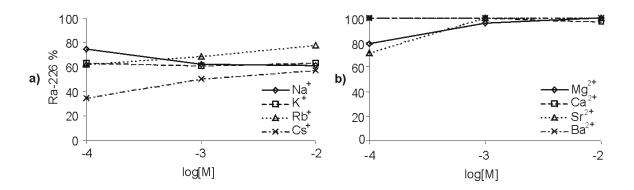

## **Supporting information**


| Selective <sup>226</sup> Ra <sup>2+</sup> | Ionophores Provided by | y Self-assembly of Guanosine | and |
|-------------------------------------------|------------------------|------------------------------|-----|
|                                           | Isoguanosine De        | erivatives                   |     |

| Fijs W. B. van Leeuwen <sup>a</sup> , Willem Verboom <sup>a,*</sup> , Xiaodong Shi <sup>b</sup> , Jeffery T. Davis <sup>b</sup> , an | ıd |
|--------------------------------------------------------------------------------------------------------------------------------------|----|
| David N. Reinhoudt <sup>a, *</sup>                                                                                                   |    |

| Figure S1                                     | S2 |
|-----------------------------------------------|----|
| Figure S2                                     | S2 |
| <b>Experimental precipitation experiments</b> | S3 |



**Figure S1.** Overall  $^{226}$ Ra $^{2+}$  percentages present in solutions with varying concentrations of alkali(ne earth) cations, after extraction with G 1. Different salt concentrations  $M^n(NO_3)_n$  [(a)  $M = Na^+$ ,  $K^+$ ,  $Rb^+$ , or  $Cs^+$ ; (b)  $M = Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$ ], fixed ionophore ([(G 1)<sub>8</sub> + 2(Pic<sup>-</sup>)]; 1 x 10<sup>-4</sup> M) and  $^{226}$ Ra $^{2+}$  (2.9 x 10<sup>-8</sup> M) concentrations were used.



**Figure S2.** Overall  $^{226}$ Ra $^{2+}$  percentages present in solutions with varying concentrations of alkali(ne earth) cations, after extraction with isoG **2**. Different salt concentrations  $M^n(NO_3)_n$  [(a)  $M = Na^+$ ,  $K^+$ ,  $Rb^+$ , or  $Cs^+$ ; (b)  $M = Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$ ], fixed ionophore ([(isoG **2**)<sub>10</sub>]; 1 x 10<sup>-4</sup> M) and  $^{226}$ Ra $^{2+}$  (2.9 x 10<sup>-8</sup> M) concentrations were used.

Precipitation Experiments with G 1 and isoG 2 (Figure S1 and S2). Extraction experiments were performed under competitive conditions. In an aqueous phase pH 8.9 (tris-HCl), the ratio of competing  $M^n(NO_3)_n$  ( $M = Na^+$ ,  $K^+$ ,  $Rb^+$ ,  $Cs^+$ ,  $Mg^{2+}$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$ ) salt concentrations was altered compared to a fixed ionophore concentration (1 mL;  $10^{-4}$  M) in the organic phase. The detectable amount of  $^{226}Ra^{2+}$  tracer was determined and the  $^{226}Ra^{2+}$  percentages obtained with G 1 and isoG 2, were defined as 100% times the ratio of the sum of  $^{226}Ra^{2+}$  in the aqueous and organic phase ( $A_{aq} + A_{o}$ ), and the amount of  $^{226}Ra^{2+}$  added ( $A_{add}$ ) (equation S1).

$$Ra\% = 100\% ((A_{aa} + A_o)/A_{add})$$
 (S1)