Oxygenation of Benzyldimethylamine by Singlet Oxygen. Products and Mechanism

Enrico Baciocchi,* Tiziana Del Giacco, Andrea Lapi

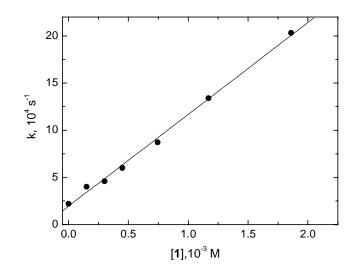
SUPPLEMENTARY INFORMATION

Table of contents:

Experimental section.	<i>S2</i>
Oxygenation procedures	<i>S2</i>
Determination of the inter- and intramolecular deuterium kinetic isotope effect.	<i>S3</i>
Determination of quenching rate constants (k_q) of ¹ O ₂ by 1 and 1-d₂ .	<i>S4</i>
Effect of DABCO on the TPP-sensitized photooxygenation of 1 .	<i>S6</i>
References	<i>S7</i>

Experimental Section.

Materials. Benzyldimethylamine **1** (Aldrich), was passed through alumina before use. 1,4-dimethylnaphtalene endoperoxide (**2**)¹ and *N*-benzyl-*N*-methylformamide (**4**)² were prepared according to literature procedures. (benzyl- d_2)-dimethylamine (**1-d**₂) was prepared by LiAlD₄ (Aldrich, 99 % D) reduction of *N*,*N*-dimethylbenzamide in tetrahydrofuran and characterized by its 70 eV EI mass spectrum: m/z (rel intensity) 138 (6), 137 (M^{+•}, 65), 136 (10), 135 (27), 94 (10), 93 (59), 67 (7), 66 (8) 60 (100).³ Benzoquinone (Aldrich) was purified by sublimation. TPP (Aldrich), formaldehyde (Aldrich),2,4,6-tri-*t*-butylphenol (Aldrich), 1,3-diphenylisobenzofuran (Aldrich) and Acetonitrile (Carlo Erba, HPLC plus grade) were used as received


Oxygenation by thermally generated singlet oxygen. 1 mL of **2** (0.1 M) and **1** (from10⁻² to 5×10^{-2} M) in MeCN were heated at 40°C (water bath) in the dark for 4 h. An internal standard (4-methyl-benzophenone) was added, and the mixture was analyzed by GC and GC-MS. Oxidations were also carried out in the presence of benzoquinone (2.5 mM) or 2,4,6-tri-*t*-butylphenol (5 mM). Products analysis (comparison with authentic specimens) was carried out on a Varian CP-3800 gas chromatograph and on a HP 5890 gas chromatograph equipped with a 5972 mass selective detector. **Oxygenation by photochemically generated singlet oxygen.** Photooxygenation reactions were carried out in a Helios Italquartz reactor equipped with 10 4500-6000 Å lamps (14 watts each). 4 mL of a solution containing **1** (10⁻² M) and TPP (10⁻⁴ M, added as 0.2 mL solution in chloroform) in acetonitrile was irradiated at 25° C in a thermostated jacketed tube for 30 min under a slight oxygen bubbling. An internal standard (4-methylbenzophenone) was added and the mixture was analyzed by GC and GC-MS. Experiments in the presence of DABCO (From 5×10^{-4} to 1.5×10^{-3} M) were also carried out. Products analysis (comparison with authentic specimens) was carried out on a Varian CP-3800 gas chromatograph and on a HP 5890 gas chromatograph equipped with a 5972 mass selective detector.

The amount of H_2O_2 was quantitatively determined by titration with iodide ion; the solution was treated, after dilution, with an excess of KI and few drops of AcOH. The amount of I_3^- formed was determined from UV spectra ($\varepsilon = 2.50 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}$ at $\lambda_{\text{max}} = 361 \text{ nm}$).⁴ Blank experiments, performed in the absence of **1**, showed no formation of H_2O_2 .

Temperature effect on TPP-sensitized photooxygenation of benzyldimethylamine. Photooxygenation reactions were carried out in a Helios Italquartz reactor equipped with an immersion medium pressure Hg lamp (125 watts) and thermostated at 25 or -48° C. 50 mL of a solution containing **1** (10⁻² M) and TPP (10⁻⁴ M, added as 2.5 mL solution in chloroform) in acetonitrile was irradiated for 10 min under oxygen bubbling. An internal standard (4-methylbenzophenone) was added and the mixture was analyzed by GC and GC-MS. **Determination of the intramolecular deuterium kinetic isotope effect.** $1-d_2$ (10^{-2} M) was oxygenated by thermally and photochemically generated singlet oxygen as previously described. Product analysis was carried out by GC and GC-MS analysis. The intramolecular deuterium kinetic isotope effect was determined by dividing the 3/4 molar ratio (obtained in the oxidation of 1) by the $3-d_1/4-d_2$ molar ratio.

Determination of the intermolecular deuterium kinetic isotope effect. An equimolar mixture of 1 (5×10^{-3} M) and 1-d₂ (5×10^{-3} M) was oxygenated by thermally and photochemically generated singlet oxygen as previously described. The overall 3 + 3-d₁ and 4 + 4-d₂ amounts were determined by GC analysis while the 3/3-d₁ and 4/4-d₂ molar ratios were measured by GC-MS analysis (Single Ion Monitoring mode) by the ratio of the molecular peaks m/z = 106-107 and 149-151 respectively, corrected for the ¹³C contribution.

Determination of quenching rate constants (k_q) of ¹O₂ by 1 and 1-d₂. ¹O₂ was produced by energy transfer to O₂ from the triplet state of phenalenone, generated by excitation at 355 nm from a Nd:YAG laser (pulse width ca. 7 ns and energy < 3 mJ per pulse). The phosphorescence emission of ¹O₂ was detected by a germanium diode detector.⁵ Rate constants for the quenching of ¹O₂ (k_q) were determined from the decrease of ¹O₂ emission lifetime in O₂-saturated MeCN, in the presence of various amounts of 1 or 1-d₂ (0.15-2.0 × 10⁻³ M). All measurements were carried out at 22 ± 2 °C. The k_q values are 9.7×10^7 and 9.9×10^7 M⁻¹s⁻¹ for 1 and 1-d₂, respectively. As example, in Figure S1 the dependence of k_q on 1 concentration is shown.

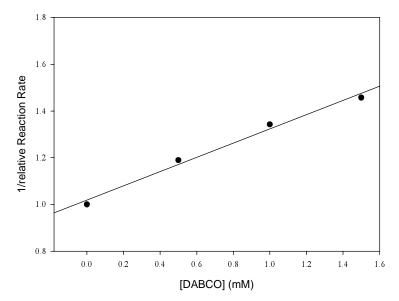
Figure S1. Dependence of k_q on 1 concentration.

In order to determine the effect of temperature on the quenching rate constants, pulsed laser photolysis experiments were carried out, by following a procedure previously described.⁶ Experiments were performed with a Nd:YAG laser,^{7,8} by using 2-acetonaphtone as sensitizer, and the bleaching of diphenylisobenzofuran (DPBF) as the means of monitoring ${}^{1}O_{2}$ decay. Two O_{2} -saturated solutions containing same amount of 2-acetonaphtone (5.4 × 10⁻² M) and DPBF (3.0×10^{-5} M), only one containing **1** (7.0×10^{-4}) M, were irradiated by laser pulse at 20° and -15 °C. A cryostat was used to control temperature. The k_{q} values were obtained from the difference between the first-order constants for DPBF bleaching (k), determined in the presence and in the absence of **1** by eq. S1.

$$k = k' + k_{\rm r}[{\rm DPBF}] + k_{\rm q}[\mathbf{1}] \tag{S1}$$

where k' and k_r are the rate constants for the ${}^{1}O_2$ decay in the medium and for reaction of this species with DPBF, respectively. In our experimental condition k values result 4.34×10^4 and 4.17×10^4 s⁻¹ in the absence of **1**, 1.36×10^5 and 1.43×10^5 s⁻¹ in the presence of **1**, at 20° and -15° C, respectively. By eq. 1, a value of 1.3×10^8 and 1.4×10^8 M⁻¹s⁻¹ were calculated for k_q at 20° and -15° C, respectively.

[DABCO] (mM)	Products (µmol) ^a	
-	3	4
0	4.8 (0.2)	3.2 (0.1)
0.5	4.1 (0.2)	2.6 (0.1)
1	3.7 (0.1)	2.3 (0.1)
1.5	3.2 (0.1)	2.3 (0.1)


Table S1. Effect of DABCO on the TPP-sensitized photooxygenation of **1** in oxygen saturated MeCN.

^a Determined by GC analysis. The error (standard deviation) in the last significant digit, is given in parentheses.

A progressive decrease in the products yields was observed by increasing the concentration of DABCO. Since DABCO competes with 1 for ${}^{1}O_{2}$, the relation reported in eq. S2 must hold, where k_{dabco} and k_{1} are the rate constants for the reaction of DABCO and 1 with ${}^{1}O_{2}$.

$$[\text{products}]^{\circ}/[\text{products}] = 1 + k_{\text{dabco}}[\text{DABCO}] / k_1[1] \quad (S2)$$

The ratio between the product yields (3 + 4) in the absence and in the presence of DABCO is linearly correlated to the DABCO concentration (Figure S2). Knowing that $k_1 = 9.7 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$ and [1] = 0.01 M, from the slope of the plot (304) it is possible to calculate k_{dabco} (3.0×10⁸ M⁻¹ s⁻¹), which is in agreement with literature values.⁹

Figure S2. Reciprocal of the relative rate of 5 + 6 formation vs DABCO concentration ($r^2 = 0.988$) in the TPP-sensitized photooxygenation of **1** in oxygen saturated MeCN.

References.

- (1) Turro, N. J.; Chow, M. F. J. Am. Chem. Soc. 1981, 103, 7218.
- (2) Freudenreich, C.; Samama, J. P.; Biellmann, J. F. J. Am. Chem. Soc. 1984, 106, 3344.
- (3) Shaffer, S. A.; Sadilek, M.; Turecek, F. J. Org. Chem. 1996, 61, 5234.
- (4) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am. Chem. Soc. 1985, 107, 3020.
- (5) Elisei, F.; Aloisi, G. G.; Lattarini, C.; Latterini, L.; Dall'Acqua, F.; Guiotto, A. *Photochem. Photobiol.* **1996**, *64*, 67.
- (6) Gorman, A. A.; Gould, I. R.; Hamblett, I.; Standen, M. C. J. Am. Chem. Soc 1984, 106, 6956.
- (7) Romani, A.; Elisei, F.; Masetti, F.; Favaro, G. J. Chem. Soc. Faraday Trans. 1992, 88, 2147.
- (8) Görner, H.; Elisei, F.; Aloisi, G. G. J. Chem. Soc. Faraday Trans. 1992, 88, 29.
- (9) Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1995, 24, 663.