An Efficient, Stereoselective Approach to syn-1,2-Diols Protected as Cyclic Carbonates
 Yohan Georges, Yves Allenbach, Xavier Ariza,* Jean-Marc Campagne, and Jordi Garcia*

Table of Contents

1. Preparation of $\mathbf{6 a}$ and 7 a ...S3
2. General procedure for the synthesis of alkyl (Z)-4-hydroxybut-2-enyl
carbonates ($\mathbf{8 a - d , ~ 8 f , ~ 9 a , ~ 1 0 a , ~ a n d ~ 1 3 e) . ~} 3$
3. Cyclization of 8a catalyzed by $0.5 \% \mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4} \ldots \ldots . ~}^{\text {S }} 6$
4. Isomerization of cis-1a to trans-1a ...S6
5. Preparation of E-8a ..S6
6. Preparation of 12e .. S 7
7. Synthesis of 1e...S7
8. Formation of $\mathbf{1 4 f}$..S8
9. ${ }^{1} \mathrm{H}$ NMR spectra of compound 1a... S 9
10. ${ }^{13} \mathrm{C}$ NMR spectra of compound 1a.. S 10
11. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 b}$...S11
12. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 b}$...S12

13. ${ }^{13} \mathrm{C}$ NMR spectra of compound 1c..S14
14. ${ }^{1} \mathrm{H}$ NMR spectra of compound 1d ...S15
15. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 d}$... S 16
16. ${ }^{1} \mathrm{H}$ NMR spectra of compound 1e..S17
17. ${ }^{13} \mathrm{C}$ NMR spectra of compound 1e.. S 18
18. ${ }^{1}$ H NMR spectra of compound 1f ..S19
19. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 f}$..S20
20. ${ }^{1} \mathrm{H}$ NMR spectra of compound 5a..S21
21. ${ }^{13} \mathrm{C}$ NMR spectra of compound 5a... 222
22. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 b}$... 23
23. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 b}$... S 24
24. ${ }^{1}$ H NMR spectra of compound 5c... 25
25. ${ }^{13} \mathrm{C}$ NMR spectra of compound 5c... S 26
26. ${ }^{1} \mathrm{H}$ NMR spectra of compound $5 \mathbf{d}$ S27
27. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 d}$ S28
28. ${ }^{1}$ H NMR spectra of compound $\mathbf{5 f}$ S29
29. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 f}$ S30
30. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6 a}$ S31
31. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 a}$. S32
32. ${ }^{1} \mathrm{H}$ NMR spectra of compound 7 a S33
33. ${ }^{13} \mathrm{C}$ NMR spectra of compound $7 \mathbf{7 a}$ S34
34. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8 a}$. S35
35. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8 a}$ S36
36. ${ }^{1} \mathrm{H}$ NMR spectra of compound $E-8 \mathbf{a}$ S37
37. ${ }^{13} \mathrm{C}$ NMR spectra of compound $E-8 \mathbf{8}$ S38
38. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8 b}$ S39
39. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8 b}$ S40
40. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8 c}$ S41
41. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8 c}$ S42
42. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8 d}$ S43
43. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8 d}$ S44
44. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8 f}$ S45
45. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8 f}$ S46
46. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{9 a}$. S47
47. ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 a S48
48. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 0 a}$ S49
49. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0 a}$ S50
50. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 2 e}$ S51
51. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 2 e}$ S52
52. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 3 e}$ S53
53. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 3 e}$ S54
54. ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{1 4 f}$ S55
55. ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 4 f}$ S56

Preparation of 6a: The general procedure for the synthesis of alkyl 4-hydroxybut-2-ynyl carbonates was followed for: $\mathrm{Zn}(\mathrm{OTf})_{2}(200 \mathrm{mg}, 0.55 \mathrm{mmol})$, (-)-NME ($108 \mathrm{mg}, 0.60 \mathrm{mmol}$), toluene (1 mL) and $\mathrm{Et}_{3} \mathrm{~N}(84 \square 1,0.60 \mathrm{mmol})$ at rt for 2 h 30 min . Alkyne $\mathbf{3}^{1}(92.9 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene $(0.5 \mathrm{~mL})$ at rt for 30 min . Cyclohexanecarbaldehyde ($73 \square \mathrm{~L}, 0.60 \mathrm{mmol}$) for 4 h . Purification by flash chromatography with gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 99 / 1\right)$ gave $\mathbf{6 a}(137.2 \mathrm{mg}, 93 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}+2.62\left(c 0.98, \mathrm{CHCl}_{3}\right)$ for 98% ee; ${ }^{2}$ IR (film) $3444,2929,1752,1451,1391,1263 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square $7.40-7.35(5 \mathrm{H}, \mathrm{m}), 5.19(2 \mathrm{H}, \mathrm{s}), 4.79(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{dt}, J=6.2,1.8 \mathrm{~Hz}), 1.85-1.51(7 \mathrm{H}$, $\mathrm{m}), 1.32-0.99(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 154.5,134.9,128.6,128.5,128.3,87.7,78.9,70.0$, 67.1, 55.8, 43.9, 28.4, 28.1, 26.3, 25.8, 25.8; HRMS(ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 325.1416$, found 325.1413.

Preparation of 7a: The general procedure for the synthesis of alkyl 4-hydroxybut-2-ynyl carbonates was followed for: $\mathrm{Zn}(\mathrm{OTf})_{2}(200 \mathrm{mg}, 0.55 \mathrm{mmol})$, (-)-NME ($108 \mathrm{mg}, 0.60 \mathrm{mmol}$), toluene (1 mL), and $\mathrm{Et}_{3} \mathrm{~N}(84 \square \mathrm{l}, 0.60 \mathrm{mmol})$ at rt for 2 h 30 min . Alkyne $4^{3}(58.0 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene $(0.5 \mathrm{~mL})$ at rt for 30 min . Cyclohexanecarbaldehyde ($73 \square 1,0.60 \mathrm{mmol}$) for 5 h . Purification by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 99 / 1\right)$ gave $7 \mathbf{a}(100.3 \mathrm{mg}, 87 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}+3.17\left(c 1.12, \mathrm{CHCl}_{3}\right)$ for 97% ee; ${ }^{2}$ IR (film) 3436, 2929, 1756, 1447, 1376, $1270 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 4.78 $(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{dt}, J=6.1,1.7 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 1.85-1.50(7 \mathrm{H}, \mathrm{m}), 1.32-0.99(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 155.1, ~ 87.6,78.9,67.0,55.7,55.1,43.9,28.4,28.1,26.3,25.8,25.8$; HRMS(ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$249.1103, found 249.1100.

General procedure for the synthesis of alkyl (Z)-4-hydroxybut-2-enyl carbonates (8a-d, 8f, 9a, 10a, and 13e): the alkyl 4-hydroxybut-2-ynyl carbonate, $\mathrm{Pd} / \mathrm{CaCO}_{3}(5 \%)$ poisoned with lead, quinoline, and AcOEt were added in a flask which was purged with N_{2} and then with H_{2}. The reaction mixture was shaken and monitored for completion by TLC. The mixture was filtered through a short pad of Celite. The organic layer was washed with aqueous HCl 2 N and brine, dried over MgSO_{4}, and evaporated under reduced pressure. The mixture was purified by flash chromatography on silica gel to give the (Z)-alkene.

Compound 8a: The general procedure was followed for: alkyne 5a ($95.9 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{CaCO}_{3}$ $(27.0 \mathrm{mg})$, quinoline ($8 \square \mathrm{~L}$), and $\operatorname{AcOEt}(2.5 \mathrm{~mL})$ for 90 min . Purification of the crude mixture by flash chromatography on silica gel (Hexane/AcOEt : 80/20) gave 8a ($81.2 \mathrm{mg}, 84 \%$) as a colorless oil: [$[\mathrm{l}]^{25}{ }_{\mathrm{D}}$

[^0]-14.7 (c 1.71, CHCl_{3}) for $>96 \%$ ee; IR (film) $3427,2927,1743,1451,1370,1277 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.67(2 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=12.6,4.0 \mathrm{~Hz}), 4.19(1 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}), 1.97-0.82(12 \mathrm{H}, \mathrm{m}), 1.48(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 153.5,136.3,125.1,82.4$, 71.6, 62.7, 43.4, 28.7, 28.5, 27.7, 26.5, 26.0, 25.9; HRMS(ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 293.1729, found 291.1739.

Compound 8b: The general procedure was followed for: alkyne $\mathbf{5 b}(39.0 \mathrm{mg}, 0.17 \mathrm{mmol}), \mathrm{Pd} / \mathrm{CaCO}_{3}$ $(7.0 \mathrm{mg})$, quinoline $(2.8 \square \mathrm{~L})$, and $\operatorname{AcOEt}(1.3 \mathrm{~mL})$ for 30 min . Purification of the crude mixture by flash chromatography on silica gel (Hexane/ $\mathrm{Et}_{2} \mathrm{O}: 9 / 1$) gave $\mathbf{8 b}(32.8 \mathrm{mg}, 83 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}-2.26$ (c 1.00, CHCl_{3}) for $96 \% \mathrm{ee}$; IR (film) $3467,2964,1742,1457,1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $5.71-5.63(2 H, m), 4.83(1 H, d d, J=12.7,7.2 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{dd}, J=12.7,4.3 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=7.8$, $6.8 \mathrm{~Hz}), 1.72(1 \mathrm{H}$, oct, $J=6.7 \mathrm{~Hz}), 1.48(9 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 153.6,136.2,125.4,82.5,72.4,62.7,33.7,27.7,18.1,18.1$; HRMS(ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$253.1416, found 253.1413.

Compound 8c: The general procedure was followed for: alkynol 5c ($32.9 \mathrm{mg}, 0.136 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{CaCO}_{3}(6.5 \mathrm{mg})$, and quinoline ($4 \mu \mathrm{~L}$) in $\operatorname{AcOEt}(1.3 \mathrm{~mL})$ for 30 min . Purification of the crude mixture by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $\mathbf{8 c}(27.5 \mathrm{mg}, 83 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}$ -18.0 (c 1.31, CHCl_{3}) for 89% ee; IR (film) $3436,2958,1742,1459,1370,1279 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.69-5.56(2 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{ddt}, J=12.7,8.2,1.1 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{td}, J=7.0,6.0 \mathrm{~Hz})$, $4.52(1 \mathrm{H}, \mathrm{ddd}, J=12.7,5.7,1.2 \mathrm{~Hz}), 2.11(1 \mathrm{H}, \mathrm{bs}), 1.72(1 \mathrm{H}, \mathrm{m}), 1.53(1 \mathrm{H}, \mathrm{m}), 1.48(9 \mathrm{H}, \mathrm{s}), 1.28,(1 \mathrm{H}$, $\mathrm{m}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 153.6,138.3$, $124.3,82.5,65.5,62.5,45.9,27.7,24.4,23.0,22.4$; $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 267.1572, found 267.1609.

Compound 8d: The general procedure was followed for: alkynol $\mathbf{5 d}$ ($82.5 \mathrm{mg}, 0.314 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{CaCO}_{3}(25 \mathrm{mg})$, and quinoline ($16 \mu \mathrm{~L}$) in AcOEt (5 mL). Purification of the crude mixture by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 99 / 1\right)$ gave $\mathbf{8 d}(74.7 \mathrm{mg}, 90 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}$ -105.1 (c $0.95, \mathrm{CHCl}_{3}$) for $>96 \%$ ee; IR (film) $3446,2981,1740,1457,1370,1277 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.41-7.28(5 \mathrm{H}, \mathrm{m}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=11.0,8.5,1.2 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{m}), 5.62(1 \mathrm{H}, \mathrm{bd}, J=$ $8.8 \mathrm{~Hz}), 4.95(1 \mathrm{H}$, ddd, $J=12.8,8.2,1.2 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{ddd}, J=12.8,5.9,1.2 \mathrm{~Hz}), 1.49(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 153.6,142.5,136.9,128.6,127.6,126.0,124.6,82.6,69.5,62.5,27.7$; HRMS(ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$287.1259, found 287.1281.

Compound 8f: The general procedure was followed for: alkynol $\mathbf{5 f}(42.4 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{Pd} / \mathrm{CaCO}_{3}$ $(12.4 \mathrm{mg})$, and quinoline $(3.5 \mu \mathrm{~L})$ in $\operatorname{AcOEt}(1.5 \mathrm{~mL})$ for 2 h . Washings with HCl 2 N were substituted by washings with a 7% aqueous citric acid solution. Purification of the crude mixture by flash chromatography on silica gel (Hexane/AcOEt: 7/3) gave $8 f(38.9 \mathrm{mg}, 91 \%)$ as a colorless oil: [C$]^{25}{ }_{\mathrm{D}}$ +19.5 (c 1.00, CHCl_{3}); IR (film) 3467, 2985, 1740, 1456, 1372, $1277 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 5.76(1 \mathrm{H}, \mathrm{ddt}, J=11.2,7.9,1.1 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{dddd}, J=11.2,7.9,5.7,1.1 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{ddd}, J=$ $12.9,7.9,1.1 \mathrm{~Hz}), 4.60-4.54(2 \mathrm{H}, \mathrm{m}), 4.11-4.02(2 \mathrm{H}, \mathrm{m}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=8.1,6.1 \mathrm{~Hz}), 1.48(9 \mathrm{H}, \mathrm{s})$, $1.43(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 153.4,132.6,127.4,109.4,82.6,77.9,67.8$, 65.6, 62.7, 27.8, 26.5, 25.1; HRMS(ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 311.1471$, found 311.1486.

Compound 9a: The general procedure was followed for: alkyne $\mathbf{6 a}(90.2 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{Pd} / \mathrm{CaCO}_{3}$ (27.0 mg), quinoline ($8 \mathrm{\square L}$), and $\mathrm{AcOEt}(2.5 \mathrm{~mL}$) for 2 h . Purification of the crude mixture by flash chromatography on silica gel (Hexane/AcOEt : 80/20) gave 9a ($72.3 \mathrm{mg}, 80 \%$) as a colorless oil: [$[\mathrm{C}]_{\mathrm{D}}^{25}$ -19.5 (c 1.74, CHCl_{3}) for $>96 \% \mathrm{ee}^{4}{ }^{4}$ IR (film) $3444,2929,1752,1451,1391,1263 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.39-7.32(5 \mathrm{H}, \mathrm{m}), 5.67(2 \mathrm{H}, \mathrm{m}), 5.15(2 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{m}), 4.57(1 \mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{t}, J$ $=7.3 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{bs}), 1.95-1.59(5 \mathrm{H}, \mathrm{m}), 1.47-0.86(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 155.0$, 136.7, $135.0128 .5,128.5,128.2,124.6,71.7,69.7,63.7,43.4,28.6,28.5,26.4,26.0,25.9 ;$ HRMS(ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 327.1572$, found 327.1565.

Compound 10a: The general procedure was followed for: alkyne $7 \mathbf{7 a}(34.0 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Pd} / \mathrm{CaCO}_{3}$ $(5.7 \mathrm{mg})$, quinoline ($4.5 \square \mathrm{~L}$), and $\operatorname{AcOEt}(1.4 \mathrm{~mL})$ for 1 h . Purification of the crude mixture by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 99 / 1\right)$ gave $\mathbf{1 0 a}(31.9 \mathrm{mg}, 93 \%)$ as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}$
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.68(2 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{dd}, J=12.4,7.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dd}, J=12.4,4.0 \mathrm{~Hz}), 4.20(1 \mathrm{H}$, $\mathrm{t}, J=7.3 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.19(1 \mathrm{H}, \mathrm{bs}), 1.97-1.60(5 \mathrm{H}, \mathrm{m}), 1.44-0.88(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 155.8,136.7,124.8,71.7,63.6,54.8,43.4,28.6,28.5,26.4,26.0,25.9$; HRMS(ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 251.1259$, found 251.1263.

Compound 13e: The general procedure was followed for: alkynol 5 e ($67.5 \mathrm{mg}, 0.26 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{CaCO}_{3}(12.0 \mathrm{mg})$, and quinoline $(4 \mu \mathrm{~L})$ in $\operatorname{AcOEt}(2 \mathrm{~mL})$ for 30 min . Purification of the crude mixture by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave ($2 \mathrm{Z}, 4 \mathrm{~S}$)-4-hydroxynon-2-enyl benzoate (13e, $60.7 \mathrm{mg}, 89 \%$) as a colorless oil: $[\square]^{25}{ }_{\mathrm{D}}-27.4\left(c 0.82, \mathrm{CHCl}_{3}\right)$ for 80% ee; IR (film) 3423, 2930,

[^1]$1721,1603,1272 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 8.04(2 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, \mathrm{m}), 5.70$ $(2 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{m}), 4.79(1 \mathrm{H}, \mathrm{dd}, J=12.7,4.5 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}), 1.64(2 \mathrm{H}, \mathrm{m}), 1.53-1.28$ $(6 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 166.5,137.8,133.0,129.6,129.6,128.3$, 124.6, 67.6, 60.8, 37.0, 31.8, 25.0, 22.6, 14.0; HRMS(ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{3}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$285.1467, found 285.1458.

Cyclization of 8a catalyzed by $\mathbf{0 . 5 \%} \mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$: A solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.31 \mathrm{mg}, 0.002 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added to a flask (sealed with a septum) that contained the alkenol $\mathbf{8 a}$ ($108.1 \mathrm{mg}, 0.4$ mmol) under N_{2}. Then, $\mathrm{Et}_{3} \mathrm{~N}(11 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$ was added and the mixture was stirred for 24 h at rt . The solvent was removed in vacuo and the crude mixture was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane : 1/1) to afford a mixture $84: 16$ of trans-1a and cis-1a as a colorless oil (23.8 mg , 30%) and starting material 8a ($47.8 \mathrm{mg}, 44 \%$). Spectra of cis-1a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 5.92$ $(1 \mathrm{H}, \mathrm{ddd}, J=17.1,10.4,7.4 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{dt}, J=17.1,1.0 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{dt}, J=10.4,1.0 \mathrm{~Hz}), 5.04$ $(1 \mathrm{H}, \mathrm{ddt}, J=7.4,7.1,1.0 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.1 \mathrm{~Hz}), 1.92-1.63(5 \mathrm{H}, \mathrm{m}), 1.35-1.00(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 154.6,129.2,122.0,83.9,80.2,37.2,28.8,28.1,25.9,25.1,25.0$.

Isomerization of cis-1a: The above mixture of trans-1a and cis-1a ($84: 16,23.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.0 \mathrm{mg}, 0.006 \mathrm{mmol})$ was added. The isomerization rate at rt was: 16% cis-1a at $0 \mathrm{~min}, 9.6 \%$ at $30 \mathrm{~min}, 8.5 \%$ at $1 \mathrm{~h}, 5.9 \%$ at $5 \mathrm{~h}, 3.7 \%$ at 24 h .

Preparation of $E-8 \mathbf{A}:$ A 1.6 M solution of BuLi in hexanes $(13.75 \mathrm{~mL}, 22 \mathrm{mmol})$ was added to a solution of 2-propyn-1-ol (561 mg, 10.0 mmol) in anhyd THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$. Cyclohexanecarbaldehyde ($1.45 \mathrm{~mL}, 12.0 \mathrm{mmol}$) was added and the mixture was warmed up to rt and stirred for additional 20 min . The reaction was quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried with anhyd MgSO_{4}. Then, the crude mixture can be purified by flash chromatography on silica gel (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$: 95/5) to afford 1-cyclohexylbut-2-yne-1,4-diol as colorless oil ($1.379 \mathrm{~g}, 82 \%$). Alternatively, the above crude mixture (without chromatography) was dissolved in anhyd $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{LiAlH}_{4}(1.33 \mathrm{~g}, 35$ mmol) was added at $0{ }^{\circ} \mathrm{C}$. The suspension was quenched with a saturated solution of Rochelle salt and was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and was dried with anhyd MgSO_{4}. The crude mixture was purified by flash chromatography on silica gel (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$: $95 / 5$) to afford (E)-1-cyclohexylbut-2-ene-1,4-diol as colorless oil ($377 \mathrm{mg}, 22 \%$ for the two steps). The purified diol ($128 \mathrm{mg}, 0.75 \mathrm{mmol}$) was dissolved in anhyd THF (2 mL) at $-78^{\circ} \mathrm{C}$. A 1.6 M solution of BuLi in hexanes $(516 \mu \mathrm{~L}, 0.83 \mathrm{mmol})$ was added and stirred for 10 min . Then, a solution of $\mathrm{Boc}_{2} \mathrm{O}(180$
$\mathrm{mg}, 0.83 \mathrm{mmol})$ in THF (2 mL) was added at $-78^{\circ} \mathrm{C}$ and stirred for 45 min . The reaction mixture was quenched by addition of an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over anhyd MgSO_{4}. The crude mixture was purified by flash chromatography on silica gel (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 99 / 1$) to afford tert-butyl (E)-4-cyclohexyl-4-hydroxybut-2-enyl carbonate (E-8a) as a colorless oil ($128 \mathrm{mg}, 63 \%$), IR (film) 3436, 2981, 1742, 1451, 1370, $1279 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 5.85-5.74(2 \mathrm{H}, \mathrm{m}), 4.56(2 \mathrm{H}, \mathrm{dd}, J=$ $5.4,1.0 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}), 1.85-0.94(11 \mathrm{H}, \mathrm{m}), 1.49(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 153.3, 136.5, 125.0, 82.2, 76.5, 66.7, 43.5, 28.7, 28.3, 27.7, 26.4, 26.1, 26.0. HRMS(ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$293.1729, found 293.1738.

Preparation of $\mathbf{1 2 e}$: A solution of $\mathrm{Et}_{2} \mathrm{Zn}(1.1 \mathrm{M})$ in toluene ($909 \square \mathrm{~L}, 1.00 \mathrm{mmol}$) was added at rt to a solution of $\mathbf{1 1}^{5}(163.6 \mathrm{mg}, 1.00 \mathrm{mmol})$ in anhyd toluene $(1 \mathrm{~mL})$, and the mixture was refluxed for 1 h . A catalyst solution of (R)-BINOL ($28.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), phenol $(9.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Ti}(i \operatorname{PrO})_{4}(74 \square \mathrm{~L}, 0.25$ $\mathrm{mmol})$ in anhyd $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was stirred for 30 min . This solution was added to the reaction mixture and it was stirred for one additional hour at rt before adding hexanal ($30 \square \mathrm{~L}, 0.25 \mathrm{mmol}$). The reaction mixture was stirred for 4 h at rt . Finally, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, the organic layer was washed with $\mathrm{HCl}(2 \mathrm{~N}), \mathrm{NaHCO}_{3}$, brine, dried over MgSO_{4}, and evaporated under reduced pressure. The crude mixture was purified on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 99 / 1\right)$ to give (S)-4-hydroxynon-2-ynyl benzoate (12e, $65.1 \mathrm{mg}, 100 \%$) as colorless oil: $[\square]^{25}{ }_{\mathrm{D}}+1.16\left(c 0.97, \mathrm{CHCl}_{3}\right.$) for $80 \% \mathrm{ee} ;{ }^{2}$ IR (film) 3440 , 2932, 1726, 1269, $712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 8.06(2 \mathrm{H}, \mathrm{m}), 7.58(1 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{m})$, $4.96(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{tt}, J=6.6,1.6 \mathrm{~Hz}), 2.11(1 \mathrm{H}, \mathrm{bs}), 1.72(2 \mathrm{H}, \mathrm{m}), 1.46(2 \mathrm{H}, \mathrm{m}), 1.31$ $(4 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 165.9,133.3,129.8,129.5,128.4,88.0$, $78.8,62.4,52.8,37.5,31.4,24.7,22.5,13.9$; $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{3}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$283.1310, found 283.1300 .

Synthesis of 1e: Potassium tert-butyl carbonate was prepared by bubbling CO_{2} through a solution of potassium tert-butoxide ($224 \mathrm{mg}, 2.00 \mathrm{mmol}$) in anhyd THF (20 mL) for 2 h at rt . A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.5 \mathrm{mg}, 0.006 \mathrm{mmol})$ and alkenol $\mathbf{8 e}(23.5 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to another solution of potassium tert-butyl carbonate ($88 \mathrm{mg}, 0.56 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ under N_{2} atmosphere. The mixture was stirred at rt until TLC showed complete disappearance of $\mathbf{8 e}$. The reaction mixture was quenched with an aqueous phosphate buffer ($\mathrm{pH}=7$). The organic layer was washed with brine, dried over MgSO_{4}, and evaporated under reduced pressure. The crude mixture was purified by

[^2]flash chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}: 9 / 1$) to afford $\mathbf{1 e}$ as a colorless oil ($16.3 \mathrm{mg}, 80 \%$); $[\square]^{25}{ }_{\mathrm{D}}-38.5\left(c 0.98, \mathrm{CHCl}_{3}\right)$ for 80% ee; IR (film) 2931, 1806, 1459, 1366, $1266 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.87(1 \mathrm{H}, \mathrm{ddd}, J=17.1,10.5,7.1 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{dt}, J=10.5$ $\mathrm{Hz}), 4.64(1 \mathrm{H}, \mathrm{t}, J=7.2,1.0 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{td}, J=7.6,5.1 \mathrm{~Hz}), 1.72(2 \mathrm{H}, \mathrm{m}), 1.56-1.30(6 \mathrm{H}, \mathrm{m}), 0.90$ $(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 154.3,132.2,121.2,82.6,81.9,32.9,31.3,24.3,22.3$, 13.9.

Formation of 14f: Cyclic carbonate $\mathbf{1 f}(18.0 \mathrm{mg}, 0.084 \mathrm{mmol})$ was stirred in a mixture of NaOH 1 M $(1 \mathrm{~mL})$ and 1,4-dioxane (1 mL) for 2 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over anhyd MgSO_{4}. The solvent was evaporated in vacuo and the crude mixture was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ from 98:2 to $\left.95: 5\right)$ to afford $\mathbf{1 4 f}(7.6 \mathrm{mg}, 48 \%)$ as a colorless oil: ${ }^{6}[\square]{ }^{25}{ }_{\mathrm{D}}+23.4(c$ $\left.0.63, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.96(1 \mathrm{H}, \mathrm{ddd}, J=17.4,10.6,5.7 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{dt}, J=$ $17.4,1.5 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{dt}, J=10.6,1.4 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J=$ $8.4,6.3 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=8.4,6.3 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 2.28(1 \mathrm{H}, \mathrm{d}, J=4.2$ $\mathrm{Hz}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 137.2,117.1,109.2,76.0,73.7,72.1,66.0$, 26.7, 25.2.

[^3]

N

[^0]: ${ }^{1}$ Zhang, H. X.; Guibé, F.; Balavoine, G. Tetrahedron Lett. 1988, 29, 619-622.
 ${ }^{2}$ Determined by HPLC of the corresponding Mosher's esters.
 ${ }^{3}$ Allcock, S. J.; Gilchrist, T. L.; Shuttleworth, S. J.; King, F. D. Tetrahedron 1991, 47, 10053-10064.

[^1]: ${ }^{4}$ Determined by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR of the corresponding Mosher's esters.

[^2]: ${ }^{5}$ Bandgar, B. P.; Kamble, V. T.; Sadavarte, V. S.; Uppalla, L. S. Synlett 2002, 735-738.

[^3]: ${ }^{6}$ (a) Sato, A.; Ito, H.; Taguchi, T. J. Org. Chem. 2000, 65, 918-921. (b) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. S. Tetrahedron, 2003, 59, 5333-5336. (c) Lee, H. W.; Yoon, H. K.; Lee, I.-Y. C. Bull. Korean Chem. Soc. 1998, 19, 916-917.

