.11 (dd, *J* = 15.6, 1.2 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 1H), 4.07 (qd, *J* = 6, 2.4 Hz, 1H), 3.83 (ddd, *J* = 8.4, 6, 2.4 Hz, 1H), 1.31(d, *J* = 6 Hz, 3H), 1.44 (s, 3H), 1.41 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 165.9, 143.4, 122.8, 119.2, 81.6, 76.4, 60.6, 27.2, 26.6, 16.6, 14.2; CIHRMS: Calculated for [C₁₁H₁₈O₄+Na]⁺: 237.1097, Found: 237.0995.

(2*S*,3*S*)-ethyl 2,3-dihydroxy-3-((4*S*,5*S*)-2,2,5-trimethyl-1,3-dioxolan-4-yl)propanoate (6a):

Into a 50 mL round bottom flask was added 2 mL of t-BuOH, 2 mL of water, K₃Fe(CN)₆ (461 mg, 1.4 mmol), K₂CO₃ (193 mg, 1.4 mmol), NaHCO₃ (117 mg, 1.4 mmol), MeSO₂NH₂ (45 mg, 0.47 mmol), (DHQD)₂PHAL (7.6 mg, 0.01 mmol, 2.1 mol%), and OsO_4 (2.5 mg, 0.01 mmol, 2 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added a solution (E)ethyl 3-((45,55)-2,2,5-trimethyl-1,3-dioxolan-4-yl)acrylate (100 mg, 0.47 mmol) in 1 mLCH₂Cl₂ and the reaction was stirred vigorously at 0 °C for 12h. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with (2 x 20 mL) Ethyl acetate. The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (2S,3S)-ethyl 2,3-dihydroxy-3-((4S,5S)-2,2,5trimethyl-1,3-dioxolan-4-yl)propanoate **6a** (110 mg, 10:1 dr, 95% yield) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: white crystalline solid; mp 86-87 °C; R_f (40% EtOAc/ hexanes) = 0.42; $[\alpha]_{D}^{25}$ 11.4° (c 2, CH₂Cl₂); IR (thin film, cm⁻¹) 3334, 2987, 2937, 1735, 1662, 1578, 1416, 1331, 1298, 1140, 988, 884 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 4.44 (dd, J = 4.2, 1.8 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 4.13 (dq, J = 7.8, 6 Hz, 1H), 3.90 (ddd, J = 10.2, 9, 1.8 Hz, 1H), 3.61(ddd, J = 9, 7.8 Hz, 1H), 3.14 (d, J = 4.2 Hz, 1H), 2.20 (d, J = 10.2 Hz, 1H), 1.42 (s, 3H),1.39 (s, 3H), 1.38 (d, J = 6 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 173.3, 108.6, 80.9, 76.5, 73.7, 70.7, 62.3, 27.4, 26.9, 19.4, 14.1; CIHRMS: Calculated for $[C_{11}H_{20}O_6+Na]^+$: 271.1152, Found: 271.1163.

(3S,4S,5R)-dihydro-3,4-dihyroxy-5-((1'S)-1'-hydroxyethyl)furan-2(3H)-one (4a):

To a stirred solution of (2*S*,3*S*)-ethyl 2,3-dihydroxy-3-((4*S*,5*S*)-2,2,5-trimethyl-1,3dioxolan-4-yl)propanoate **6a** (100 mg, 0.40 mmol) in 2 mL of MeOH at room temperature was added 3M HCl (0.4 mL, 0.8 mmol), the reaction was allowed to stir for 4 hr at room temperature. Then MeOH was removed under reduced pressure, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3*S*,4*S*,5*R*)-dihydro-3,4-dihyroxy-5-((1'*S*)-1'-hydroxyethyl)furan-2(3*H*)-one **4a** as a viscous oil (42 mg, 65%): R_f (10% MeOH/EtOAc) = 0.38; $[\alpha]^{25}_D$ 31.4° (*c* 1.5, MeOH); IR (thin film, cm⁻¹) 3365, 2965, 2923, 2867, 1776, 1315, 1236, 1140, 1097, 1051, 984; ¹H NMR (MeOH-D₄, 600 MHz): δ 4.36 (d, *J* = 9 Hz, 1H), 4.19 (dd, *J* = 9, 7.8 Hz, 1H), 3.94 (dd, *J* = 7.8, 3 Hz, 1H), 3.91 (qd, *J* = 6.6, 3.6 Hz, 1H), 3.34 (br s, 3H), 1.33 (d, *J* = 6.6, 3H); ¹³C NMR (MeOH-D₄, 150 MHz): δ 175.1, 80.1, 74.7, 73.9, 65.4, 18.3; CIHRMS: Calculated for [C₆H₉O₅+Na₂]⁺: 207.0239, Found: 207.0278. (3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (5a):

To a solution of (3S,4S,5R)-dihydro-3,4-dihyroxy-5-((S)-1-hydroxyethyl)furan-2(3H)-one 4a (40 mg, 0.25 mmol) in CH_2Cl_2 (1 mL) was added excess Ac_2O (0.1 mL, 1 mmol), pyridine (0.15 mL, 2 mmol) and a catalytic amount of DMAP (1.5 mg, 5 mol%). The reaction was stirred for 6 h, after which 5 ml Ether and 5 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 5 mL CuSO₄ solution, 5 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3S,4R,5R)-5-((1'S)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one 5a (69) mg, 97% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.28; $[\alpha]^{25}_{D}$ 14.5° (c 2, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 5.60 (d, J = 7.2 Hz, 1H), 5.39 (dd, J = 7.2, 6.6 Hz, 1H), 5.13 (qd, J = 6.6, 3.0 Hz, 1H), 4.36 (dd, J = 6.6, 3.6 Hz, 1H), 2.16 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 1.36 (d, J = 6.6, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.6, 169.3, 168.3, 80.4, 72.5, 72.1, 67.7, 20.8, 20.5, 20.3, 15.8; CIHRMS: Calculated for $[C_{12}H_{16}O_8+Na]^+$: 311.0737, Found: 311.0745.

(3R,4S,5S)-5-((1'R)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (ent-5a):

Into a 25 mL round bottom flask was added (E,4R,5R)-ethyl 4,5-dihydroxyhex-2-enoate ent-2a (200 mg, 1.15 mmol) and added 2 mL of MeOH and then cooled to 0 °C. To this solution was added 0.8 ml 50% NMO in H₂O (0.40 g, 3.44 mmol) and 5.8 mg OsO₄ (0.02 mmol, 2 mol%) and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and filtered through a pad of florisil and eluted with MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with CH₂Cl₂ (2 mL) was added excess Ac₂O (0.6 mL, 5.7 mmol), pyridine (0.9 mL, 11.4 mmol) and DMAP (7 mg, 5 mol%). The reaction was stirred for 4 hr, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3R, 4S, 5S)-5-((1'R)-1'acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one (211 mg, 6:1 dr, 64% yield in 2 steps) as a viscous oil. The major isomer was separated by column chromatography. Major isomer: R_f (40% EtOAc/ hexanes) = 0.28; $[\alpha]^{25}_{D}$ -17.3° (c 2.1, CH₂Cl₂); IR (thin film, cm⁻ ¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR $(CDCl_{3}, 600 \text{ MHz})$: δ 5.60 (d, J = 7.2 Hz, 1H), 5.39 (dd, J = 7.2, 6.6 Hz, 1H), 5.13 (qd, J= 6.6, 3.0 Hz, 1H), 4.36 (dd, J = 6.6, 3.6 Hz, 1H), 2.16 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 1.36 (d, J = 6.6, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 169.9, 169.6, 169.3, 168.3, 80.5, 72.5, 72.1, 67.7, 20.8, 20.5, 20.3, 15.8; CIHRMS: Calculated for $[C_{12}H_{16}O_8+Na]^+$: 311.0737, Found: 311.0745.

(*E*,4*R*,5*R*)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate(*ent*-2b):

Into a 250 mL round bottom flask was added 60 mL of t-BuOH, 60 mL of water, K₃Fe(CN)₆ (24.7 g, 75 mmol), K₂CO₃ (10.35 g, 75 mmol), MeSO₂NH₂ (2.37 g, 25 mmol), (DHQD)₂PHAL (409 mg, 0.52 mmol, 2.1 mol%), and OsO₄ (127 mg, 0.5 mmol, 2 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added (2E,4E)-ethyl 6-(benzyloxy)hexa-2,4dienoate (6.15 g, 25 mmol) and the reaction was stirred vigorously at 0 °C overnight. The reaction was guenched with solid sodium sulfite (100 mg) at room temperature. Ethyl acetate (40 mL) was added to the reaction mixture, and after separation of the layers, the aqueous phase was further extracted with the organic solvent (2 x 30 mL). The combined organic layers were washed with brine, and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded 6.3 g (90 % yield) of (E,4R,5R)-ethyl 6-(benzyloxy)-4,5dihydroxyhex-2-enoate as a light yellow oil: R_f (30% EtOAc/ hexanes) = 0.13; $[\alpha]_{D}^{25}$ 20.5° (c 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3421, 2985, 2937, 2871, 1715, 1699, 1659, 1455, 1393, 1279, 1179, 1039, 984 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz); δ 7,33 (m, 5H), 6.91 (dd, J = 15.6, 5.4 Hz, 1 H), 6.14 (dd, J = 15.6, 1.8 Hz, 1 H), 4.58 (d, J = 11.4 Hz, 1H),4.54 (d, J =11.4 Hz, 1H), 4.38 (ddd, J = 9.0, 4.2, 1.8 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2 H), 3.76 (ddd, J = 9.6, 5.4, 4.2 Hz, 1H), 3.65 (dd, J = 9.6, 4.2 Hz, 1 H), 3.60 (dd, J = 9.6, 5.4 Hz, 1H), 2.84 (d, J = 4.8 Hz, 1H), 2.61 (d, J = 6.0 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 150 MHz): δ 166.2, 145.9, 137.3, 128.5(2C), 128.0, 127.8(2C), 122.5, 73.7, 72.1, 71.7, 71.5, 60.5, 14.2; CIHRMS: Calculated for $[C_{15}H_{20}O_5+Na]^+$: 303.1202, Found: 303.1207.

(3*R*,4*R*,5*R*)-5-(2'-Benzyloxy-(1'*R*)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydro-furan-2one (*ent*-4b):

Into a 50 mL round bottom flask was added 4 mL of t-BuOH, 2 mL of water, K₃Fe(CN)₆ (1.41 g, 4.2 mmol), K₂CO₃ (296 mg, 2.1 mmol), NaHCO₃ (180 mg, 2.1 mmol), MeSO₂NH₂ (68 mg, 0.71 mmol), (DHQ)₂PHAL (66 mg, 0.08 mmol, 12 mol%), and OsO₄ (18 mg, 0.07 mmol, 10 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added a solution (*E*,4*R*,5*R*)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate *ent*-2b (200 mg, 0.71 mmol) in 1 mL CH₂Cl₂ and the reaction was stirred vigorously at 0 °C for 4h. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature. Then the mixture was filtered through a pad of celite/florisil and eluted with 20 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and replaced with benzene (2 mL) and MeOH (2mL). To this solution was added Py.TsOH (16 mg, 0.07 mmol, 10 mol%) and the mixture was allowed to reflux for 3 h. The reaction was cooled to room temperature and after removal of the solvents *in vacuo*, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded (3R,4R,5S)-5-(2'-Benzyloxy-(1'R)-1'-hydroxy-ethyl)-3,4-dihydroxy-dihydrofuran-2-one *ent*-4b as a viscous oil (120 mg, 63%): R_f (10% MeOH/ EtOAc) = 0.53; $[\alpha]_{D}^{25}$ -20.3° (c 1.0, MeOH); IR (thin film, cm⁻¹) 3396, 2928,2874, 1779, 1455, 1366, 1316, 1215, 1179, 1092, 1027, 978, 905; ¹H NMR (CDCl₃/MeOH-D₄ 600 MHz) δ 7.27 (m, 5H), 4.48 (br s, 2H), 4.40 (d, J = 8.4 Hz, 1H), 4.37 (dd, J = 8.4, 7.8 Hz, 1H), 4.15 (dd, J = 7.8, 2.4 Hz, 1H), 3.99 (ddd, J = 6.6, 6, 2.4 Hz, 1H), 3.57 (dd, J = 9.6, 6.6 Hz, 1H), 3.52 (dd, J = (9.6, 6 Hz, 1H), 2.54 (br s, 3H); ¹³C NMR (CDCl₃/MeOH-D₄, 67.5 MHz) δ 175.1, 137.4, 128.4 (2C), 127.9 (3C), 80.2, 74.3, 73.4, 72.8, 70.6, 67.3; CIHRMS: Calculated for $[C_{13}H_{16}O_6+Na]^+$: 291.0845, Found: 291.0875.

(3*R*,4*S*,5*S*)-5-(2'-Benzyloxy-(1'*R*)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one(*ent*-5b):

To a solution of (3R, 4R, 5S)-5-(2'-Benzyloxy-(1'R)-1'-hydroxy-ethyl)-3,4-dihydroxydihydro-furan-2-one ent-4b (108 mg, 0.4 mmol) in CH₂Cl₂ (2 mL) was added excess Ac₂O (0.2 mL, 2 mmol), pyridine (0.3 mL, 4 mmol) and a catalytic amount of DMAP (2.5 mg, 5 mol%). The reaction was stirred for 6 h, after which 10 ml Ether and 10 mL of NH₄Cl was added to remove excess base. The organic layer was washed with 10 mL CuSO₄ solution, 10 mL brine and the aqueous layer was further extracted with ether (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane / EtOAc) to yield (3R,4S,5S)-5-(2'-Benzyloxy-(1'R)-1'-acetoxy-ethyl)-3,4-diacetoxy-dihydro-furan-2-one *ent*-5b (154 mg, 97% yield) as a viscous oil. R_f (40% EtOAc/ hexanes) = 0.3; $[\alpha]_{D}^{25}$ -13.1° (c 2.1, CH₂Cl₂); IR (thin film, cm⁻¹) 2953, 2922, 2876, 2863, 1808, 1749, 1373, 1234, 1179, 1100, 1069, 1044; ¹H NMR (CDCl₃, 600 MHz): δ 7.33 (m, 5H), 5.61 (d, J = 7.2 Hz, 1H), 5.46 (dd, J = 7.2, 7.2 Hz, 1H), 5.22 (dddd, J = 7.8, 5.4, 3.0, 3.0 Hz, 1H), 4.71 (dd, J = 7.2, 3.0 Hz, 1H), 4.55 (d, J = 11.4 Hz, 1H), 4.51 (d, J = 11.4 Hz, 1H), 3.68 (dd, J = 9.6, 5.4 Hz, 1H), 3.65 (dd, J = 9.6, 7.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 169.8, 169.7, 169.3, 168.4, 137.2, 128.4 (2C), 127.9, 127.7 (2C), 77.3, 73.6, 72.2, 72.1, 68.9, 66.7, 20.7, 20.5, 20.3; CIHRMS: Calculated for [C₁₉H₂₂O₉+Na]⁺: 417.1162, Found: 417.1126.

(E)-ethyl 3-((4S,5S)-5-((benzyloxy)methyl)-2-oxo-1,3-dioxolan-4-yl)acrylate (7b):

Into a 250 mL round-bottom flask was placed 6.5 g (23.2 mmol) of (E,4S,5S)-ethyl 6-(benzyloxy)-4,5-dihydroxyhex-2-enoate 2b in 25 mL of dichloromethane and 10 mL (116 mmol) of pyridine. The solution was cooled to 0 °C and 7.6 g (25.6 mmol) of triphosgene in 50 mL of dichloromethane was added slowly with an addition funnel. The reaction was stirred for 1.5 h and guenched with saturated aqueous NH₄Cl (40 mL). The layers were separated and the aqueous layer was extracted with ether (3 x 50 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate (30 mL), brine (25 mL), and dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded (E)-ethyl 3-((4S,5S)-5-((benzyloxy))) methyl)-2-oxo-1,3-dioxolan-4-yl)acrylate **7b** as a clear, colorless oil (6.17 g, 87%): R_f (30% EtOAc/hexanes) = 0.37; $[\alpha]^{25}_D$ -54.7° (c 1.03, CH₂Cl₂); IR (thin film, cm⁻¹) 2983, 2938, 2908, 2872, 1806, 1721, 1665, 1496, 1454, 1369, 1304, 1272, 1174, 1111, 1032, 978 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) & 7.34 (m, 5H), 6.83 (dd, J = 15.6, 5.4 Hz, 1H), 6.14 (dd, J = 15.6, 1.4 Hz, 1H), 5.17(ddd, J = 6.6, 3.6 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.75 (dd, J = 11.4, 3.6 Hz, 1H), 3.66 (dd, J = 11.4, 3.6 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 164.9, 153.5, 139.7, 136.7, 128.5 (2C), 128.1, 127.7 (2C), 124.5, 79.3, 76.4, 73.7, 67.7, 61.0, 14.1; CIHRMS: Calculated for $[C_{16}H_{18}O_6 + Na]^+$: 329.1001, Found: 329.1003.

(*R*,*E*)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate (8b):

Into a 100 mL, round bottomed flask fitted with a condenser and maintained under nitrogen was placed 3 g (9.8 mmol) of (E)-ethyl 3-((45,55)-5-ethyl-2-oxo-1,3-dioxolan-4yl)acrylate 7b, 50.7 mg (0.05 mmol, 0.5 mol%) of Pd₂(DBA)₃·CHCl₃, 26 mg (0.1 mmol, 1 mol%) of PPh₃, and 20 mL of THF. Triethylamine 4 mL, (29.4 mmol) and HCO₂H 0.902 mg (19.6 mmol) were added and the mixture was allowed to reflux for 30 minutes. The reaction was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate (20 mL). The aqueous layer was extracted with ether (3 x 30 mL). The organic layer was washed with brine (20 mL) and dried with anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (7:3 (v/v) hexanes/EtOAc) afforded (*R*,*E*)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate **8b** as a yellow oil (2.32 g, 90 %): Mosher ester analysis of this alcohol shows 90 %ee; R_f (30% EtOAc/hexanes) = 0.32; $[\alpha]^{25}_{D}$ -3.2° (c 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 3472, 2981, 2934, 2903, 2867, 1715, 1653, 1454, 1392, 1368, 1319, 1269, 1207, 1166, 1096, 1042, 982; ¹H NMR (CDCl₃, 270 MHz) δ 7.34 (m, 5H), 6.96 (ddd, J = 15.6, 7.2, 7.2 Hz, 1H), 5.89 (ddd, J = 15.6, 1.3, 1.3 Hz, 1H), 4.55 (s, 2H), 4.18 (q, J = 7.1 Hz, 2 H), 3.96 (m, 1H), 3.52 (dd, J = 9.5, 3.3 Hz, 1H), 3.38 (dd, J = 9.5, 7.1 Hz, 1H), 2.42-2.39 (m, 2H), 2.38 (d, J = 1.5 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 166.1, 144.5, 137.6, 128.2 (2C), 127.6, 127.5 (2C), 123.4, 73.5, 73.1, 68.9, 60.0, 36.0, 14.0; GCMS: 264 (M^+), 191 (M^+ -CO₂Et).

(2S,3R,5R)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate (9b):

Into a 50 mL round bottom flask was added 10 mL of t-BuOH, 10 mL of water, K₃Fe(CN)₆ (4.93 g, 15 mmol), K₂CO₃ (2.07 g, 15 mmol), MeSO₂NH₂ (475 mg, 5 mmol), (DHQD)₂PHAL (155 mg, 0.2 mmol, 4 mol%), and OsO₄ (25.4 mg, 0.1 mmol, 2 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added (R,E)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate **8b** (1.32 g, 5 mmol) and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and stirred for 15 min. Then the mixture was filtered through a pad of celite/florisil and eluted with 50 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (3:7 (v/v) hexanes/EtOAc) afforded 1.19 g of (2S,3R,5R)-ethyl 6-(benzyloxy)-2,3,5trihydroxyhexanoate 9b as a viscous oil (14:1 dr, 80% yield). The major isomer was separated by column chromatography. Major isomer: $R_f (100\% \text{ EtOAc}) = 0.44; [\alpha]^{25}_{D}$ 11.7° (c 2.0, CH₂Cl₂); IR (thin film, cm⁻¹) 3470, 2982, 2953, 2927, 2867, 1732, 1454, 1396, 1370, 1299, 1260, 1212, 1096, 1027; ¹H NMR (CDCl₃, 600 MHz) δ 7.32 (m, 5H), 4.56 (s, 2H), 4.31-4.21 (m, 3H), 4.13 (m, 1H), 4.08 (dd, J = 6, 1.8 Hz, 1H), 3.52 (dd, J = 6) 9.6, 3.6 Hz, 1H), 3.42 (dd, J = 9.6, 7.2 Hz, 1H), 3.27 (br s, 1H), 2.77 (br s, 1H), 1.81 (ddd, J = 14.4, 9.6, 3 Hz, 1H), 1.68 (br s, 1H), 1.67 (ddd, J = 14.4, 9.6, 3.6 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 173.2, 137.7, 128.4 (2C), 127.8, 127.7 (2C), 74.4, 73.9, 73.3, 69.3, 67.4, 61.9, 36.5, 14.1; GCMS: 298 (M⁺), 281 (M⁺-OH), 253(M⁺-OEt).

(3S,4R,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one (10b):

To a solution of (2S,3R,5R)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate 9b (150 mg, 0.50 mmol) in benzene (3 mL), was added Py.TsOH (6 mg, 0.03 mmol, 5 mol%) and the mixture was allowed to reflux for 5h. The reaction was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate (2 mL). The aqueous layer was extracted with ether (3 x 20 mL). The organic layer was washed with brine (10 mL) and dried with anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (4:6 (v/v) hexanes/EtOAc) afforded (3S, 4R, 6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one 10b as a viscous oil (118 mg, 95%): R_f (100% EtOAc) = 0.33; $[\alpha]^{25}_{D}$ -9.4° (c 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3420, 2927, 2921, 2869, 1740, 1453, 1367, 1231, 1177, 1096, 1026, 923; ¹H NMR (CDCl₃, 270 MHz) δ 7.32 (m, 5H), 4.56 (s, 2H), 4.49 (dddd, J = 10.6, 7.9, 3.9, 3.7 Hz, 1H), 4.04 (dd, J= 10.9, 3.9 Hz, 1H), 3.99 (d, J = 10.9 Hz, 1H), 3.65 (dd, J = 10.6, 3.9 Hz, 1H), 3.57 (dd, J = 10.6, 4.1 Hz, 1H), 3.33 (br s, 1H), 2.76 (br s, 1H), 2.28 (ddd, J = 12.4, 4.1, 3.9 Hz, 1H), 2.11 (ddd, J = 12.4, 10.6, 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 172.8, 137.4, 128.5 (2C), 127.9, 127.7 (2C), 76.8, 74.1, 73.5, 71.1, 68.7, 32.1; GCMS: 252(M⁺), 145 (M^+-OBn) .

(2R,3S,5R)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate (11b):

Into a 50 mL round bottom flask was added 10 mL of t-BuOH, 10 mL of water, K₃Fe(CN)₆ (4.93 g, 15 mmol), K₂CO₃ (2.07 g, 15 mmol), MeSO₂NH₂ (475 mg, 5 mmol), (DHQ)₂PHAL (155 mg, 0.2 mmol, 4 mol%), and OsO₄ (25.4 mg, 0.1 mmol, 2 mol%). The mixture was stirred at room temperature for about 15 minutes and then cooled to 0 °C. To this solution was added (R,E)-ethyl 6-(benzyloxy)-5-hydroxyhex-2-enoate 8b (1.32 g, 5 mmol) and the reaction was stirred vigorously at 0 °C overnight. The reaction was quenched with solid sodium sulfite (100 mg) at room temperature and stirred for 15 min. Then the mixture was filtered through a pad of celite/florisil and eluted with 50 mL 50% Ethyl acetate/ MeOH. The combined organic layers were dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, flash chromatography on silica gel (2:8 (v/v) hexanes/EtOAc) afforded 1.19 g of (2R,3S,5R)-ethyl 6-(benzyloxy)-2,3,5trihydroxyhexanoate 11b as a viscous oil (16:1 dr, 80% yield). The major isomer was separated by column chromatography. Major isomer: R_f (100% EtOAc) = 0.44; $[\alpha]^{25}$ -7.4° (c 1.3, CH₂Cl₂),); IR (thin film, cm⁻¹) 3470, 2982, 2953, 2927, 2867, 1732, 1454, 1396, 1370, 1299, 1260, 1212, 1096, 1027; ¹H NMR (CDCl₃, 270 MHz) δ 7.33 (m, 5H), 4.56 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.24-4.09 (m, 2H), 4.05 (dd, J = 7.3, 1.8 Hz, 1H), 3.49 (dd, J = 9.5, 3.6 Hz, 1H), 3.40 (dd, J = 9.5, 7.1 Hz, 1H), 3.32 (d, J = 7.1 Hz, 1H), 3.13 (d, J = 2.7 Hz, 1H), 3.07 (br s, 1H), 1.84 (ddd, J = 14.4, 5.9, 3.7 Hz, 1H), 1.69 (ddd, J = 14.4, 3.3, 3.1 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 172.9, 137.6, 128.5 (2C), 127.9, 127.8 (2C), 74.1, 73.6, 73.4, 71.9, 70.1, 61.9, 35.8, 14.1; GCMS: 298 (M⁺), 281 (M⁺-OH), 253(M⁺-OEt).

(3R,4S,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one (12b):

To a solution of (2R,3S,5R)-ethyl 6-(benzyloxy)-2,3,5-trihydroxyhexanoate **11b** (150 mg, 0.50 mmol) in benzene (3 mL), was added Py.TsOH (6 mg, 0.03 mmol, 5 mol%) and the mixture was allowed to reflux for 5h. The reaction was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate (2 mL). The aqueous layer was extracted with ether (3 x 10 mL). The organic layer was washed with brine (10 mL) and dried with anhydrous sodium sulfate. After removal of the solvents in vacuo, flash chromatography on silica gel (4:6 (v/v) hexanes/EtOAc) afforded (3R,4S,6R)-6-((benzyloxy)methyl-tetrahydro-3,4-dihydroxypyran-2-one **12b** as colorless crystal (118 mg, 95%): R_f (100% EtOAc) = 0.33; $[\alpha]^{25}_{D}$ -14.9° (c 0.67, CH₂Cl₂); mp 57-58 °C; IR (thin film, cm⁻¹) 3420, 2924, 2860, 1747, 1454, 1367, 1328, 1242, 1208, 1126, 1096, 1027, 923; ¹H NMR (CDCl₃, 600 MHz) δ 7.35 (m, 5H), 4.74 (ddd, , J = 9.0, 8.4, 4.8 Hz, 1H), 4.58 (s, 2H), 4.25 (d, J = 7.8 Hz, 1H), 4.08 (ddd, J = 8.4, 7.8, 4.8 Hz, 1H), 3.69 (dd, J = 9.0, 4.8 Hz, 1H), 3.67 (dd, J = 9.0, 4.2 Hz, 1H), 3.63 (d, J = 4.8 Hz, 1H), 2.29 $(ddd, J = 14.4, 9.6, 8.4 Hz, 1H), 1.99 (ddd, J = 14.4, 4.8, 4.2 Hz, 1H), 1.59 (br s, 1H); {}^{13}C$ NMR (CDCl₃, 67.5 MHz) & 173.3, 137.3, 128.5 (2C), 127.9, 127.7 (2C), 74.7, 73.6, 73.2, 71.0, 68.8, 32.7; GCMS: $252(M^+)$, 145 (M⁺-OBn); The relative and absolute configuration of 13a was confirmed by single-crystal X-ray analysis.

(2S,3R,5S)-ethyl 2,3,5-trihydroxyhexanoate (9a):

Following the same procedure as mentioned for compound (9b), the (2*S*,3*R*,5*S*)-ethyl 2,3,5-trihydroxyhexanoate 9a was produced (0.22 g, 1.1 mmol) in 81% yield from (0.23 g, 1.4 mmol) (*S*, *E*)-ethyl 5-hydroxyhex-2-enoate 8a as a viscous oil (9:1 dr). The major isomer was separated by column chromatography. Major isomer: R_f (50% EtOAc/hexane) = 0.16; $[\alpha]^{25}_D$ -6° (*c* 0.4, CH₂Cl₂); IR (thin film, cm⁻¹) 3485, 2972, 2959, 2936, 1735, 1507, 1465, 1443, 1370, 1287, 1219, 1180, 1108, 1036, 981; ¹H NMR (CDCl₃, 600 MHz) δ 4.29 (dd, *J* = 4.2, 1.8 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 1H), 4.22 (ddd, *J* = 10.2, 6, 3.6 Hz, 1H), 4.16 (dqd, *J* = 9.6, 6, 2.4 Hz, 1H), 4.08 (dd, *J* = 6, 2.4 Hz, 1H), 3.29 (d, *J* = 6 Hz, 1H), 2.82 (d, *J* = 4.2 Hz, 1H), 2.80 (d, *J* = 6.6 Hz, 1H), 1.88 (ddd, *J* = 15, 9.6, 3 Hz, 1H), 1.62 (ddd, *J* = 15, 8.4, 3.6 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.27 (d, *J* = 6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 173.2, 73.8, 69.7, 65.1, 62.1, 41.5, 23.6, 14.1; CIHRMS: Calculated for [C₈H₁₆O₅+Na]⁺: 215.0889, Found: 215.0892.

(3*S*,4*R*,6*S*)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one (10a):

Following the same procedure as mentioned for compound (10b), the (3S,4R,6S)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one 10a was produced (30 mg, 0.20 mmol) in 80% yield from (50 mg, 0.26 mmol) (2S,3R,5S)-ethyl 2,3,5-trihydroxyhexanoate 9a as a

viscous oil: R_f (50% EtOAc/hexane) = 0.14; $[\alpha]^{25}_D$ -2.5° (*c* 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3431, 2924, 1642, 1507, 1465, 1443, 1370, 1287, 1180, 1126, 1036; ¹H NMR (CDCl₃, 600 MHz) δ 4.47 (dqd, J = 12, 6, 3.6 Hz, 1H), 3.99 (dd, J = 9.6 Hz, 1H), 4.05 (ddd, J = 13.8, 9.6, 3.6 Hz, 1H), 3.41 (br s, 1H), 2.76 (br s, 1H), 2.28 (ddd, J = 14.4, 3.6, 3 Hz, 1H), 1.83 (ddd, J = 13.8, 12, 11.4 Hz, 1H), 1.44 (d, J = 6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 173.1, 75.0, 74.1, 69.1, 37.5, 20.7; CIHRMS: Calculated for [C₆H₉O₄+Na₂]⁺: 191.0291, Found: 191.0301.

(2R,3S,5S)-ethyl 2,3,5-trihydroxyhexanoate (11a):

Following the same procedure as mentioned for compound **(11b)**, the (2*R*,3*S*,5*S*)-ethyl 2,3,5-trihydroxyhexanoate **11a** was produced (0.23 g, 1.2 mmol) in 85% yield from (0.23 g, 1.4 mmol) (*S*, *E*)-ethyl 5-hydroxyhex-2-enoate **8a** as a viscous oil (10:1 dr, 85% yield). The major isomer was separated by column chromatography. Major isomer: R_f (50% EtOAc/hexane) = 0.16; $[\alpha]^{25}_{D}$ 2.6° (*c* 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3459, 2971, 2931, 1738, 1507, 1448, 1374, 1301, 1261, 1214, 1140, 1079, 1028, 939; ¹H NMR (CDCl₃, 600 MHz) δ 4.31 (q, *J* = 7.2 Hz, 1H), 4.29 (q, *J* = 7.2 Hz, 1H), 4.19 (ddd, *J* = 9.6, 3, 2.4 Hz, 1H), 4.11 (dddd, *J* = 15.6, 6.6, 6, 3 Hz, 1H), 4.05 (d, *J* = 2.4 Hz, 1H), 3.14 (br s, 2H), 1.82 (ddd, *J* = 14.4, 10.2, 9.6 Hz, 1H), 1.69 (ddd, *J* = 14.4, 6, 3 Hz, 1H), 1.58 (br s, 1H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.25 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 172.9, 73.7, 72.7, 67.8, 61.9, 41.2, 24.0, 14.1; CIHRMS: Calculated for $[C_8H_{16}O_5+Na]^+$: 215.0889, Found: 215.0892.

(3R,4S,6S)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one (12a):

Following the same procedure as mentioned for compound (12b), the (3*R*,4*S*,6*S*)-tetrahydro-3,4-dihydroxy-6-methylpyran-2-one 12a was produced (36 mg, 0.21 mmol) in 83% yield from (50 mg, 0.26 mmol) (2*R*,3*S*,5*S*)-ethyl 2,3,5-trihydroxyhexanoate 11a as a viscous oil: R_f (50% EtOAc/hexane) = 0.14; $[\alpha]^{25}_{D}$ -32.1° (*c* 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3431, 2924, 1642, 1507, 1465, 1443, 1370, 1287, 1180, 1126, 1036; ¹H NMR (CDCl₃, 600 MHz) δ 4.74 (dqd, *J* = 11.4, 6, 3.6 Hz, 1H), 4.31 (d, *J* = 7.8 Hz, 1H), 4.01 (ddd, *J* = 8.4, 7.8, 3 Hz, 1H), 3.49 (br s, 1H), 2.86 (br s, 1H), 2.13 (ddd, *J* = 15, 10.8, 8.4 Hz, 1H), 1.98 (ddd, *J* = 15, 3.6, 3 Hz, 1H), 1.41 (d, *J* = 6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 173.7, 73.1, 72.1, 69.6, 38.1, 20.7; CIHRMS: Calculated for [C₆H₉O₄+Na₂]⁺: 191.0291, Found: 191.0301.