Efficient Enantioselective Synthesis of Functionalized Tetrahydropyrans by Ru-Catalyzed Asymmetric Ring-Opening/Cross Metathesis (AROM/CM)

Dennis G. Gillingham, Osamu Kataoka, Steven B. Garber and Amir H. Hoveyda*
Department of Chemistry, Merkert Chemistry Center, Boston College
Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION

General. Infrared (IR) spectra were recorded on a Nicolet 210 spectrophotometer, $\square_{\max }$ in cm^{-1}. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Unity INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}\right.$: $\left.\square 7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: \square 7.35 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal reference $\left(\mathrm{CDCl}_{3}: \square 77.16 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian Unity INOVA 400 (376 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from CFCl_{3} with the solvent as the internal reference. High-resolution mass spectra were recorded at the University of Illinois (Urbana-Champaign, IL) or on a Micromass LCT ESI-MS (positive mode) at the Mass Spectrometry Facility, Boston College. Elemental microanalyses were performed by Robertson Microlit Laboratories (Madison, NJ). Enantiomer ratios were determined by chiral HPLC analysis (Chiral Technologies Chiralpak AS, Chiralpak AD, Chiralcel OJ, Chiralcel OB-H, and Chiralcel OD ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$)) in comparison with authentic racemic materials, or by ${ }^{1} \mathrm{H}$ or ${ }^{19} \mathrm{~F}$ NMR spectroscopy of the derived Mosher esters in comparison with Mosher esters derived from the authentic racemic materials. Optical rotation values were measured on a Rudolph Research Analytical Autopol IV Polarimeter.

Materials. Unless otherwise noted, all reactions were carried out with distilled and degassed solvents under an atmosphere of dry N_{2} in oven- $\left(135{ }^{\circ} \mathrm{C}\right)$ and flame-dried
glassware with standard drybox or vacuum-line techniques, and all work-up and purification procedures were carried out with reagent solvents in air. In most instances, solid organometallic compounds were stored under an atmosphere of N_{2}; although it has been determined that such precautions are unnecessary to maintain catalyst stability. All reagent solvents were purchased from Doe and Ingalls, unless otherwise noted. Solvents were purified under positive pressure of dry Ar by a modified Innovative Technologies purification system: toluene and benzene were purified through a copper oxide and an alumina column; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ were purged with Ar and purified by passing them through two alumina columns. THF was purified by distillation from a benzophenone ketyl immediately prior to use. 1,2-Dichloroethane (Lancaster), CDCl_{3} (Cambridge Isotope Labarotory, Inc.), triethylamine (Acros), styrene (Aldrich), vinylcyclohexane (Aldrich), p-methoxystyrene (Aldrich), p-bromostyrene (Aldrich), and ptrifluoromethylstyrene (Aldrich) were distilled from CaH_{2} under N_{2}. MeOH was distilled over Mg under N_{2}. Dimethylformamide (Fisher) was stored under N_{2} over activated $4 \AA$ molecular sieves. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was stored in an oven $\left(120{ }^{\circ} \mathrm{C}\right) . \mathrm{Cl}_{2} \mathrm{Ru}(=\mathrm{CH}-o-$ $\left.\mathrm{O} i \mathrm{PrC}_{6} \mathrm{H}_{3} \mathrm{Ph}\right) \mathrm{PCy}_{3}$ was prepared as previously described. ${ }^{1} \mathrm{Cl}_{2} \mathrm{Ru}\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PCy}_{3}\right)_{2}$ was purchased from Materia. The following materials were purchased from commercial sources and used as received: EtOH (Fisher), Calcium granules (Aldrich), $\mathrm{Ag}_{2} \mathrm{O}$ (Strem), 0.05 M potassium phosphate monobasic/ sodium hydroxide pH 7 buffer (Fisher), NaI (Aldrich).

Silica gel column chromatography was driven with compressed air and performed with silica gel 60 (230-400 mesh; pH (10% suspension) $6.5-7.0$; surface area $500 \mathrm{~m}^{2} / \mathrm{g}$; pore volume $0.75 \mathrm{ml} / \mathrm{g}$) obtained from TSI Chemical Co. (Cambridge, MA).

Preparation of iodide catalyst (1b).

Chloride catalyst $1 \mathbf{1 a}(50.3 \mathrm{mg}, 0.0616 \mathrm{mmol})$ and $\mathrm{NaI}(97.1 \mathrm{mg}$, 0.648 mmol) were weighed into a 3 mL Teflon cap vial, THF (1 mL) was added by syringe and the vial was capped and sealed with Teflon tape and electrical tape. The mixture was submerged into a $70^{\circ} \mathrm{C}$ oil bath and stirred for 1 h . The THF was removed with a stream of N_{2} and the mixture was loaded directly onto a column of silica gel and eluted (1:1 Hex: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to deliver $\mathbf{1 b}(47.0 \mathrm{mg}, 85 \%)$ as a brown solid. X-ray quality crystals were obtained by silica gel chromatography in hexane and diethyl ether (9:1); slow

[^0]evaporatation of the coloured fractions deliver large crystals after 4-5 days. IR (neat): 3055 (w), 2974 (w), 2917 (w), 1680 (w), 1577 (m), 1470 (m), 1457 (s), 1420 (s), 1281 (s), 910 (m), 734 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 15.57$ ($\mathrm{s}, 1 \mathrm{H}$), 8.14 (dd, $J=8.7,8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (m, 3H), 7.27-7.07 (m, 9H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.93$ (ddd, $J=8.0,0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.83$ (m, 2H), $6.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.58(\mathrm{~m}$, $1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.56(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square 279.09,215.03,169.08$, $149.95,148.20,139.84,138.82,138.33,138.10,137.93,137.58,137.56,134.88,134.74$, $133.69,132.12,131.61,130.03,129.56,129.30,128.86,128.80,128.64,128.32,128.23$, $128.19,127.93,127.76,126.74,126.54,126.09,125.18,124.79,124.07,121.65,120.81$, $119.24,78.29,53.32,51.81,21.49,20.27,20.24,20.10,18.64$. X-ray data is included at the end of this document.

General procedure A: Ru-Catalyzed AROM/CM in THF at 0.1 M. 11a (12.3 mg , $98.0 \square \mathrm{~mol})$ and styrene ($46.4 \mathrm{mg}, 0.446 \mathrm{mmol}$) were combined in a dried 3 mL vial containing a stir bar under nitrogen. Catalyst $\mathbf{1 b}(3.6 \mathrm{mg}, 4.4 \square \mathrm{~mol})$ was dissolved in THF $(1 \mathrm{~mL})$ and added by cannula to the vial containing substrate and styrene. The reaction was allowed to stir at $22{ }^{\circ} \mathrm{C}$ for 3 h at which point the solvent was removed with a stream of N_{2} and the mixture was loaded onto a silica gel column $(0.5 \mathrm{~cm} \mathrm{~W} \times 8 \mathrm{~cm} \mathrm{~L})$ and eluted ($3: 2 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$) to deliver recovered catalyst ($1.7 \mathrm{mg}, \mathrm{R}_{f}=0.5,51 \%$) and the desired product $12\left(14.1 \mathrm{mg}, \mathrm{R}_{f}=0.2,64 \%\right)$ as a clear colourless oil.

General procedure B: Ru-Catalyzed AROM/CM in the absence of solvent.

 Compound 5c ($10.0 \mathrm{mg}, 46.0 \square \mathrm{~mol}$) and distilled vinylcyclohexane ($67.2 \mathrm{mg}, 0.610$ mmol) were combined in a dried 3 mL vial in the glovebox and allowed to stir until all of $\mathbf{5 c}$ dissolved. Catalyst $\mathbf{3}(2.2 \mathrm{mg}, 2.4 \square \mathrm{~mol})$ was then weighed directly into the vial. The resulting solution was stirred for 2 h at $22^{\circ} \mathrm{C}$ at which point TLC analysis ($4: 1 \mathrm{Hex}^{\mathrm{H}} \mathrm{Et}_{2} \mathrm{O}$) indicated complete consumption of starting material. The crude mixture was loaded directly onto a silica gel column ($0.5 \mathrm{~cm} \mathrm{~W} \times 8 \mathrm{~cm} \mathrm{~L}$) and eluted (9:1 $\mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$) to deliver bis-cross product ($1.4 \mathrm{mg}, \mathrm{R}_{f}=0.7,10 \%$), desired product $16\left(9.1 \mathrm{mg}, \mathrm{R}_{f}=0.5\right.$, 61%) and recovered catalyst ($2.0 \mathrm{mg}, \mathrm{R}_{f}=0.3,90 \%$).General procedure C: Ru-Catalyzed AROM/CM by slow addition of olefin partner. Catalyst $1 \mathbf{a}(3.7 \mathrm{mg}, 5.0 \square \mathrm{~mol})$ and vinylcyclohexane ($48.0 \mathrm{mg}, 0.436 \mathrm{mmol}$) were weighed into a dried 3 mL vial containing a stir bar. Substrate 2a ($11.0 \mathrm{mg}, 87.0 \square \mathrm{~mol}$)
was added slowly by syringe or syringe pump as a solution in dichloroethane over 1 h at $22{ }^{\circ} \mathrm{C}$. The reaction was allowed to stir for an additional 12 h at $22^{\circ} \mathrm{C}$ at which time the solvent was removed under a stream of N_{2} and the mixture was loaded directly onto a silica gel column ($0.5 \mathrm{~cm} \mathrm{~W} \times 8 \mathrm{~cm} \mathrm{~L}$) and eluted ($2: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$) to deliver product 9 $\left(14.8 \mathrm{mg}, \mathrm{R}_{f}=0.3,72 \%\right)$ as a clear colourless oil.
(2S,4R,6R)-Tetrahydro-2-(E)-styryl-6-vinyl-2H-pyran-4-ol (4a).

General procedure A was followed with substrate 2a to afford a colourless oil after silica gel chromatography (3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=$ 0.15). IR (neat): 3370 (br), 3074 (w), 3018 (w), 2955 (m), 2898 (m), 2848 (m), 1646 (m), 1488 (w), 1451 (w), 1362 (m), 1306 (m), 1054 (s), 960 (s), 758 (s$), 695$ (s$).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.38-7.19$ (m, 5H), $6.62(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=$ $16.0,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30 (dd, J $=17.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=$ $10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.04$ $(\mathrm{m}, 2 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.44-1.27$

authentic racemic conditions: $98: 2 \mathrm{Hex}: \mathrm{iPA}$, Chiralpak AS,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
Retention Times: $23.8 \mathrm{~min}, 27.8 \mathrm{~min}$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\square 138.29,136.94,130.84,129.59,128.72,127.86,126.72,115.77,76.45,76.19$, 68.28, 41.31, 40.89. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$: 253.1204. Found: 253.1202. Absolute configuration is determined by conversion to 28 (See S18 \& S19 for details).

(2S,4R,6R)-4-Benzyloxytetrahydro-2-(E)-styryl-6-vinyl-2H-pyran (4b).

General procedure A was followed with substrate $\mathbf{2 b}$ to afford a colourless oil after silica gel chromatography ($40: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=$ 0.15). IR (neat): 2922 (m), 2853 (m), 1495 (w), 1451 (w), 1354 (m), 1157 (w), 1071 (s), 966 (m), 747 (s), 695 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\square 7.42-7.20(\mathrm{~m}, 10 \mathrm{H})$, 6.63 (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (dd, $J=16.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (ddd, $J=17.2,10.6,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.32$ (ddd, $J=17.2,1.5,1.5$

conditions: 99.8:0.2 Hex:iPA, Chiralcel OJ, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
Retention Times: $50.0 \mathrm{~min}, 53.2 \mathrm{~min}$
$\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{ddd}, J=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.91$ $(\mathrm{m}, 1 \mathrm{H}), 3.71$ (dddd, $J=11.0,11.0,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (dddd, $J=12.5,4.4,2.2,2.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.15 (dddd, $J=12.5,4.4,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{ddd}, J=11.4,11.4,11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.42(\mathrm{ddd}, J=11.4,11.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 138.66$, $138.39,136.91,130.74,129.70,128.65,128.60,127.77,127.72,126.66,115.65,76.53$, 76.27, 74.54, 69.79, 38.21, 37.83. HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}$: 320.1776. Found: 320.1767. Absolute configuration is determined by conversion to $\mathbf{4 a}$.

Tetrahydro-4-methoxy-2-(E)-styryl-6-vinyl-2H-pyran (4c).
 General procedure A was followed with substrate 2c to afford a colourless oil after silica gel chromatography ($20: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=$ 0.14). IR (neat): 2945 (m), 2923 (m), 2848 (m), 2824 (m), 1448 (m), 1379 (m), 1309 (m), 1081 (s), 966 (m), 748 (m), 694 (m). ¹H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.42-7.20(\mathrm{~m}$, $5 \mathrm{H}), 6.63(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ $(\mathrm{dd}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddd, $J=17.4,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (ddd, $J=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (ddd, $J=10.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dddd, $J=11.2,6.1,1.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.00-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.50$ (dddd, $J=11.0,11.0,4.4,4.4 \mathrm{~Hz}$,

authentic racemic asymmetric reaction with chloride catalyst conditions: 99.7:0.3 Hex:iPA, Chiralpak AD, $0.1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ Retention Times: $20.6 \mathrm{~min}, 36.1 \mathrm{~min}$
$1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (dddd, $J=12.5,4.4,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dddd}, J=12.5,4.4$, $2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=11.4,11.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{ddd}, J=11.4,11.4,11.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 138.38,136.88,130.72,129.69,126.65$, $127.77,126.65,115.66,76.60,76.51,76.26,55.57,37.80,37.41$. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: 244.1463 . Found: 244.1470 .
(2S,4R,6R)-4-[(tert-Butyldimethylsilyl)oxy]tetrahydro-2-styryl-6-vinyl-2H-pyran (4d).

General procedure A was followed with substrate 2d to afford a colourless oil after silica gel chromatography (50:1 Hex:Et $\mathrm{H}_{2} \mathrm{O}, \mathrm{R}_{f}=$ 0.15). IR (neat): 2951 (s , 2928 (s), 2856 (s), 1471 (m), 1380 (m), 1255 (m), 1075 (s), 914 (m), 837 (m), 776 (m), 746 (m), 693 (m). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \square 7.44-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.9,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.92 (ddd, $J=17.2,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{ddd}, J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=$
$10.4 \mathrm{~Hz}), 4.12-4.01(\mathrm{~m}, 1 \mathrm{H})$, 3.99-3.83 (m, 2H), 2.00-1.88 (m, 2 H), 1.45 (ddd, $J=11.9,11.9,11.9$ Hz, 1H), 1.39 (ddd, $J=11.9,11.9$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09$ (s , $6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \square 138.51,136.96,130.62$, $129.85,128.63,127.71,126.64$, 115.57, 76.58, 76.30, 68.77, 41.73, 41.32, 25.97, 18.26, -4.35. HRMS

asymmetric reaction with iodide catalyst

Found: 344.2167.
Enantiopuritiy of $4 d$ was determined by analysis of HPLC of the corresponding alcohol after desilylation. Absolute configuration is determined by conversion to $\mathbf{4 a}$.

Tetrahydro-2-[(E)-2-(4-methoxyphenyl)vinyl]-6-vinyl-2H-pyran-4-ol (5).

General procedure A was followed with substrate 1a to afford a colorless oil after silica gel chromatography (3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}$, $\mathrm{R}_{f}=0.15$). IR (neat): 3388 (br), 2939 (m), 2920 (m), 1607 (s), 1512 (s), 1301 (m), 1248 (s), 1175 (m), 1063 (m), 1035 (m), 969 (m), 845 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.31(\mathrm{~d}, J=$
$8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.9,6.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.92 (ddd, $J=17.4$, $10.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, $J=$ $17.4,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.16 (ddd, $J=10.6,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (dddd, $J=11.4,6.2,1.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, 3H), 2.15-2.00 (m, 2H), 1.71 (br $\mathrm{s}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=11.4,11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.32$ (dd, $J=11.4,11.4$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) : \square 159.40, 138.27,

55.40, 41.30, 40.79. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$: 283.1310. Found: 283.1304.

2-[(E)-4-(Trifluoromethyl)styryl]tetrahydro-6-vinyl-2H-pyran-4-ol (6).

General procedure A was followed with substrate 1a to afford a colorless oil after silica gel chromatography ($3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{R}_{f}=0.18$). IR (neat): 3387 (br), 2943 (m), 2921 (m), 1615 (m), 1415 (m), 1325 (s$), 1165$ (s), 1124 (s$), 1067$ (s$), 970$ (m), $858(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.94 (ddd, $J=17.3,10.6,5.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.33 (ddd, $J=17.3$, $1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (ddd, $J=$ 10.6, $1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15-4.07 (m, 1H), 4.01-3.90 (m, 2H), 2.13 (dddd, $J=12.4$, $4.6,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (dddd, $J=12.4,4.6,2.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58$ (br s, 1H), 1.40 (ddd, $J=11.5,11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.36 (ddd, $J=11.5,11.5,11.5$

132.18, 129.23 (q, $J=32.4 \mathrm{~Hz}$),
$\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): \quad 140.38, 138.05, ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square-63.01. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{2}$: 298.1181. Found: 298.1174.

2-[(E)-2-(4-Bromophenyl)vinyl]tetrahydro-6-vinyl-2H-pyran-4-ol (7).

General procedure A was followed with 2a to afford a colorless solid (mp 85.0-86.0 ${ }^{\circ} \mathrm{C}$, pentane/ $\mathrm{Et}_{2} \mathrm{O}$) after silica gel chromatography ($3: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.18$). IR (neat): 3365 (br), 2935 (m), 2851 (m), 1487 (s), 1403 (m), 1307 (m), 1064 (s$)$, 1008 (m), 963 (m), 808 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square $7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=15.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=15.9$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{ddd}, J=17.4,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{ddd}, J=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (ddd, $J=10.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dddd}, J=11.2,5.9,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$,
4.00-3.87 (m, 2H), 2.15-2.01 (m, 2H), 1.67 (br s, 1H), 1.38 (ddd, $J=11.4,11.4,11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.34(\mathrm{ddd}, J=11.4,11.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square$ 138.11, 135.82, 131.77, 130.30, 129.51, 128.16, 121.55, 115.78, 76.41, 75.87, 68.12, 41.10, 40.79. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{2}$: 308.0412 . Found: 308.0417.

Tetrahydro-2-[(E)-2-(2-methylphenyl)vinyl]-6-vinyl-2H-pyran-4-ol (8).

General procedure A was followed with substrate 2a to afford a colorless oil after silica gel chromatography ($3: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=$ 0.18). IR (neat): 3388 (br), 2942 (m), 2920 (m), 2852 (m), 1514 (m), 1359 (m), 1309 (m), 1063 (m), 968 (m), 925 (m), 796 (m). ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.84$ (dd, $J=15.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{ddd}, J=17.2,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (ddd, $J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{ddd}, J=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dddd}, J=$ $11.4,6.0,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.01-3.89 (m, 2H), 2.35 (s , 3 H), 2.12 (dddd, $J=12.5,4.8$, $2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (dddd, J $=12.5,4.8,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.42$ (ddd, $J=$ $11.4,11.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35$ (ddd, $J=11.4,11.4,11.4 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \square$ 138.40, 136.03, 135.80, 130.99, 130.48, 128.64, 127.77, 126.31, 125.93, 115.67, 77.47, 76.43,

asymmetric reaction with iodide catalyst
68.35, 41.50, 40.97, 20.02. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: 244.1463. Found: 244.1467.

2-[(E)-2-Cyclohexylvinyl]tetrahydro-6-vinyl-2H-pyran-4-ol (9).

ӧ H

General procedure C was followed. IR (neat): 3358 (br), 2917 (s), 2848 (m), 1451 (m), 1067 (m), 960 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 5.90$ (ddd, $J=16.7,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.7,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46(\mathrm{dd}, J=15.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90-3.83 (m, 3H), 2.03-1.95 (m, 3H), 1.72-1.62 (m, 5H), 1.30-1.01 (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 138.44,138.27,127.61,115.53,76.45,76.28,68.24,41.45,40.80$, 40.41, 32.79, 26.31,
26.17. HRMS Calcd for
$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$:

259.1674. Found: 259.1676. The ee for this compound was determined by analysis of the ${ }^{1} \mathrm{H}$ NMR of the derived Mosher ester (using (S)-Mosher's acid).

1 H NMR in $\mathrm{C}_{6} \mathrm{D}_{6}$ analysis of Mosher Ester derived from endo-cyclohexyl ROCM
(2S,4S,6R)-Tetrahydro-2-(E)-styryl-6-vinyl-2H-pyran-4-ol (12).

0.3). IR (neat): 3415 (br), 3024 (w), 2917 (m), 1430 (w), 1300 (m), 1055 (s$), 960$ (s$), 746$ (s), 696 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \square 7.39-7.37(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.28 (m, 2H), 7.24-7.20 (m, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=16.1,1 \mathrm{H}), 6.22$ (dd, $J=16.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=17.3,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.32 (ddd, $J=17.3,1.5,1.5 \mathrm{~Hz}$,

authentic racemic

asymmetric reaction with chloride catalyst

Conditions: 98:2 Hex:IPA, Chiracel OD, $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
Retention Times: $39.9 \mathrm{~min}, 42.5 \mathrm{~min}$
$1 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H})$, 4.36-4.35 (m, 1H), 1.83-1.61 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square 138.99, 137.05, 130.49, 130.37, 128.61, 127.64, 126.60, 115.41, 72.44, 72.19, 64.57, 38.71, 38.27. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: 230.1307. Found: 230.1307. Absolute configuration is determined by conversion to $\mathbf{4 a}$.

(2S,4S,6R)-4-Benzyloxytetrahydro-2-styryl-6-vinyl-2H-pyran (13).

 General procedure A was followed with substrate 11a to afford a colorless oil after silica gel chromatography (14:1 Hex: $\mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.4$). IR (neat): 3081 (w), 3024 (w), 2917 (w), 2860 (w), 1501 (w), 1451 (w), 1338 (m), 1067 (s), 966 (m), $690(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.41-7.36$ (m, $6 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=16.0$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ (ddd, $J=17.3$, $10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (ddd, $J=$ $17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (ddd, $J=10.6,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ ($\mathrm{s}, 2 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 1 \mathrm{H})$, 4.56-4.41 (m, 1H), 3.97-3.95 (m, 1H), 2.04-1.95 (m, 2H), 1.64-1.51 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square 139.17, 138.95, 137.14, 130.59, 130.37, 128.60, 128.58, 127.71, 127.59,
 127.53, 126.60, 115.28, 72.93, 72.70, 71.33, 70.40, 35.85, 35.41. HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}: 343.1674$. Found: 343.1674. Absolute configuration is determined by conversion to $\mathbf{4 a}$.

4-Benzyloxytetrahydro-2-[(E)-4-(methoxyphenyl)vinyl]-6-vinyl-2H-pyran (14).

General procedure A was followed with substrate 11b using the
 chloride catalyst and general procedure B was followed with 11b using the iodide catalyst to afford a colorless oil after silica gel chromatography (19:1 $\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.3$). IR (neat): 3024 (w), 2924 (w), 2823 (w), 1608 (m), 1514 (s), 1243 (s), 1174 (m), 1061 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=16.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=17.3,10.6$,
$5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, $J=17.3$, $1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (ddd, $J=$ $10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.60 (s, 2H), 4.55-4.51 (m , 1H), 4.45-4.40 (m, 1H), 3.96-3.94 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.94$ $(\mathrm{m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 159.26, 139.20, 138.95, 130.02, 129.88, 128.55, 128.34, 127.75, 127.67, 127.50, 115.25, 114.02, 72.91, 72.86, 71.34, 70.35,

55.37, 35.86, 35.40. HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$: 373.1780 . Found: 373.1776.

4-Benzyloxytetrahydro-2-[(E)-4-(trifluoromethylphenyl)vinyl]-6-vinyl-2H-pyran

 (15).

General procedure A was followed with substrate $\mathbf{1 1 b}$ using the chloride catalyst and general procedure B was followed with substrate 11b using the iodide catalyst to afford a colorless oil after siliga gel chromatography ($19: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.5$). IR (neat): 3037 (w), 2924 (w), 2861 (w), 1621 (w), 1325 (s), 1168 (m), 1124 (s), 1067 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=16.0,5.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.92 (ddd, $J=17.3,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (ddd, $J=17.3,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.16 (ddd, $J=10.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.41(\mathrm{~m}, 1 \mathrm{H})$, 3.98-3.96 (m, 1H), 2.04-1.96 $(\mathrm{m}, 2 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square 140.87, 139.21, 139.07, 133.53, 129.73, 129.40, 128.97, 128.80, 127.96, 127.74, 126.90, 125.83 (q, $J=3.8 \mathrm{~Hz}$), 115.60, 73.19, $72.53,71.41,70.65,36.00$, 35.55. HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Na}$: 411.1548 .
Found: 411.1553.

4-Benzyloxy-2-[(E)-2-Cyclohexylvinyl]tetrahydro-6-vinyl-2H-pyran (16).

 after silica gel chromatography (19:1 Hex: $\mathrm{Et}_{2} \mathrm{O} \mathrm{R}_{f}=0.5$). IR (neat): 2917 (s), 2848 (m), 1451 (m), 1338 (w), 1061 (s), 966 (m), 702 (w). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\square 7.38-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.88$ (ddd, $J=17.3$, $10.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=15.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=15.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ $(\mathrm{d}, J=17.3,1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 3 \mathrm{H})$, 1.72-1.69 (m, 5H), 1.52-1.45 (m, 2H), 1.27-1.04 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square 139.39, 139.04, 137.92, 128.54, 128.42, 127.64, 127.50, 115.14, 72.92, 72.86, 71.41, 70.28, 40.48, 35.91, 35.39, 32.85, 26.35, 26.21. HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$: 326.2246. Found: 326.2250. The ee was determined by HPLC analysis of the debenzylated alcohol of 16. Debenzylation was carried out under dissolving metal conditions using calcium.

(2S,4S,6R)-4-[(tert-Butyldimethylsilyl)oxy]tetrahydro-2-styryl-6-vinyl-2H-pyran

 (17).

General procedure A was followed with 11d using chloride catalyst and general procedure B was followed with 11d using the iodide catalyst to afford a colourless oil after silica gel chromatography (24:1 Hex: $\mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.3$). IR (neat): 3024 (w), 2949 (s), 2923 (s), 2855 (m), 1243 (m), 1092 (s), 1055 (s), 909 (m), 835 (s), 771 (m), 690 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.39-7.37 (m, 2H), 7.31-7.28 (m, 2H), 7.23-7.20 (m, 1H), 6.61 (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (ddd, $J=$ $16.7,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30 (dd,

asymmtric reaction with chloride catalyst

asymmetric reaction with iodide catalyst
$=10.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.27(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\square 139.44$, 137.22, 130.90, 130.04, 128.60, 127.53, 126.59, 114.97, 72.57, 72.30, 64.96, 39.50, 39.08, 25.97, 18.23, 14.47. HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: 344.2172$. Found: 344.2178. The enantiomeric excess was determined by deprotection in $10 \% \mathrm{HCl}_{(\mathrm{aq})} / \mathrm{THF}$ followed by HPLC using the conditions reported for alcohol 11a. Absolute configuration is determined by conversion to $\mathbf{4 a}$.

Tetrahydro-4-methyl-2-(E)-styryl-6-vinyl-2H-pyran-4-ol (19).

 General procedure A was followed with substrate 18 to afford a colourless oil after silica gel chromatography ($3: 1 \mathrm{Hex}^{\mathrm{Et}}{ }_{2} \mathrm{O}, \mathrm{R}_{f}=$ 0.15). IR (neat): 3398 (br), 2971 (m), 2938 (m), 2918 (m), 1376 (m), 1103 (m), 1070 (m), 966 (m), 746 (m), 694 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.41-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, J $=17.2,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (ddd, $J=17.2,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (ddd, $J=10.6,1.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, \quad 1 \mathrm{H})$, 4.03-3.94 (m, 1H), 1.82 (ddd, J $=12.1,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ (ddd, $J=12.1,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.58(\mathrm{dd}, J=12.1,12.1 \mathrm{~Hz}, 1 \mathrm{H})$, 1.52 (dd, $J=12.1,12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}$,

asymmetric reaction with iodide catalyst $130.80,129.75,128.65,127.78$, $126.65,115.71,75.91,75.67,69.40,46.24,45.83,26.01$. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: 244.1463. Found: 244.1460.

Tetrahydro-2-[(E)-2-(4-methoxyphenyl)vinyl]-4-methyl-6-vinyl-2H-pyran-4-ol (20).

General procedure A was followed with $\mathbf{1 8}$ to afford a colourless oil after silica gel chromatography ($\mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}=3: 1$, $\mathrm{R}_{f}=0.15$). IR (neat): 3413 (br), 2936 (m), 2837 (m), 1607 (m), 1511 (m), 1250 (m), 1175 (m), 1106 (m), 1034 (m), 968 (m), 923 (m), $814(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=$ $17.2,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dd, $J=11.4$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dd, $J=11.4$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 1.84-1.72 (m, 2H), 1.63-1.43 (m, 2H), $1.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.42(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \quad$ 159.41, 138.52, 130.48, 129.63, 127.85, 127.55, 115.71, 114.08, 75.91, 75.88, 69.42, 55.41, 46.33, 45.82, 26.02. HRMS Calcd for
 $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$: 274.1569. Found: 274.1563.

2-[(E)-2-(4-trifluoromethylphenyl)vinyl]tetrahydro-4-methyl-6-vinyl-2H-pyran-4-ol (21).

General procedure A was followed with substrate 18 to afford a colorless oil after silica gel chromatography ($3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}$ $=0.18$). IR (neat): 3398 (br), 2938 (m), 2933 (m), 1615 (m), 1378 (m), 1326 (s$), 1123$ (s$), 1067$ (s$), 969$ (m), 817 (m), 597 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=16.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=17.2,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (ddd, $J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (ddd, $J=$ $10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dddd, $J=11.4,5.5,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (ddddd, $J=11.7$, $5.7,2.0,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddd}, J=12.6,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=12.6,2.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\square 140.43,138.30,132.43,129.20,126.77,125.64(\mathrm{q}, J=3.8 \mathrm{~Hz}), 115.85,76.00$,
75.25, 69.35, 46.05, 45.81, 25.99. ${ }^{19}$ F NMR (376 MHz , CDCl_{3}): \square-63.01. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2}$: 312.1337. Found: 312.1341.

Tetrahydro-2-(E)-styryl-6-vinyl-2H-pyran (23).

General procedure A was followed with substrate 22 to afford a
 colourless oil after silica gel chromatography ($3: 1 \mathrm{Hex}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{R}_{f}=$ 0.10). IR (neat): 2935 (m), 2855 (w), 1495 (w), 1304 (w), 1198 (w), 1073 (m), $965(\mathrm{~m}), 746(\mathrm{~m}), 693(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.40-7.35 (m, $2 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{dd}, J=15.9 .1 .1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.93 (ddd, $J=17.4,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (ddd, J $=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11-4.04 (m, 1H), 3.98-3.91 (m, 1H), 1.98-1.89 (m, 1H),
1.77-1.58 (m, 3H), $1.55-1.30 \quad(\mathrm{~m}, \quad 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square 139.48, 137.22, 130.95, 130.03, 128.61, 127.55, 126.61, 114.96, 78.53, 78.24, 31.77, 31.32, 23.61. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}$:

asymmetric reaction with iodide catalyst

Tetrahydro-4-methylidene-2-(E)-styryl-6-vinyl-2H-pyran (25).

 General procedure A was followed with 24 to afford a colorless oil after silica gel chromatography ($3: 1 \mathrm{Hex}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{R}_{f}=0.15$). IR (neat): 3025 (m), 2941 (m), 1653 (m), 1449 (m), 1309 (m), 1061 (s), $893(\mathrm{~m}), 747(\mathrm{~s}), 693(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.42-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (ddd, $J=17.4,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$,
5.37-5.29 (m, 1H), 5.21-5.14 $(\mathrm{m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08-4.00 (m, 1H), 3.95-3.85 (m, 1H), 2.41-2.28 (m, 2H), 2.24-2.07 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $]$ 143.82, 138.67, 136.96, 130.78, 130.00, 128.65, 127.75, 126.67, 115.71, 109.48, 79.11, 78.90, 40.96, 40.51. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: 226.1358$. Found: 226.1352.

Tetrahydro-4-iodo-2-(E)-styryl-6-vinyl-2H-pyran (27).

General procedure A was followed with substrate 26 to afford a colorless solid (mp 69.0-70.0 ${ }^{\circ} \mathrm{C}$, pentane) after silica gel chromatograph y (3:1 Hex: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{R}_{f}=0.10$). IR (neat): 3024 (m), 2949 (m), 2888 (m), 1495 (m), 1412 (m), 1308 (m), 1236 (m), 1057 (s$), 965$ (m), 746 (s), 692 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.42-7.20$ (m, 5H), $6.66(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25$ (dd, $J=16.1,5.9 \mathrm{~Hz}$, 1H), 5.94 (ddd, $J=17.4,10.6,5.5$

 $\mathrm{Hz}, 1 \mathrm{H}$), 5.35 (ddd, $J=17.4,1.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (ddd, $J=10.6$,
$1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92 (dddd, $J=$
$3.1,3.1,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (dddd, $J=14.7$, 2.2, 2.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 (dddd, $J=14.7,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (ddd, $J=14.7$, $10.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.65 (ddd, $J=14.7,10.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): — 137.84, 136.84, 131.10, 129.12, 128.67, 127.82, 126.65, 116.06, 74.31, 74.16, 40.68, 40.24, 29.59. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{IO}: 340.0324$. Found: 340.0326 .
($2 S, 4 R, 6 R$)-Tetrahydro-4-(triisopropylsilyloxy)-2-(E)-styryl-6-vinyl-2H-pyran.
 2,6-Lutidine ($15 \square \mathrm{~L}, 0.12 \mathrm{mmol}, 2.5$ equiv) was added to a solution of alcohol $4 \mathbf{a}(12 \mathrm{mg}, 51 \square \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ followed by triisopropylsilyl trifluoromethanesulfonate $(21 \square \mathrm{~L}, 78 \square \mathrm{~mol}, 1.5$ equiv) at $-78^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction mixture was treated with saturated aqueous NaHCO_{3}, warmed to $22^{\circ} \mathrm{C}$, and the organic phase was separated. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to dryness. Silica gel chromatography of the residue ($50: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$) afforded silyl ether ($17 \mathrm{mg}, 45 \square \mathrm{~mol}, 88 \%$) as a colourless oil. IR (neat): 2943 (m), 2866 (m), 1463 (m), 1381 (m), 1125 (m), 1068 (m), 964 (m), $883(\mathrm{~m}), 691(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.41-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.25$ (dd, $J=16.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddd, $J=17.2,10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, $J=17.2,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.4,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.88(\mathrm{~m}, 3 \mathrm{H})$, 2.03 (dddd, $J=12.6,4.6,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (dddd, $J=12.6,4.6,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.47 (ddd, $J=11.7,11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.41 (ddd, $J=11.7,11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.18-1.10(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 138.57,136.99,130.60,129.91$, 128.63, 127.71, 126.65, 115.52, 76.56, 76.30, 68.74, 42.01, 41.59, 18.25, 12.51. HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$: 386.2641 . Found: 386.2639 .

(2R,4R,6S)-Tetrahydro-2-(2-hydroxyethyl)-4-(triisopropylsilyloxy)-6-(E)-styryl-2Hpyran.

A solution of diene ($37.5 \mathrm{mg}, 97.0 \square \mathrm{~mol}$) in THF (1.0 mL) was added to a solution of $9-\mathrm{BBN}(14.5 \mathrm{mg}, 0.119 \mathrm{mmol}, 1.2$ equiv) in THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at $22^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. EtOH/THF (1:1, 0.2 mL), pH 7.00 buffer (Fisher; 0.05 M potassium phosphate monobasic/sodium hydroxide, 0.2 mL), and then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.2$ mL) were added successively, and the mixture was stirred at $22^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with brine (1 mL) and extracted with EtOAc ($5 \mathrm{~mL} x 3$). The combined organic layers were dried, filtered, and concentrated. The residue was purified by silica gel chromatography (9:1 Hex:EtOAc, $\mathrm{R}_{f}=0.18$) to give the alcohol (33.3 mg ,
$82.3 \square \mathrm{~mol}, 85 \%$) as a colorless oil. IR (neat): 3414 (br), 2943 (m), 2866 (m), 1462 (m), $1384(\mathrm{~m}), 1248(\mathrm{~m}), 1085(\mathrm{~m}), 883(\mathrm{~m}), 690(\mathrm{~m}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square$ $7.40-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.90$ $(\mathrm{m}, 2 \mathrm{H}), 3.90-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.36(\mathrm{~m}, 5 \mathrm{H})$, $1.16-0.98(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 136.66,130.82,129.42,128.65$, 127.86, 126.65, 76.78, 72.83, 68.39, 61.68, 41.95, 41.75, 37.64, 34.60, 18.21, 12.45.
(2S,4R,6R)-Tetrahydro-4-(triisopropylsilyloxy)-2-[2-(4-methoxybenzyloxy)ethyl]-6-(E)-styryl-2H-pyran (27).
 A solution of the alcohol ($165 \mathrm{mg}, 0.408 \mathrm{mmol}$) in THF (1.0 mL) was added to a suspension of $\mathrm{KOt}-\mathrm{Bu}(95.0 \mathrm{mg}, 0.846$ mmol, 2.0 equiv) in THF (3.0 mL) at $0^{\circ} \mathrm{C}$. After stirred at 22 ${ }^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was recooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{MPMCl}(85 \square \mathrm{~L}, 0.63$ mmol, 1.5 equiv) was added. The mixture was warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for an additional 24 h . The mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL) and water (5 mL). The mixture was extracted with EtOAc ($10 \mathrm{~mL} x \mathrm{3}$) and the combined organic layers were washed with brine (10 mL), dried, filtered, and concentrated to dryness. The residue was purified by silica gel chromatography ($15: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=$ $0.10)$ to afford MPM ether $27(160 \mathrm{mg}, 0.305 \mathrm{mmol}, 75 \%)$ as a colorless oil. IR (neat): 2943 (m), 2865 (m), 1612 (m), 1513 (m), 1248 (m), 1091 (m), 821 (m), $685(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 7.39 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.19$ (m, 5H), 6.89-6.83 (m, $2 \mathrm{H}), 6.57(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ and $4.43(\mathrm{ABq}, J=$ 11.7 Hz), 4.00-3.89 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65$ (ddd, $J=9.2,8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.53$ $(\mathrm{m}, 1 \mathrm{H}), 3.56(\mathrm{ddd}, J=9.2,5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{ddd}, J=11.7$, $11.7,11.7 \mathrm{~Hz}), 1.30(\mathrm{ddd}, J=11.7,11.7,11.7 \mathrm{~Hz}), 1.13-1.00(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square 138.46,136.88,130.80,129.75,128.65,127.78,126.65,115.71,75.91$, 75.67, 69.40, 46.24, 45.83, 26.01. HRMS Calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}: 524.3322$. Found: 524.3324 .

- Proof of Stereochemistry: The absolute stereochemical identity of products
obtained in this study have been determined by conversion of 4 a to known
compound $28 .{ }^{2}$ The stereochemistry of other compounds has been determined by
their conversion to 4 a.
(2S,4R,6R)-Tetrahydro-2-hydroxymethyl-4-(triisopropylsilyloxy)-6-[2-(4-methoxybenzyloxy)ethyl]-2H-pyran (28).

To a solution of olefin $27(20.2 \mathrm{mg}, 38.5 \square \mathrm{~mol})$ in THF (0.5 mL) were added water $(0.5 \mathrm{~mL}), \mathrm{NaIO}_{4}(120 \mathrm{mg}, 0.561 \mathrm{mmol}, 15$ equiv), and a solution of $\mathrm{OsO}_{4}(2.5 \mathrm{wt} \%$ in t-BuOH, 20.0 mg $1.97 \square \mathrm{~mol})$ in t - $\mathrm{BuOH}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $22{ }^{\circ} \mathrm{C}$ for 12 h . The mixture was diluted with water (3 mL) and extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (5 mL), dried, filtered, and concentrated to provide the crude aldehyde. A solution of NaBH_{4} (3.5 $\mathrm{mg}, 93 \square \mathrm{~mol})$ in methanol $(0.5 \mathrm{~mL})$ was added to a solution of the aldehyde in methanol $(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $22^{\circ} \mathrm{C}$ for 30 min , the methanol was evaporated and the residue was diluted with water (1 mL) and extracted with EtOAc (3 mL x 3). The combined extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated to dryness. Silica gel chromatography of the residue (Hex:EtOAc 4:1, $\mathrm{R}_{f}=0.10$) afforded alcohol $28(10.1 \mathrm{mg}, 22.3 \mathrm{mmol}, 58 \%)$ as a colorless oil. $[\square]^{25}{ }_{\mathrm{D}}-7.10^{\circ}(c 1.36$, CHCl_{3}) [lit. ${ }^{2}[\square]^{22}{ }_{\mathrm{D}}-7.7^{\circ}$ (c 1.32, CHCl_{3})]. IR (neat): 3458 (br), 2942 (s), 1514 (m), $1248(\mathrm{~m}), 1093(\mathrm{~m}), 883(\mathrm{~m}), 820(\mathrm{~m}), 681(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.25(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ and $4.41(\mathrm{ABq}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (dddd, $J=10.8,10.8,4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.38(\mathrm{~m}, 6 \mathrm{H}), 2.00-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.95(\mathrm{br}, 1 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.95(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \square 159.34,130.71,129.40,113.96,76.08,72.87,72.80,68.61,66.42,66.28$, 55.43, 42.20, 37.71, 36.37, 18.22, 12.47. HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$: 452.2958. Found: 452.2958.

General procedure for reductive ring-opening of pyran. A 2-neck 25 mL round bottom flask equipped with a Dewar condenser was cooled to $-78^{\circ} \mathrm{C}$. UHP ammonia (3 mL) was condensed into the flask. Sodium ($22.0 \mathrm{mg}, 0.957 \mathrm{mmol}$) was added under a stream of nitrogen; the ammonia solution immediately turns deep blue, stirring was continued until all of the sodium dissolved. Substrate $33(6.1 \mathrm{mg}, 18 \square \mathrm{~mol})$ was added by cannula as a solution in $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and $t-\mathrm{BuOH}(77.5 \mathrm{mg}, 1.05 \mathrm{mmol})$. The reaction was quenched after one minute by adding solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue color disappears; 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added and the ammonia was allowed to evaporate. The reaction was diluted with 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with 10 mL portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until no diol remained in the aqueous layer by TLC. The combined organic layers were dried over

[^1]MgSO_{4}, filtered, and the solvent removed in vacuo to deliver pure $34(3.5 \mathrm{mg}, 78 \%)$ as a clear colourless oil.

(2R,4S,6R)-2-Phenyl-6-(4-phenylbutyl)-1,3-dioxane-4-ethanol (29).

General procedure for reductive ring-opening of pyran was followed using $\mathbf{1 2}$ or $\mathbf{1 3}$ to yield a mixture of three products (E / Z isomers and over-reduction). It is imperative that a reaction time of one minute be employed to maximize the amount of desired product in the mixture: longer reaction times lead to a significant amount of reduction of the disubstituted olefin. This mixture was used without purification in the next step. A 25 mL flask was charged with the crude diol ($214 \mathrm{mg}, 0.921 \mathrm{mmol}$), benzaldehyde dimethylacetal ($317 \mathrm{mg}, 2.08$ mmol), and a catalytic amount of p-toluenesulfonic acid ($\sim 10 \mathrm{mg}$). The flask was sparged with N_{2} and benzene (8.0 mL) was added by syringe; the reaction was then allowed to stir for 1 h . The solvent was removed in vacuo and the reaction mixture was loaded directly onto a column of silica gel and eluted ($24: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}$) to deliver a mixture of three inseparable products ostensibly assigned to be E / Z isomers and overreduction at the disubstituted olefin site (7:2:1 E:Z:Saturated). The mixture was used without further purification in the next reaction (The mixture is inconsequential in the context of this formal synthesis as the three products coalesce to a single compound after the hydrogenation step).

9-BBN ($275 \mathrm{mg}, 1.13 \mathrm{mmol}$) was dissolved in THF (4.5 mL) and added by cannula to a 25 mL flask containing a solution of the mixture of benzylidene acetals (see above) ($270 \mathrm{mg}, 0.842 \mathrm{mmol}$) in THF (4.5 mL) at $22^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ before adding pH 7 buffer $(1.5 \mathrm{~mL}, 0.05 \mathrm{M})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}(1.5 \mathrm{~mL})$; the mixture was then allowed to warm to $22^{\circ} \mathrm{C}$ and stirred for an additional 12 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude mixture was purified by silica gel chromatography using gradient elution ($4: 1 \square 2: 1 \mathrm{Hex}^{\left.-\mathrm{Et}_{2} \mathrm{O}\right) \text { to deliver an }}$ inseparable mixture of three primary alcohols ($192 \mathrm{mg}, \mathrm{R}_{f}=0.2,67 \%$). The mixture of alcohols ($87.0 \mathrm{mg}, 0.257 \mathrm{mmol}$) was transferred to a 10 mL flask and dissolved in absolute $\mathrm{EtOH} .10 \% \mathrm{Pt}(\mathrm{C})(8 \mathrm{mg})$ was added and the flask was sparged with UHP_{2} and then equipped with a balloon of H_{2}. The mixture was stirred for 1 h at $22{ }^{\circ} \mathrm{C}$ and then filtered through celite with $\mathrm{Et}_{2} \mathrm{O}$ washings. The solvent was removed in vacuo to deliver pure 29 ($86 \mathrm{mg}, 0.25 \mathrm{mmol}, 98 \%$). IR (neat): 3415 (br), 3024 (w), 2924 (s), 2848 (m), 1451 (m), 1344 (m), 1130 (m), 1048 (m), 1023 (s), 752 (m), 702 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \square 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{dddd}, J=11.1,8.4,3.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.63(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{br}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.43(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\square 142.71,138.78,128.81,128.41,128.38,126.16,125.80,100.83,76.96,60.55$, 38.21, 37.01, 35.97, 35.84, 31.54, 24.83. HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}$: 363.1936. Found: 363.1935.

(2R,4R,6R)-2-Phenyl-6-(4-phenylbutyl)-1,3-dioxane-4-acetaldehyde.

PCC ($102 \mathrm{mg}, 0.473 \mathrm{mmol}$), NaOAc ($9.6 \mathrm{mg}, 0.117 \mathrm{mmol}$), powdered flame-dried $4 \AA$ molecular sieves (120 mg) and celite (35 mg) were combined in a 25 mL flask and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$. Alcohol 29 is added quantitatively by cannula using 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was allowed to stir for 2 h at $22{ }^{\circ} \mathrm{C}$ at which point $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added, to precipitate chromium salts, and the mixture was stirred for an additional 10 min . The resulting mixture was filtered through a column (1 " W) containing one inch of celite (top layer) and one inch of silica gel (bottom layer). The aldehyde obtained was of sufficient purity (as judged by ${ }^{1} \mathrm{H}$ NMR analysis) for subsequent use. IR (neat): 3018 (w), 2924 (s), 2855 (m), 1728 (s), 1451 (m), 1344 (m), 1123 (m), 1029 (s$), 759$ (m), 696 (s$).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 9.86(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.28-7.26 (m, 2H), 7.18-7.16 (m, 3H), $5.60(\mathrm{~s}, 1 \mathrm{H}), 4.41-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}$, $1 \mathrm{H}), 2.84-2.78$ (ddd, $J=16.9,7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.42(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 200.64,142.67,138.49,128.89,128.54,128.42,128.35$, $126.17,125.82,100.83,76.77,72.04,49.59,36.81,35.96,35.78,31.53,24.80$.
($\square S, 2 R, 4 S, 6 R$)-2-Phenyl-6-(4-phenylbutyl)- \square-2-propenyl-1,3-dioxane-4-ethanol (30). P-(-)-Methoxy isopinocampheylborane $(8.0 \mathrm{mg}, 25.3 \square \mathrm{~mol})$ was dissolved in 0.25 mL of $\mathrm{Et}_{2} \mathrm{O}$ and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of allyl magnesium bromide ($21.3 \square \mathrm{~L}, 0.95 \mathrm{M}, 20.2$ $\square \mathrm{mol}$) was added by syringe and the resulting solution was stirred for 1 h . The solution was then cooled to $-78^{\circ} \mathrm{C}$ and the aldehyde ($3.0 \mathrm{mg}, 8.9 \square \mathrm{~mol}$) was added dropwise by syringe. The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 2 h and then warmed to $0^{\circ} \mathrm{C}$. One drop each of $30 \% \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$ and 1 N NaOH are added and the reaction was stirred at $22{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was further purified by silica gel chromatography (9:1 hex: $\mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.2$) to deliver 31 as a clear colourless oil $(2.8 \mathrm{mg}, 82 \%)$ as a $3.5: 1$
mixture of diastereomers. This compound was identical to that already reported ${ }^{3}$ as judged by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.

4-Benzyloxy-3,5-dimethyl-2-(E)-styryl-6-vinyltetrahydro-2H-pyran (33).

General procedure A was followed with substrate 32 using chloride catalyst 1a and general procedure B was followed using iodide catalyst 1b to afford a colorless oil after silica gel chromatography (19:1 4:1 Hex: $\mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.3$). IR (neat): 3062 (w), 3024 (w), 2974 (w), 2886 (m), 2836 (w), 1495 (w), 1451 (m), 1357 (w), 1092 (s), 1080 (m), 960 (s), 752 (s), 683 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, 6.67 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, $J=16.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.90 (ddd, $J=17.3,10.7,5.1$
$\mathrm{Hz}, 1 \mathrm{H}), 5.38$ (ddd, $J=17.3$,
$1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.20 (ddd, J
$=10.7,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (s, 2H), 4.17-4.15 (m, 1H), 4.05-4.03 (m, 1H), 3.75 (dd, J $=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.24-2.13 (m, 2H), 1.03 (d, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.3$
 $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $] 139.00,137.29,137.19,130.11,128.89,128.63,128.51,127.56,127.48$, $127.39,126.53,115.22,80.44,80.07,79.45,69.26,37.09,36.57,9.60,9.37$. HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}: 348.2089$. Found: No molecular ion detected.
The ee of $\mathbf{3 4}$ was determined by HPLC of diol $\mathbf{3 5}$, which is generated from $\mathbf{3 4}$ as described below.

(2S,3R,4S,5S)-4,6-Dimethyl-9-phenylnona-1,7-dien-3,5-diol (34).

General procedure for reductive ring-opening of pyrans was followed with $\mathbf{3 3}$ to deliver pure $\mathbf{3 4}$ as a clear colourless oil. IR (neat): 3345 (br), 2968 (m), 2905 (s), 1451 (s), 1111 (w), 973 (s), 916 (m), 746 (m), $696(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square 7.36-7.26 (m, 2H), 7.24-7.15 (m, 3H), 5.91 (ddd, $J=17.1,10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (ddd,

[^2]$J=15.3,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=17.2,1.1,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19$ (ddd, $J=10.6,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.39$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.06$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 140.62$, 138.90, 132.45, 131.80, 128.64, 128.57, 126.23, 115.18, 78.77, 74.24, 40.39, 39.52, 39.31, 17.71, 11.98. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}-3 \mathrm{H}]: 257.1543$. Found: [M-3H] 257.1542.

Table S1: Recycling studies using Chloride Catalyst 1a

Cycle	time (h); conv (\%)	yield (\%)	$E: Z$	ee (\%)	rec. cat. yield (\%)
Cycle 1	1; >98	80	>98:2	94	90
Cycle 2	$1 ;>98$	75	>98:2	93	85
Cycle 3	$1 ;>98$	78	>98:2	94	88
Cycle 4	$1.5 ;>98$	78	>98:2	94	80
Cycle 5	1.5; >98	72	>98:2	94	67

Table S2: Optimization of Allylation Reaction of Aldehyde 30.5

MX_{2}	Temp	Solvent	d.r (30:30b)
MgBr_{2}	$0^{\circ} \mathrm{C}->\mathrm{rt}$	$\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$	$1.1: 1$
MgBr_{2}	$-78^{\circ} \mathrm{C}$	THF/Et $_{2} \mathrm{O}$	$1.3: 1$
$(\mathrm{R}, \mathrm{R})-\mathbf{3 5}$	$-10^{\circ} \mathrm{C}$	PhMe	$1: 5$
$(\mathrm{~S}, \mathrm{~S})-\mathbf{3 5}$	$-10^{\circ} \mathrm{C}$	PhMe^{2}	$1: 1$
$(\mathrm{~S}, \mathrm{~S})-\mathbf{3 6}$	$-18^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1: 9$
$(\mathrm{R}, \mathrm{R})-\mathbf{3 6}$	$-18^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1: 1.2$
$(+) \mathrm{B}(\mathrm{lpc})_{2}$	$-78^{\circ} \mathrm{C}$	$\mathrm{Et}_{2} \mathrm{O}$	$1: 2.5$
$(-) \mathrm{B}(\mathrm{lpc})_{2}$	$-78^{\circ} \mathrm{C}$	$\mathrm{Et}_{2} \mathrm{O}$	$3.5: 1$

30

36

Preparation of reagents $\mathbf{3 5}^{4}$ and $\mathbf{3 6}^{5}$ were completed as already reported with the exception that $\mathbf{3 6}$ was purified in a glovebox filled with N_{2}.

[^3]
General experimental for X-Ray analysis

Data was collected using a Bruker APEX CCD (charged coupled deviced) based diffractometer equipped with an LT-2 low temperature apparatus operating at 193 K . A suitable crystal was chosen and mounted on a glass fiber using grease. Data was measured using omega scans of 0.3° per frame for 30 seconds, such that a hemisphere was collected. A total of 1305 frames were collected with a maximum resolution of 0.90 \AA A. Cell parameters were retrieved using SMART ${ }^{6}$ software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software ${ }^{7}$, which corrects for Lp and decay. Absorption corrections were applied using SADABS supplied by George Sheldrick. The structures ware solved by the direct method using the SHELXS-97 ${ }^{8}$ program and refined by least squares method on F^{2}, SHELXL-979, incorporated in SHELXTL-PC V 6.10 ${ }^{10}$.

All non-hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model. The crystal used for the diffraction study showed no decomposition during data collection. All drawings are done at 30% ellipsoids.

X-Ray Data for Iodide Complex 1b

Table 1. Crystal data and structure refinement for DG01t

Identification code	$d g 01 \mathrm{t}$	
Empirical formula	C 48 H 43 I N 2 O 2 Ru	
Formula weight	907.81	
Temperature	$193(2) \mathrm{K}$	
Wavelength	$0.71073 \approx$	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	$\mathrm{a}=11.6174(7) \approx$	$\mathrm{a}=90 \infty$.

[^4]| | $\mathrm{b}=9.8883(6) \approx$ | $\mathrm{b}=92.5470(10) \infty$. |
| :--- | :--- | :--- |
| | $\mathrm{c}=17.5221(11) \approx$ | $\mathrm{g}=90 \infty$. |

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right.$) for DG01t.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Ru}(1)$	$2793(1)$	$6397(1)$	$7634(1)$	$23(1)$
$\mathrm{I}(2)$	$4673(1)$	$4898(1)$	$7879(1)$	$36(1)$
$\mathrm{O}(4)$	$4003(1)$	$8151(2)$	$7877(1)$	$26(1)$
$\mathrm{C}(5)$	$-142(2)$	$8112(2)$	$6787(1)$	$30(1)$
$\mathrm{C}(6)$	$2394(2)$	$4870(3)$	$6100(1)$	$24(1)$
$\mathrm{C}(7)$	$2421(2)$	$6433(3)$	$5042(1)$	$24(1)$
$\mathrm{C}(8)$	$776(2)$	$6521(2)$	$5948(1)$	$24(1)$
$\mathrm{C}(54)$	$2430(2)$	$6792(2)$	$8618(1)$	$29(1)$
$\mathrm{C}(9)$	$-299(2)$	$6333(2)$	$5543(1)$	$24(1)$

$\mathrm{C}(10)$	$1867(2)$	$5894(2)$	$5691(1)$	$24(1)$
$\mathrm{C}(11)$	$-437(2)$	$5444(2)$	$4906(1)$	$28(1)$
$\mathrm{C}(12)$	$4046(2)$	$4906(3)$	$5314(1)$	$32(1)$
$\mathrm{C}(13)$	$5788(2)$	$9894(3)$	$8689(1)$	$29(1)$
$\mathrm{C}(14)$	$3955(2)$	$8510(2)$	$8645(1)$	$25(1)$
$\mathrm{C}(15)$	$-2461(2)$	$5945(3)$	$4783(2)$	$39(1)$
$\mathrm{C}(16)$	$-272(2)$	$4929(3)$	$8708(1)$	$38(1)$
$\mathrm{C}(17)$	$3587(2)$	$7533(3)$	$3813(1)$	$40(1)$
$\mathrm{C}(18)$	$1917(2)$	$7456(2)$	$4573(1)$	$30(1)$
$\mathrm{C}(19)$	$4092(2)$	$6546(3)$	$4244(1)$	$35(1)$
$\mathrm{C}(20)$	$2914(2)$	$8149(3)$	$9788(1)$	$33(1)$
$\mathrm{C}(21)$	$3490(2)$	$4356(2)$	$5911(1)$	$30(1)$
$\mathrm{C}(22)$	$3076(2)$	$7838(2)$	$9018(1)$	$27(1)$
$\mathrm{C}(23)$	$-1293(2)$	$7043(2)$	$5775(1)$	$29(1)$
$\mathrm{C}(24)$	$-1173(2)$	$7964(3)$	$6397(1)$	$33(1)$
$\mathrm{C}(25)$	$3535(2)$	$5944(2)$	$4863(1)$	$28(1)$
$\mathrm{N}(2)$	$1109(2)$	$4033(2)$	$7836(1)$	$35(1)$
$\mathrm{C}(27)$	$15(2)$	$4631(3)$	$10074(2)$	$45(1)$
$\mathrm{C}(28)$	$756(2)$	$4236(3)$	$8607(1)$	$33(1)$
$\mathrm{C}(29)$	$858(2)$	$7378(2)$	$6578(1)$	$25(1)$
$\mathrm{C}(30)$	$4722(2)$	$9385(2)$	$9028(1)$	$28(1)$
$\mathrm{C}(31)$	$2479(2)$	$7999(3)$	$3974(1)$	$37(1)$
$\mathrm{C}(32)$	$6596(2)$	$8958(3)$	$8443(1)$	$36(1)$
$\mathrm{C}(33)$	$-1492(2)$	$5259(2)$	$4541(1)$	$35(1)$
$\mathrm{C}(34)$	$4291(2)$	$9173(2)$	$7300(1)$	$29(1)$
$\mathrm{C}(35)$	$-2367(2)$	$6824(3)$	$5386(1)$	$36(1)$
$\mathrm{C}(36)$	$1402(2)$	$3689(3)$	$9215(1)$	$38(1)$
$\mathrm{C}(37)$	$3407(2)$	$10294(3)$	$7286(1)$	$40(1)$
$\mathrm{C}(38)$	$5999(2)$	$11265(3)$	$8600(1)$	$41(1)$
$\mathrm{C}(39)$	$6966(3)$	$11693(3)$	$8239(2)$	$52(1)$
$\mathrm{C}(40)$	$7567(2)$	$9402(3)$	$8090(2)$	$46(1)$
$\mathrm{C}(41)$	$1009(2)$	$3915(3)$	$9952(1)$	$44(1)$
$\mathrm{C}(42)$	$3601(2)$	$9109(3)$	$10159(1)$	$37(1)$
$\mathrm{C}(43)$	$9504(2)$	$9703(3)$	$9789(1)$	$34(1)$
C(45)	$70763(4)$	$7984(2)$	$53(1)$	
			$9454(2)$	$43(1)$

$\mathrm{O}(1)$	$1855(1)$	$7638(2)$	$6957(1)$	$27(1)$
$\mathrm{N}(1)$	$1832(2)$	$4257(2)$	$6723(1)$	$26(1)$
$\mathrm{C}(55)$	$1818(2)$	$4811(2)$	$7433(1)$	$26(1)$
$\mathrm{C}(50)$	$4382(2)$	$8396(3)$	$6556(1)$	$36(1)$
$\mathrm{C}(49)$	$-373(3)$	$4868(5)$	$10875(2)$	$66(1)$
$\mathrm{C}(52)$	$991(3)$	$3183(3)$	$6592(1)$	$46(1)$
$\mathrm{C}(51)$	$652(2)$	$2866(3)$	$7403(1)$	$41(1)$
$\mathrm{C}(48)$	$2506(3)$	$2924(4)$	$9116(2)$	$52(1)$
$\mathrm{C}(47)$	$-996(3)$	$5485(4)$	$8040(2)$	$57(1)$

Table 3. Bond lengths [\approx] and angles [∞] for DG01t.

$\mathrm{Ru}(1)-\mathrm{C}(54)$	$1.835(2)$
$\mathrm{Ru}(1)-\mathrm{C}(55)$	$1.958(2)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$1.9974(15)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.2603(15)$
$\mathrm{Ru}(1)-\mathrm{I}(2)$	$2.6583(2)$
$\mathrm{O}(4)-\mathrm{C}(14)$	$1.395(2)$
$\mathrm{O}(4)-\mathrm{C}(34)$	$1.479(3)$
$\mathrm{C}(5)-\mathrm{C}(24)$	$1.360(3)$
$\mathrm{C}(5)-\mathrm{C}(29)$	$1.432(3)$
$\mathrm{C}(5)-\mathrm{H}(5)$	1.9500
$\mathrm{C}(6)-\mathrm{C}(10)$	$1.424(3)$
$\mathrm{C}(6)-\mathrm{C}(21)$	$1.432(3)$
$\mathrm{C}(6)-\mathrm{N}(1)$	$1.414(3)$
$\mathrm{C}(7)-\mathrm{C}(18)$	$1.429(3)$
$\mathrm{C}(7)-\mathrm{C}(25)$	$1.434(3)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.392(3)$
$\mathrm{C}(8)-\mathrm{C}(29)$	$1.421(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.498(3)$
$\mathrm{C}(8)-\mathrm{C}(10)$	$1.441(3)$
$\mathrm{C}(54)-\mathrm{C}(22)$	0.9500
$\mathrm{C}(54)-\mathrm{H}(54)$	$1.423(3)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.427(3)$
$\mathrm{C}(9)-\mathrm{C}(23)$	$1.370(3)$
$\mathrm{C}(11)-\mathrm{C}(33)$	

$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(21)$	$1.366(3)$
$\mathrm{C}(12)-\mathrm{C}(25)$	$1.409(3)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(38)$	$1.388(4)$
$\mathrm{C}(13)-\mathrm{C}(32)$	$1.400(3)$
$\mathrm{C}(13)-\mathrm{C}(30)$	$1.485(3)$
$\mathrm{C}(14)-\mathrm{C}(30)$	$1.392(3)$
$\mathrm{C}(14)-\mathrm{C}(22)$	$1.404(3)$
$\mathrm{C}(15)-\mathrm{C}(35)$	$1.369(4)$
$\mathrm{C}(15)-\mathrm{C}(33)$	$1.396(4)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(28)$	$1.395(4)$
$\mathrm{C}(16)-\mathrm{C}(45)$	$1.399(3)$
$\mathrm{C}(16)-\mathrm{C}(47)$	$1.514(4)$
$\mathrm{C}(17)-\mathrm{C}(19)$	$1.352(4)$
$\mathrm{C}(17)-\mathrm{C}(31)$	$1.407(4)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{C}(31)$	$1.370(3)$
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(19)-\mathrm{C}(25)$	$1.419(3)$
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(20)-\mathrm{C}(42)$	$1.385(4)$
$\mathrm{C}(20)-\mathrm{C}(22)$	$1.384(4)$
$\mathrm{C}(20)-\mathrm{H}(20)$	$1.406(3)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(35)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.412(3)$
$\mathrm{C}(24)-\mathrm{H}(24)$	$1.422(3)$
$\mathrm{N}(2)-\mathrm{C}(55)$	0.9500
$\mathrm{~N}(2)-\mathrm{C}(28)$	C

$\mathrm{C}(29)$-O(1)	1.334(2)
$\mathrm{C}(30)-\mathrm{C}(43)$	1.404(3)
$\mathrm{C}(31)-\mathrm{H}(31)$	0.9500
$\mathrm{C}(32)-\mathrm{C}(40)$	1.381(4)
$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(34)-\mathrm{C}(37)$	1.511(4)
$\mathrm{C}(34)-\mathrm{C}(50)$	1.521(3)
$\mathrm{C}(34)-\mathrm{H}(34)$	1.0000
$\mathrm{C}(35)-\mathrm{H}(35)$	0.9500
$\mathrm{C}(36)-\mathrm{C}(41)$	1.407(3)
$\mathrm{C}(36)-\mathrm{C}(48)$	1.505(4)
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	0.9800
$\mathrm{C}(38)-\mathrm{C}(39)$	1.379(4)
$\mathrm{C}(38)-\mathrm{H}(38)$	0.9500
$\mathrm{C}(39)$-C(44)	1.381(5)
$\mathrm{C}(39)-\mathrm{H}(39)$	0.9500
$\mathrm{C}(40)-\mathrm{C}(44)$	1.376(5)
$\mathrm{C}(40)-\mathrm{H}(40)$	0.9500
$\mathrm{C}(41)-\mathrm{H}(41)$	0.9500
$\mathrm{C}(42)-\mathrm{C}(43)$	1.388(3)
$\mathrm{C}(42)-\mathrm{H}(42)$	0.9500
$\mathrm{C}(43)-\mathrm{H}(43)$	0.9500
$\mathrm{C}(44)-\mathrm{H}(44)$	0.9500
$\mathrm{C}(45)-\mathrm{H}(45)$	0.9500
$\mathrm{N}(1)-\mathrm{C}(55)$	1.360(3)
$\mathrm{N}(1)-\mathrm{C}(52)$	1.454(3)
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	0.9800
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	0.9800
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	0.9800
$\mathrm{C}(52)-\mathrm{C}(51)$	1.523(3)

$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	0.9900
$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	0.9900
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9900
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9900
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	0.9800
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{C}(55)$	$100.60(9)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$106.61(8)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$95.10(7)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$80.04(8)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$176.85(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$87.65(6)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{I}(2)$	$100.84(7)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{I}(2)$	$92.70(6)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{I}(2)$	$149.48(4)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{I}(2)$	$84.15(4)$
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(34)$	$120.37(16)$
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{Ru}(1)$	$109.03(12)$
$\mathrm{C}(34)-\mathrm{O}(4)-\mathrm{Ru}(1)$	$123.61(12)$
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{C}(29)$	$121.5(2)$
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{H}(5)$	119.2
$\mathrm{C}(29)-\mathrm{C}(5)-\mathrm{H}(5)$	119.2
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(21)$	$121.77(19)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{N}(1)$	$120.23(18)$
$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{N}(1)$	$118.0(2)$
$\mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(25)$	$118.04(19)$
$\mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(10)$	$122.52(19)$
$\mathrm{C}(25)-\mathrm{C}(7)-\mathrm{C}(10)$	$119.4(2)$
$\mathrm{C}(29)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.26(18)$
$\mathrm{C}(29)-\mathrm{C}(8)-\mathrm{C}(10)$	$117.45(18)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	$122.17(18)$

$\mathrm{C}(22)-\mathrm{C}(54)-\mathrm{Ru}(1)$	$118.21(15)$
$\mathrm{C}(22)-\mathrm{C}(54)-\mathrm{H}(54)$	120.9
$\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{H}(54)$	120.9
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	$122.51(19)$
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(23)$	$117.67(19)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)$	$119.82(19)$
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(7)$	$118.89(19)$
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(8)$	$120.92(18)$
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(8)$	$120.02(19)$
$\mathrm{C}(33)-\mathrm{C}(11)-\mathrm{C}(9)$	$121.0(2)$
$\mathrm{C}(33)-\mathrm{C}(11)-\mathrm{H}(11)$	119.5
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11)$	119.5
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(25)$	$121.2(2)$
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{H}(12)$	119.4
$\mathrm{C}(25)-\mathrm{C}(12)-\mathrm{H}(12)$	119.4
$\mathrm{C}(38)-\mathrm{C}(13)-\mathrm{C}(32)$	$119.1(2)$
$\mathrm{C}(38)-\mathrm{C}(13)-\mathrm{C}(30)$	$122.1(2)$
$\mathrm{C}(32)-\mathrm{C}(13)-\mathrm{C}(30)$	$118.8(2)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(30)$	$124.83(18)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(22)$	$112.89(18)$
$\mathrm{C}(30)-\mathrm{C}(14)-\mathrm{C}(22)$	$122.21(18)$
$\mathrm{C}(35)-\mathrm{C}(15)-\mathrm{C}(33)$	$120.4(2)$
$\mathrm{C}(35)-\mathrm{C}(15)-\mathrm{H}(15)$	119.8
$\mathrm{C}(33)-\mathrm{C}(15)-\mathrm{H}(15)$	119.8
$\mathrm{C}(28)-\mathrm{C}(16)-\mathrm{C}(45)$	$118.2(2)$
$\mathrm{C}(28)-\mathrm{C}(16)-\mathrm{C}(47)$	$122.0(2)$
$\mathrm{C}(45)-\mathrm{C}(16)-\mathrm{C}(47)$	$119.8(2)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(31)$	$120.2(2)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9
$\mathrm{C}(31)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9
$\mathrm{C}(31)-\mathrm{C}(18)-\mathrm{C}(7)$	$121.8(2)$
$\mathrm{C}(31)-\mathrm{C}(18)-\mathrm{H}(18)$	119.1
$\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{H}(18)$	119.1
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(25)$	$121.9(2)$
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19)$	119.1
$\mathrm{C}(25)-\mathrm{C}(19)-\mathrm{H}(19)$	119.1
C	

$\mathrm{C}(42)-\mathrm{C}(20)-\mathrm{C}(22)$	$120.1(2)$
$\mathrm{C}(42)-\mathrm{C}(20)-\mathrm{H}(20)$	119.9
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{H}(20)$	119.9
$\mathrm{C}(12)-\mathrm{C}(21)-\mathrm{C}(6)$	$119.6(2)$
$\mathrm{C}(12)-\mathrm{C}(21)-\mathrm{H}(21)$	120.2
$\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{H}(21)$	120.2
$\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{C}(20)$	$118.3(2)$
$\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{C}(54)$	$119.18(18)$
$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{C}(54)$	$122.4(2)$
$\mathrm{C}(35)-\mathrm{C}(23)-\mathrm{C}(24)$	$121.6(2)$
$\mathrm{C}(35)-\mathrm{C}(23)-\mathrm{C}(9)$	$119.7(2)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(9)$	$118.75(19)$
$\mathrm{C}(5)-\mathrm{C}(24)-\mathrm{C}(23)$	$120.6(2)$
$\mathrm{C}(5)-\mathrm{C}(24)-\mathrm{H}(24)$	119.7
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	119.7
$\mathrm{C}(12)-\mathrm{C}(25)-\mathrm{C}(19)$	$122.6(2)$
$\mathrm{C}(12)-\mathrm{C}(25)-\mathrm{C}(7)$	$119.1(2)$
$\mathrm{C}(19)-\mathrm{C}(25)-\mathrm{C}(7)$	$118.3(2)$
$\mathrm{C}(55)-\mathrm{N}(2)-\mathrm{C}(28)$	$128.0(2)$
$\mathrm{C}(55)-\mathrm{N}(2)-\mathrm{C}(51)$	$113.14(18)$
$\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(51)$	$118.86(19)$
$\mathrm{C}(41)-\mathrm{C}(27)-\mathrm{C}(45)$	$118.9(2)$
$\mathrm{C}(41)-\mathrm{C}(27)-\mathrm{C}(49)$	$120.6(3)$
$\mathrm{C}(45)-\mathrm{C}(27)-\mathrm{C}(49)$	$120.5(3)$
$\mathrm{C}(36)-\mathrm{C}(28)-\mathrm{C}(16)$	$122.1(2)$
$\mathrm{C}(36)-\mathrm{C}(28)-\mathrm{N}(2)$	$119.9(2)$
$\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{N}(2)$	$117.9(2)$
$\mathrm{O}(1)-\mathrm{C}(29)-\mathrm{C}(8)$	$122.69(18)$
$\mathrm{O}(1)-\mathrm{C}(29)-\mathrm{C}(5)$	$118.08(19)$
$\mathrm{C}(8)-\mathrm{C}(29)-\mathrm{C}(5)$	$118.97(19)$
$\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(43)$	$117.3(2)$
$\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(13)$	$123.01(19)$
$\mathrm{C}(43)-\mathrm{C}(30)-\mathrm{C}(13)$	$119.5(2)$
$\mathrm{C}(18)-\mathrm{C}(31)-\mathrm{C}(17)$	$119.8(2)$
$\mathrm{C}(18)-\mathrm{C}(31)-\mathrm{H}(31)$	120.1
$\mathrm{C}(17)-\mathrm{C}(31)-\mathrm{H}(31)$	120.1
l	

$\mathrm{C}(40)-\mathrm{C}(32)-\mathrm{C}(13)$	$120.0(3)$
$\mathrm{C}(40)-\mathrm{C}(32)-\mathrm{H}(32)$	120.0
$\mathrm{C}(13)-\mathrm{C}(32)-\mathrm{H}(32)$	120.0
$\mathrm{C}(11)-\mathrm{C}(33)-\mathrm{C}(15)$	$120.7(2)$
$\mathrm{C}(11)-\mathrm{C}(33)-\mathrm{H}(33)$	119.7
$\mathrm{C}(15)-\mathrm{C}(33)-\mathrm{H}(33)$	119.7
$\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(37)$	$109.76(18)$
$\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(50)$	$105.51(18)$
$\mathrm{C}(37)-\mathrm{C}(34)-\mathrm{C}(50)$	$115.5(2)$
$\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{H}(34)$	108.6
$\mathrm{C}(37)-\mathrm{C}(34)-\mathrm{H}(34)$	108.6
$\mathrm{C}(50)-\mathrm{C}(34)-\mathrm{H}(34)$	108.6
$\mathrm{C}(15)-\mathrm{C}(35)-\mathrm{C}(23)$	$120.6(2)$
$\mathrm{C}(15)-\mathrm{C}(35)-\mathrm{H}(35)$	119.7
$\mathrm{C}(23)-\mathrm{C}(35)-\mathrm{H}(35)$	119.7
$\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(41)$	$117.2(2)$
$\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(48)$	$122.9(2)$
$\mathrm{C}(41)-\mathrm{C}(36)-\mathrm{C}(48)$	$119.9(2)$
$\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.5
$\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5
$\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(37 \mathrm{~B})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(13)$	$120.2(3)$
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{H}(38)$	119.9
$\mathrm{C}(13)-\mathrm{C}(38)-\mathrm{H}(38)$	119.9
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(44)$	$120.3(3)$
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{H}(39)$	119.9
$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{H}(39)$	119.9
$\mathrm{C}(44)-\mathrm{C}(40)-\mathrm{C}(32)$	$120.2(3)$
$\mathrm{C}(44)-\mathrm{C}(40)-\mathrm{H}(40)$	119.9
$\mathrm{C}(32)-\mathrm{C}(40)-\mathrm{H}(40)$	119.9
$\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{C}(36)$	$122.1(3)$
$\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{H}(41)$	118.9
$\mathrm{C}(36)-\mathrm{C}(41)-\mathrm{H}(41)$	118.9
C	

$\mathrm{C}(20)-\mathrm{C}(42)-\mathrm{C}(43)$	$120.2(2)$
$\mathrm{C}(20)-\mathrm{C}(42)-\mathrm{H}(42)$	119.9
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{H}(42)$	119.9
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(30)$	$121.4(2)$
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{H}(43)$	119.3
$\mathrm{C}(30)-\mathrm{C}(43)-\mathrm{H}(43)$	119.3
$\mathrm{C}(40)-\mathrm{C}(44)-\mathrm{C}(39)$	$120.1(3)$
$\mathrm{C}(40)-\mathrm{C}(44)-\mathrm{H}(44)$	120.0
$\mathrm{C}(39)-\mathrm{C}(44)-\mathrm{H}(44)$	120.0
$\mathrm{C}(27)-\mathrm{C}(45)-\mathrm{C}(16)$	$121.4(3)$
$\mathrm{C}(27)-\mathrm{C}(45)-\mathrm{H}(45)$	119.3
$\mathrm{C}(16)-\mathrm{C}(45)-\mathrm{H}(45)$	119.3
$\mathrm{C}(29)-\mathrm{O}(1)-\mathrm{Ru}(1)$	$128.02(13)$
$\mathrm{C}(55)-\mathrm{N}(1)-\mathrm{C}(6)$	$123.47(19)$
$\mathrm{C}(55)-\mathrm{N}(1)-\mathrm{C}(52)$	$113.76(18)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(52)$	$121.01(18)$
$\mathrm{N}(2)-\mathrm{C}(55)-\mathrm{N}(1)$	$106.32(19)$
$\mathrm{N}(2)-\mathrm{C}(55)-\mathrm{Ru}(1)$	$136.44(16)$
$\mathrm{N}(1)-\mathrm{C}(55)-\mathrm{Ru}(1)$	$117.20(15)$
$\mathrm{C}(34)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	109.5
$\mathrm{C}(34)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5
$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5
$\mathrm{C}(34)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5
$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5
$\mathrm{H}(50 \mathrm{~B})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5
$\mathrm{C}(27)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	109.5
$\mathrm{C}(27)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.5
$\mathrm{H}(49 \mathrm{~A})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.5
$\mathrm{C}(27)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5
$\mathrm{H}(49 \mathrm{~A})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5
$\mathrm{H}(49 \mathrm{~B})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5
$\mathrm{~N}(1)-\mathrm{C}(52)-\mathrm{C}(51)$	$101.74(19)$
$\mathrm{N}(1)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	111.4
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	111.4
$\mathrm{~N}(1)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	111.4
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	111.4
l	

```
H(52A)-C(52)-H(52B) 109.3
N(2)-C(51)-C(52) 102.58(19)
N(2)-C(51)-H(51A) 111.3
C(52)-C(51)-H(51A) 111.3
N(2)-C(51)-H(51B) 111.3
C(52)-C(51)-H(51B) 111.3
H(51A)-C(51)-H(51B) 109.2
C(36)-C(48)-H(48A) 109.5
C(36)-C(48)-H(48B) 109.5
H(48A)-C(48)-H(48B) 109.5
C(36)-C(48)-H(48C) 109.5
H(48A)-C(48)-H(48C) 109.5
H(48B)-C(48)-H(48C) 109.5
C(16)-C(47)-H(47A) 109.5
C(16)-C(47)-H(47B) 109.5
H(47A)-C(47)-H(47B) 109.5
C(16)-C(47)-H(47C) 109.5
H(47A)-C(47)-H(47C) 109.5
H(47B)-C(47)-H(47C) 109.5
```

Table 4. Anisotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$ for DG01t. The anisotropic displacement factor exponent takes the form: - $\mathbf{2 p}^{\mathbf{2}}\left[h^{\mathbf{2}} \mathbf{a}^{* 2} \mathbf{U}^{11}+\ldots+2\right.$ h k a* $\mathbf{b}^{*} \mathbf{U}^{\mathbf{1 2}}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Ru}(1)$	$24(1)$	$25(1)$	$19(1)$	$0(1)$	$0(1)$	$-2(1)$
$\mathrm{I}(2)$	$33(1)$	$39(1)$	$35(1)$	$2(1)$	$-4(1)$	$7(1)$
$\mathrm{O}(4)$	$32(1)$	$29(1)$	$17(1)$	$0(1)$	$0(1)$	$-4(1)$
$\mathrm{C}(5)$	$33(1)$	$33(1)$	$25(1)$	$-6(1)$	$4(1)$	$4(1)$
$\mathrm{C}(6)$	$25(1)$	$26(1)$	$22(1)$	$-3(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(7)$	$22(1)$	$26(1)$	$23(1)$	$-6(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(8)$	$23(1)$	$27(1)$	$21(1)$	$1(1)$	$2(1)$	$1(1)$
$\mathrm{C}(54)$	$28(1)$	$34(1)$	$24(1)$	$1(1)$	$3(1)$	$-5(1)$
$\mathrm{C}(9)$	$23(1)$	$25(1)$	$23(1)$	$2(1)$	$-1(1)$	$1(1)$

$\mathrm{C}(10)$	$23(1)$	$26(1)$	$22(1)$	$-6(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(11)$	$30(1)$	$28(1)$	$25(1)$	$0(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(12)$	$25(1)$	$39(1)$	$33(1)$	$-4(1)$	$3(1)$	$7(1)$
$\mathrm{C}(13)$	$29(1)$	$37(1)$	$22(1)$	$-4(1)$	$-5(1)$	$-6(1)$
$\mathrm{C}(14)$	$26(1)$	$30(1)$	$18(1)$	$-3(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(15)$	$28(1)$	$49(2)$	$39(1)$	$4(1)$	$-13(1)$	$-2(1)$
$\mathrm{C}(16)$	$35(1)$	$41(1)$	$38(1)$	$6(1)$	$4(1)$	$-7(1)$
$\mathrm{C}(17)$	$40(1)$	$50(2)$	$30(1)$	$3(1)$	$11(1)$	$-8(1)$
$\mathrm{C}(18)$	$28(1)$	$33(1)$	$28(1)$	$1(1)$	$4(1)$	$2(1)$
$\mathrm{C}(19)$	$31(1)$	$43(1)$	$32(1)$	$-3(1)$	$9(1)$	$-2(1)$
$\mathrm{C}(20)$	$32(1)$	$46(2)$	$20(1)$	$-2(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(21)$	$30(1)$	$29(1)$	$31(1)$	$-3(1)$	$-2(1)$	$6(1)$
$\mathrm{C}(22)$	$28(1)$	$32(1)$	$21(1)$	$-2(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(23)$	$24(1)$	$36(1)$	$27(1)$	$1(1)$	$1(1)$	$2(1)$
$\mathrm{C}(24)$	$28(1)$	$40(1)$	$30(1)$	$-5(1)$	$3(1)$	$9(1)$
$\mathrm{C}(25)$	$23(1)$	$34(1)$	$28(1)$	$-6(1)$	$1(1)$	$-1(1)$
$\mathrm{N}(2)$	$42(1)$	$34(1)$	$29(1)$	$-1(1)$	$5(1)$	$-13(1)$
$\mathrm{C}(27)$	$41(1)$	$61(2)$	$33(1)$	$-6(1)$	$6(1)$	$-13(1)$
$\mathrm{C}(28)$	$36(1)$	$34(1)$	$29(1)$	$2(1)$	$5(1)$	$-10(1)$
$\mathrm{C}(29)$	$25(1)$	$26(1)$	$24(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(30)$	$27(1)$	$30(1)$	$26(1)$	$-1(1)$	$-3(1)$	$-1(1)$
$\mathrm{C}(31)$	$39(1)$	$41(1)$	$31(1)$	$7(1)$	$0(1)$	$1(1)$
$\mathrm{C}(32)$	$33(1)$	$42(1)$	$31(1)$	$0(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(33)$	$38(1)$	$34(1)$	$32(1)$	$-1(1)$	$-7(1)$	$-6(1)$
$\mathrm{C}(34)$	$34(1)$	$32(1)$	$22(1)$	$2(1)$	$0(1)$	$-9(1)$
$\mathrm{C}(35)$	$22(1)$	$49(2)$	$37(1)$	$3(1)$	$-2(1)$	$5(1)$
$\mathrm{C}(36)$	$39(1)$	$38(1)$	$36(1)$	$3(1)$	$7(1)$	$-4(1)$
$\mathrm{C}(37)$	$58(2)$	$32(1)$	$29(1)$	$2(1)$	$-6(1)$	$1(1)$
$\mathrm{C}(38)$	$43(1)$	$38(1)$	$41(1)$	$-7(1)$	$-2(1)$	$-8(1)$
$\mathrm{C}(39)$	$56(2)$	$47(2)$	$53(2)$	$2(1)$	$2(1)$	$-19(1)$
$\mathrm{C}(40)$	$32(1)$	$65(2)$	$40(1)$	$-3(1)$	$4(1)$	$1(1)$
$\mathrm{C}(41)$	$41(1)$	$61(2)$	$29(1)$	$3(1)$	$1(1)$	$-8(1)$
$\mathrm{C}(42)$	$40(1)$	$49(2)$	$23(1)$	$-6(1)$	$1(1)$	$2(1)$
$\mathrm{C}(43)$	$32(1)$	$43(2)$	$26(1)$	$-9(1)$	$-5(1)$	$-1(1)$
$\mathrm{C}(44)$	$38(1)$	$79(2)$	$44(2)$	$7(1)$	$7(1)$	$-17(1)$
$\mathrm{C}(45)$	$36(1)$	$47(2)$	$46(1)$	$-3(1)$	$9(1)$	$-6(1)$

$\mathrm{O}(1)$	$28(1)$	$27(1)$	$24(1)$	$0(1)$	$-4(1)$	$-3(1)$
$\mathrm{N}(1)$	$29(1)$	$25(1)$	$24(1)$	$0(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}(55)$	$25(1)$	$28(1)$	$24(1)$	$2(1)$	$0(1)$	$2(1)$
$\mathrm{C}(50)$	$44(1)$	$42(1)$	$23(1)$	$1(1)$	$6(1)$	$-7(1)$
$\mathrm{C}(49)$	$53(2)$	$108(3)$	$36(1)$	$-18(2)$	$8(1)$	$-13(2)$
$\mathrm{C}(52)$	$58(2)$	$44(2)$	$36(1)$	$-11(1)$	$8(1)$	$-25(1)$
$\mathrm{C}(51)$	$50(2)$	$37(1)$	$38(1)$	$-4(1)$	$4(1)$	$-18(1)$
$\mathrm{C}(48)$	$47(2)$	$62(2)$	$47(2)$	$10(1)$	$7(1)$	$7(1)$
$\mathrm{C}(47)$	$52(2)$	$71(2)$	$48(2)$	$19(2)$	$6(1)$	$9(2)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\approx^{2} \times 10{ }^{3}\right)$ for DG01t.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(5)$	-84	8716	7209	36
$\mathrm{H}(54)$	1833	6319	8857	35
$\mathrm{H}(11)$	214	4971	4732	33
$\mathrm{H}(12)$	4789	4584	5201	39
$\mathrm{H}(15)$	-3189	5800	4527	47
$\mathrm{H}(17)$	3980	7913	3401	48
$\mathrm{H}(18)$	1169	7776	4676	36
$\mathrm{H}(19)$	4843	6248	4129	42
$\mathrm{H}(20)$	2331	7700	10055	39
$\mathrm{H}(21)$	3833	3634	6197	36
$\mathrm{H}(24)$	-1818	8481	6541	39
$\mathrm{H}(31)$	2122	8687	3668	45
$\mathrm{H}(32)$	6477	8018	8519	43
$\mathrm{H}(33)$	-1566	4657	4119	42
$\mathrm{H}(34)$	5063	9567	7445	35
$\mathrm{H}(35)$	-3031	7292	5543	44
$\mathrm{H}(37 \mathrm{~A})$	2643	9918	7157	60
$\mathrm{H}(37 B)$	3601	10968	6901	60
$\mathrm{H}(37 \mathrm{C})$	3404	10725	7789	60
$\mathrm{H}(38)$	5477	11911	8788	49

H(39)	7094	12632	8165	62
H(40)	8112	8765	7921	55
H(41)	1443	3563	10379	52
H(42)	3454	9363	10669	45
H(43)	4986	10337	10057	40
H(44)	8410	11063	7734	64
H(45)	-1302	5629	9534	51
H(50A)	4837	7573	6650	54
H(50B)	4760	8963	6183	54
H(50C)	3609	8151	6356	54
H(49A)	49	5637	11102	98
H(49B)	-218	4058	11185	98
H(49C)	-1201	5062	10857	98
H(52A)	1338	2387	6349	55
H(52B)	321	3498	6272	55
H(51A)	-195	2798	7433	49
H(51B)	1010	2012	7590	49
H(48A)	2494	2519	8605	78
H(48B)	2581	2210	9503	78
H(48C)	3160	3546	9176	78
H(47A)	-498	5961	7691	86
H(47B)	-1570	6114	8228	86
H(47C)	-1388	4738	7767	86

Table 6. Torsion angles [∞] for DG01t.

$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(14)$	$6.83(14)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(14)$	$-95.2(12)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(14)$	$114.15(13)$
$\mathrm{I}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(14)$	$-95.29(12)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(34)$	$-143.79(17)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(34)$	$114.1(12)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(34)$	$-36.47(15)$
$\mathrm{I}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(34)$	$114.10(15)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{C}(22)$	$173.30(18)$

$\left.\begin{array}{lc}\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{C}(22) & -88.06(19) \\ \mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{C}(22) & -3.56(17) \\ \mathrm{I}(2)-\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{C}(22) & 78.45(18) \\ \mathrm{C}(29)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11) & -178.5(2) \\ \mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11) & 5.7(3) \\ \mathrm{C}(29)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23) & 1.1(3) \\ \mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23) & -174.8(2) \\ \mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(7) & 1.8(3) \\ \mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(7) & -176.36(19) \\ \mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(8) & -173.42(19) \\ \mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(8) & 8.4(3) \\ \mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(6) & 177.7(2) \\ \mathrm{C}(25)-\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(6) & -3.4(3) \\ \mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(8) & -7.0(3) \\ \mathrm{C}(25)-\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(8) & 171.9(2) \\ \mathrm{C}(29)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(6) & 73.6(3) \\ \mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(6) & -110.4(2) \\ \mathrm{C}(29)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(7) & -101.6(2) \\ \mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(7) & 74.3(3) \\ \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(33) & 178.2(2) \\ \mathrm{C}(23)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(33) & -170.4(2) \\ \mathrm{C}(34)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(30) & 0.8(4) \\ \mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(30) & -39.9(3) \\ \mathrm{C}(34)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(22) & 168.36(19) \\ \mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(22) & 143.28(19) \\ \mathrm{C}(25)-\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(31) & -8.5(2) \\ \mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(31) & -1.6(4) \\ \mathrm{C}(31)-\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(25) & 177.3(2) \\ \mathrm{C}(25)-\mathrm{C}(12)-\mathrm{C}(21)-\mathrm{C}(6) & 0.4(4) \\ \mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(12) & -2.3(4) \\ \mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(12) & 1.0(3) \\ \mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{C}(20) & 179.3(2) \\ \mathrm{C}(30)-\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{C}(20) & -177.8(2) \\ \mathrm{C}(42)-\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{C}(54) & 50)-\mathrm{C}(22)-\mathrm{C}(14) \\ & -\mathrm{C}(54) \\ \hline\end{array}\right)$

$\mathrm{C}(42)-\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{C}(54)$	176.3(2)
$\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{C}(22)-\mathrm{C}(14)$	-0.2(3)
$\mathrm{Ru}(1)-\mathrm{C}(54)-\mathrm{C}(22)-\mathrm{C}(20)$	-175.66(18)
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(35)$	1.4(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(35)$	-178.2(2)
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(24)$	-178.4(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(24)$	2.1(3)
$\mathrm{C}(29)-\mathrm{C}(5)-\mathrm{C}(24)-\mathrm{C}(23)$	1.5(4)
$\mathrm{C}(35)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(5)$	176.9(2)
$\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(5)$	-3.4(4)
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(25)-\mathrm{C}(19)$	179.4(2)
$\mathrm{C}(21)-\mathrm{C}(12)-\mathrm{C}(25)-\mathrm{C}(7)$	0.7(4)
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(25)-\mathrm{C}(12)$	179.4(2)
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(25)-\mathrm{C}(7)$	-1.9(4)
$\mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(25)-\mathrm{C}(12)$	-178.8(2)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(25)-\mathrm{C}(12)$	2.2(3)
$\mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(25)-\mathrm{C}(19)$	2.4(3)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(25)-\mathrm{C}(19)$	-176.5(2)
$\mathrm{C}(45)-\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{C}(36)$	3.6(4)
$\mathrm{C}(47)-\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{C}(36)$	-177.9(3)
$\mathrm{C}(45)-\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{N}(2)$	-179.8(2)
$\mathrm{C}(47)-\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{N}(2)$	-1.3(4)
$\mathrm{C}(55)-\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(36)$	-89.6(3)
$\mathrm{C}(51)-\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(36)$	91.5(3)
$\mathrm{C}(55)-\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(16)$	93.7(3)
$\mathrm{C}(51)-\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(16)$	-85.1(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(29)-\mathrm{O}(1)$	-176.84(19)
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(29)-\mathrm{O}(1)$	-0.8(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(29)-\mathrm{C}(5)$	-2.9(3)
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(29)-\mathrm{C}(5)$	173.1(2)
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{C}(29)-\mathrm{O}(1)$	175.8(2)
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{C}(29)-\mathrm{C}(8)$	1.6(3)
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(43)$	176.1(2)
$\mathrm{C}(22)-\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(43)$	-7.4(3)
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(13)$	-8.9(4)
$\mathrm{C}(22)-\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(13)$	167.6(2)

$\mathrm{C}(38)-\mathrm{C}(13)-\mathrm{C}(30)-\mathrm{C}(14)$	$121.9(3)$
$\mathrm{C}(32)-\mathrm{C}(13)-\mathrm{C}(30)-\mathrm{C}(14)$	$-57.2(3)$
$\mathrm{C}(38)-\mathrm{C}(13)-\mathrm{C}(30)-\mathrm{C}(43)$	$-63.1(3)$
$\mathrm{C}(32)-\mathrm{C}(13)-\mathrm{C}(30)-\mathrm{C}(43)$	$117.7(2)$
$\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(31)-\mathrm{C}(17)$	$0.1(4)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(31)-\mathrm{C}(18)$	$0.5(4)$
$\mathrm{C}(38)-\mathrm{C}(13)-\mathrm{C}(32)-\mathrm{C}(40)$	$-2.5(3)$
$\mathrm{C}(30)-\mathrm{C}(13)-\mathrm{C}(32)-\mathrm{C}(40)$	$176.7(2)$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(33)-\mathrm{C}(15)$	$0.3(4)$
$\mathrm{C}(35)-\mathrm{C}(15)-\mathrm{C}(33)-\mathrm{C}(11)$	$0.6(4)$
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(37)$	$-60.7(2)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(37)$	$86.80(19)$
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(50)$	$174.32(18)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(50)$	$-38.2(2)$
$\mathrm{C}(33)-\mathrm{C}(15)-\mathrm{C}(35)-\mathrm{C}(23)$	$-0.5(4)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(35)-\mathrm{C}(15)$	$179.2(2)$
$\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(35)-\mathrm{C}(15)$	$-0.5(4)$
$\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(41)$	$-3.1(4)$
$\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(41)$	$-179.6(2)$
$\mathrm{C}(16)-\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(48)$	$179.3(3)$
$\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(48)$	$2.7(4)$
$\mathrm{C}(32)-\mathrm{C}(13)-\mathrm{C}(38)-\mathrm{C}(39)$	$3.2(3)$
$\mathrm{C}(30)-\mathrm{C}(13)-\mathrm{C}(38)-\mathrm{C}(39)$	$-0.2(5)$
$\mathrm{C}(13)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(44)$	$0.1(4)$
$\mathrm{C}(13)-\mathrm{C}(32)-\mathrm{C}(40)-\mathrm{C}(44)$	$-175.9(2)$
$\mathrm{C}(45)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{C}(36)$	$-2.0(4)$
$\mathrm{C}(49)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{C}(36)$	$0.4(4)$
$\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(41)-\mathrm{C}(27)$	$0.4(4)$
$\mathrm{C}(48)-\mathrm{C}(36)-\mathrm{C}(41)-\mathrm{C}(27)$	$-179.3(3)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(42)-\mathrm{C}(43)$	$1.0(4)$
$\mathrm{C}(20)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(30)$	$178.8(3)$
$\mathrm{C}(14)-\mathrm{C}(30)-\mathrm{C}(43)-\mathrm{C}(42)$	$-4.4(4)$
$\mathrm{C}(13)-\mathrm{C}(30)-\mathrm{C}(43)-\mathrm{C}(42)$	$2.2(4)$
$\mathrm{C}(32)-\mathrm{C}(40)-\mathrm{C}(44)-\mathrm{C}(39)$	$-\mathrm{C}(27)-\mathrm{C}(45)-\mathrm{C}(40)$
$\mathrm{C}(16)$	$3.6(4)$
C	

$\mathrm{C}(49)-\mathrm{C}(27)-\mathrm{C}(45)-\mathrm{C}(16)$	$179.8(3)$
$\mathrm{C}(28)-\mathrm{C}(16)-\mathrm{C}(45)-\mathrm{C}(27)$	$-2.1(4)$
$\mathrm{C}(47)-\mathrm{C}(16)-\mathrm{C}(45)-\mathrm{C}(27)$	$179.4(3)$
$\mathrm{C}(8)-\mathrm{C}(29)-\mathrm{O}(1)-\mathrm{Ru}(1)$	$-70.7(3)$
$\mathrm{C}(5)-\mathrm{C}(29)-\mathrm{O}(1)-\mathrm{Ru}(1)$	$115.3(2)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(29)$	$-97.75(17)$
$\mathrm{C}(55)-\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(29)$	$4.92(17)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(29)$	$-176.63(16)$
$\mathrm{I}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(29)$	$109.06(16)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(55)$	$-80.4(3)$
$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(55)$	$101.4(3)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(52)$	$83.5(3)$
$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(52)$	$-94.7(3)$
$\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(55)-\mathrm{N}(1)$	$-176.4(2)$
$\mathrm{C}(51)-\mathrm{N}(2)-\mathrm{C}(55)-\mathrm{N}(1)$	$2.5(3)$
$\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(55)-\mathrm{Ru}(1)$	$6.0(4)$
$\mathrm{C}(51)-\mathrm{N}(2)-\mathrm{C}(55)-\mathrm{Ru}(1)$	$-175.1(2)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(55)-\mathrm{N}(2)$	$173.4(2)$
$\mathrm{C}(52)-\mathrm{N}(1)-\mathrm{C}(55)-\mathrm{N}(2)$	$8.4(3)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(55)-\mathrm{Ru}(1)$	$-8.4(3)$
$\mathrm{C}(52)-\mathrm{N}(1)-\mathrm{C}(55)-\mathrm{Ru}(1)$	$-173.41(18)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(2)$	$-4.9(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(2)$	$-112.9(2)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(2)$	$96.6(12)$
$\mathrm{I}(2)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(2)$	$96.6(2)$
$\mathrm{C}(54)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(1)$	$177.61(17)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(1)$	$69.63(17)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(1)$	$-80.9(13)$
$\mathrm{I}(2)-\mathrm{Ru}(1)-\mathrm{C}(55)-\mathrm{N}(1)$	$-80.84(16)$
$\mathrm{C}(55)-\mathrm{N}(1)-\mathrm{C}(52)-\mathrm{C}(51)$	$-14.9(3)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(52)-\mathrm{C}(51)$	$179.7(2)$
$\mathrm{C}(55)-\mathrm{N}(2)-\mathrm{C}(51)-\mathrm{C}(52)$	$-11.4(3)$
$\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(51)-\mathrm{C}(52)$	$167.6(2)$
$\mathrm{N}(1)-\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{N}(2)$	$14.6(3)$

[^0]: (1) Van Veldhuizen, J. V.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 12502-12508.

[^1]: (2) Paterson, I.; Tudge, M. Tetrahedron 2003, 59, 6833-6849.

[^2]: (3) Tosaki, S.; Nemoto, T.; Ohshima, T.; Shibasaki, M. Org. Lett. 2003, 5, 495-498.

[^3]: (4) Kinnaird, J. W.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921.
 (5) Kubota, K.; Leighton, J. L. Angew. Chem. Int. Ed. 2003, 42, 946-948.

[^4]: (6) SMART V5.626 (NT) Software for the CCD Detector Systems; Bruker Analytical X-ray Systems, Madison, WI (2001)
 (7) SAINT V 5.01 (NT) Software for the CCD Detector Systems; Bruker Analytical X-ray Systems, Madison, WI (2001)
 (8) Sheldrick, G. M. SHELXS-90, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1990
 (9) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.
 (10) SHELXTL 6.0 (PC-Version), Program Library for Structure Solution and Molecular Graphics; Bruker Analytical X-ray Systems, Madison, WI (1998)

