Supporting Information

Direct Organocatalytic Asymmetric Aldol Reactions of α-Amino Aldehydes: Expedient Syntheses of Highly Enantiomerically Enriched anti- β-Hydroxy- α-Amino Acids

Rajeswari Thayumanavan, Fujie Tanaka* and Carlos F. Barbas III*

The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 (USA)
ftanaka@ scripps.edu or carlos@ scripps.edu

Phthalimidoacetaldehyde (1). To a stirred mixture of a solution of phthalic anhydride ($25 \mathrm{~g}, 169 \mathrm{mmol}$) in DMF (100 mL) and molecular sieves 4A (5 g), allylamine ($15 \mathrm{~mL}, 200$ mmol) was slowly added at rt. The mixture was stirred at $100^{\circ} \mathrm{C}$ for overnight. ${ }^{[\mathrm{S} 1]}$ After cooling to rt , the mixture was filtered through celite and the filtrate was concentrated in vacuo. The residue was dissolved in EtOAc , washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ $(9: 1,500 \mathrm{ml})$ and ozone was bubbled through the solution at $-78^{\circ} \mathrm{C}$ for 5 h until a blue color persisted. The mixture was purged N_{2} until the blue color disappeared at the same temperature. Dimethylsulfide ($90 \mathrm{~mL}, 1.2 \mathrm{~mol}$) was added and the mixture was allowed to warm to rt and stirred for 16 h at which point it was concentrated in vacuo. The residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to give ${ }^{[\mathrm{S} 2]}$ as colorless crystals ($22 \mathrm{~g}, 68 \%$).
(2S,3S)-2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-4-methyl-pentanal (2a)
(Table 1 entry 6). To a mixture of aldehyde $1(378 \mathrm{mg}, 2 \mathrm{mmol})$ and isobutyraldehyde (1.8 mL ,
$20 \mathrm{mmol})$ in NMP (1 mL) was added L-proline ($69 \mathrm{mg}, 0.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $4{ }^{\circ} \mathrm{C}$. After 36 h , excess isobutyraldehyde was removed in vacuo, and EtOAc and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added to the residue. The organic layer was washed with brine, dried over MgSO_{4}, filtered, concentrated in vacuo, and flash chromatographed (silica gel, EtOAc/hexane $=20: 80$) to afford 2a $(454 \mathrm{mg}, 87 \%, \mathrm{dr}=>100: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.91-7.76(\mathrm{~m}, 4 \mathrm{H}), 4.94(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;\left(2 S^{*}, 3 R^{*}\right)$-isomer: 9.71 (s, CHO), 5.25 (d, $J=4.1 \mathrm{~Hz}, \alpha-\mathrm{H})$.

2a

2b

2c

2d

2e

$2 f$

3a

3b

3c

3d

3 e

$3 f$

7

8a

8 e
(2S,3S)-2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-4-methyl-pentanal \boldsymbol{O} -
benzyl-oxime (8a). Aldehyde 2a was transformed to oxime 8a with O-benzylhydroxylamine hydrochloride according to the reported procedure. ${ }^{[53]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.73$ $(\mathrm{m}, 4 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 6 \mathrm{H}), 5.05-5.02(2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$
$\left(\mathrm{MH}^{+}\right)$367.1652, found 367.1655. HPLC (Daicel Chiralcel OD-H, 2-PrOH/hexane $=10: 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm})$: $(2 S, 3 S) 19.8 \mathrm{~min},(2 R, 3 R) 38.9 \mathrm{~min}$.
(2S,3S)-2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-4-methyl-pentanoic acid methyl ester (3a) (Table 1 entry 7). To a mixture of aldehyde 1 ($378 \mathrm{mg}, 2 \mathrm{mmol}$) and isobutyraldehyde ($1.8 \mathrm{~mL}, 20 \mathrm{mmol}$) in NMP $(1 \mathrm{~mL})$ was added L-proline ($69 \mathrm{mg}, 0.6 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred at $4{ }^{\circ} \mathrm{C}$. After 36 h , excess isobutyraldehyde was removed in vacuo, and EtOAc and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added to the residue. The organic layer was washed with saturated aqueous NaCl , dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was dissolved in $t \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(5: 1,24 \mathrm{~mL})$ and to this solution was added successively $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ($480 \mathrm{mg}, 4.0 \mathrm{mmol}$), 2-methyl-2-butene (2 M solution in THF, 6.8 mL , $13.6 \mathrm{mmol})$ and $\mathrm{NaClO}_{2}(624 \mathrm{mg}, 6.9 \mathrm{mmol}) .{ }^{[54]}$ The reaction mixture was stirred at rt for 4 h . The volatile components were removed in vacuo and the residue was extracted with EtOAc. The organic layer was washed with saturated aqueous NaCl , dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was dissolved in toluene (2 mL) and methanol (5 mL) and TMSCHN_{2} (2M solution in hexane) was added by dropwise at $-20^{\circ} \mathrm{C}$ until the yellow color persisted. The solution was stirred for additional 10 min and quenched with a drop of acetic acid. The solvents were removed in vacuo and the residue was purified by silica gel flash column chromatography ($\mathrm{EtOAc} / \mathrm{hexane}=5: 95-10: 90$) to afford $\mathbf{3 a}(425 \mathrm{mg}, 73 \%$ for 3 steps from 1, $\mathrm{dr}=>100: 1,>99.5 \%$ ee $).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.77(\mathrm{~m}, 4 \mathrm{H}), 4.95(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,167.7,134.4,131.6$, 123.7, 74.2, 54.6, 52.6, 52.9, 29.6, 19.9, 15.9. IR (neat) $3537,2960,1710,1383,1249,1208$, 1173, 1086, $716 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right)$292.1179, found 292.1177. HPLC (Daicel Chiralcel OD-H, 2-PrOH/hexane $=5: 95$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}):(2 S, 3 S) 10.3 \mathrm{~min},(2 R, 3 R) 13.0 \mathrm{~min} .[\alpha]^{24}{ }_{\mathrm{D}}+7.1\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
(2S,3S)-2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-4-methyl-pentanoic acid
(7). The aldol reaction of 1 and isobutyraldehyde and oxidation at Table 1 entry 7 was
performed using of $1(2.00 \mathrm{~g}, 10.5 \mathrm{mmol})$ and the residue was purified by silica gel flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=90: 10\right)$ to afford $7(1.92 \mathrm{~g}, 66 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.86-7.77(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=2.4 \mathrm{~Hz}, 9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ $(\mathrm{m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 177.1, 169.6, 135.5, 133.2, 124.3, 74.2, 56.1, 30.8, 20.3, 15.0. HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right) 278.1023$, found 278.1025 . This acid $7(5 \mathrm{mg})$ was transformed to methyl ester 3a as described above and the ee was determined to be $>99.5 \%$ ee.
(2S,3S)-3-Hydroxyleucine (5). To a stirred solution of 7 (1.92 g, 6.93 mmol) in EtOH $(100 \mathrm{~mL})$, anhydrous hydrazine (35 mL) was added at rt and the mixture was refluxed for 2 h until a precipitate of phthalazone was formed. ${ }^{[55]}$ The mixture was cooled to rt and filtered, and the filtrate was concentrated in vacuo. The solid residue was dissolved in water and was washed with CHCl_{3} (x 5). The aqueous layer was loaded to Dowex 50WX4-100 ion-exchange resin $\left(\mathrm{H}^{+}\right.$ form) and the resin was washed with water (1 L) then eluted with 2 N pyridine. ${ }^{[\mathrm{S} 6]}$ The eluted fractions were lyophilized to afford (2S,3S)-hydroxyleucine (5) (940 mg, 92% from 7, 60% from 1) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=3.2 \mathrm{~Hz}$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$148.0968, found 148.0966. $[\alpha]^{25}{ }_{\mathrm{D}}+27.6\left(\mathrm{c} 0.6, \mathrm{H}_{2} \mathrm{O}\right)\left[\right.$ lit. ${ }^{[\mathrm{S} 6]}[\alpha]^{20}{ }_{\mathrm{D}}$ $+20.9\left(\mathrm{c} 1.03, \mathrm{H}_{2} \mathrm{O}\right)$ as 98% ee; lit. $\left.{ }^{[87]}[\alpha]^{28}{ }_{\mathrm{D}}+37\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right)\right]$.

Reactions in Table 2. Aldol reactions in Table 2 were performed using the same procedures as the procedures for Table 1 entry 7, but excess acceptor aldehydes were removed by fast silica gel column chromatography after work-up. The diastereomeric ratio of the aldol products decreased when they were stored or when they were purified by silica gel column chromatography. Attempts to obtain pure aldol products resulted lower yield and lower diasteromeric ratio. Thus, the chromatography was quickly performed to remove excess acceptor aldehyde instead of focusing to purify aldol product 2. Oxidation and esterification were also performed using the same procedures for Table 1 entry 7 as described above. The column chromatography did not completely separate the anti- and syn-isomers of $\mathbf{3}$ each other.
(2S,3S)-2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-4-ethyl-3-hydroxy-hexanal (2b). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \underline{\mathrm{HO}}), 4.96(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H})$. For ($2 S^{*}, 3 R^{*}$)isomer: 9.70 (s, 1H, CHO), 5.26 (d, $\alpha-H)$.
(2S,3S)-2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-4-ethyl-3-hydroxy-hexanoic acid methyl ester (3b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.76(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-$ H), $4.44(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.18(\mathrm{~m}, 5 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;\left(2 S^{*}, 3 R^{*}\right)$-isomer: $5.26(\mathrm{~d}, J=4.1 \mathrm{~Hz}, \alpha-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.6,167.6,134.4,131.6,123.8,70.9,54.3,52.9,42.5,22.2,20.4,11.6,11.4$. IR (neat) $\left[(2 S, 3 S)\right.$-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=10: 1\right] 3533,2959,2932,2875,1712,1384,1271$, 1209, 1087, 1017, $717 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 342.1312$, found 342.1318. HPLC (Daicel Chiralpak AS-H, 2-PrOH/hexane $=5: 95$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}):(2 S, 3 S) 11.0 \mathrm{~min},(2 R, 3 R) 12.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{24}-14.2\left(\mathrm{C} 1.0, \mathrm{CHCl}_{3}\right)[(2 S, 3 S)-$ isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $=10: 1,(2 S, 3 S)$-isomer 94% ee $\left.)\right]$.
(2S,3S)-4-Butyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-octanal (2c). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 4.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}) ;\left(2 S^{*}, 3 R^{*}\right)$-isomer: $5.23(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H})$.
(2S,3S)-4-Butyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-octanoic acid methyl ester (3c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.76(\mathrm{~m}, 4 \mathrm{H}), 4.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-$ H), $4.48(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.53-0.82(\mathrm{~m}, 19 \mathrm{H})$; For $\left(2 S^{*}, 3 R^{*}\right)$ isomer: $5.26(\mathrm{~d}, J=4.4 \mathrm{~Hz}, \alpha-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,167.5,134.4,131.6$, 123.7, 71.0, 54.2, 52.9, 39.3, 29.8, 29.6, 29.1, 27.8, 22.9, 14.1. IR (neat) [(2S,3S)isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=7: 1\right] 3541,2954,2928,2859,1713,1384,1262,1210,1085,1018$, $718 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$398.1938, found 398.1945. HPLC (Daicel Chiralpak AS-H, 2-PrOH/hexane $=5: 95$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}):(2 S, 3 S) 7.1$ $\min ,(2 R, 3 R) 7.8 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{24}-30.7$ (c $\left.1.0, \mathrm{CHCl}_{3}\right)\left[(2 S, 3 S)\right.$-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $=7: 1$, (2S,3S)-isomer 93\% ee)].

3-Cyclohexyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-propionaldehyde

(2d). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [(2S,3S)-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=5: 1\right] \delta 9.84$ (s, $1 \mathrm{H} \times 5 / 6$), $9.70(\mathrm{~s}, 1 \mathrm{H} x 1 / 6), 7.97-7.74(\mathrm{~m}, 4 \mathrm{H}), 5.24(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{Hx} 1 / 6), 5.00(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H} x$ $5 / 6), 4.35(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H} \times 1 / 6), 4.26(\mathrm{~m}, 1 \mathrm{H} \times 1 / 6), 4.11$ (m, 1H x 5/6), 3.96 (brs, $1 \mathrm{H} \times 5 / 6$), 2.25-0.90 (m, 11H).

3-Cyclohexyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-propionic acid

 methyl ester (3d). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [(2S,3S)-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=5: 1\right] \delta 7.93$ $7.77(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H} \times 1 / 6), 5.01(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H} \times 5 / 6), 4.42(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H} \times 1 / 6$), 4.17-4.01 (m, 2H), $3.80(\mathrm{~s}, 1 \mathrm{H} \times 1 / 6) .3 .75(\mathrm{~s}, 3 \mathrm{H} \times 5 / 6), 2.21(\mathrm{~m}, 1 \mathrm{H} \times 1 / 6), 1.89(\mathrm{~m}$, $1 \mathrm{H} \times 5 / 6), 1.79-0.90(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [($2 S, 3 S$)-isomer] $\delta 170.0,167.8$, $134.4,123.7,74.3,54.4,52.8,39.6,30.0,26.7,26.2,25.9$. IR (neat) $\left[(2 S, 3 S)\right.$-isomer:($2 S^{*}, 3 R^{*}$)isomer $=5: 1] 3468,2924,2851,1708,1384,1254,1210,1085,1068,1018,719 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$354.1312, found 354.1323. HPLC (Daicel Chiralcel OD-H, 2-PrOH/hexane = 5:95, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}):(2 S, 3 S) 9.7 \mathrm{~min},(2 R, 3 R) 11.1$ $\min .[\alpha]^{24}-13.7\left(\mathrm{c} 0.75, \mathrm{CHCl}_{3}\right)\left[(2 S, 3 S)\right.$-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $=5: 1,(2 S, 3 S)$-isomer $=$ 98% ee)].3-Cyclopentyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-propionaldehyde
(2e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [(2S,3S)-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=3: 1\right] \delta 9.85$ ($\mathrm{s}, 1 \mathrm{H} \times 3 / 4$), $9.71(\mathrm{~s}, 1 \mathrm{H} \times 1 / 4), 7.93-7.70(\mathrm{~m}, 4 \mathrm{H}), 5.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{Hx} \mathrm{1/4}), 4.96(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{x}$ $3 / 4), 4.35-4.33(2 \mathrm{H} \mathrm{x} \mathrm{1/4}), 4.12-4.09(2 \mathrm{H} \times 3 / 4), 2.40-1.20(\mathrm{~m}, 9 \mathrm{H})$.
(2S,3S)-3-Cyclopentyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-propionic acid methyl ester (3e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.76(\mathrm{~m}, 4 \mathrm{H}), 4.94(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}, \alpha-\underline{\mathrm{H}}), 4.32(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.33(\mathrm{~m}, 8 \mathrm{H}) ;$ $\left(2 S^{*}, 3 R^{*}\right)$-isomer: $5.19(\mathrm{~d}, J=4.1 \mathrm{~Hz}, \alpha-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,167.9$, $134.5,131.6,123.8,74.2,56.5,52.8,42.1,29.3,28.0,25.8$. IR (neat) $[(2 S, 3 S)$ isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=16: 1\right] 3469,2951,2867,1708,1384,1250,1208,1085,1019,718$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 340.1155$, found 340.1149. $[\alpha]^{24}{ }_{\mathrm{D}}+26.2$ (c $\left.1.0, \mathrm{CHCl}_{3}\right)\left[(2 S, 3 S)\right.$-isomer: $\left(2 S^{*}, 3 R^{*}\right)$-isomer $\left.=16: 1\right]$.

3-Cyclopentyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-propionaldehyde O-benzyl-oxime (8e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.26(6 \mathrm{H}), 5.07(\mathrm{~s}$, 2H), $3.99(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.28(\mathrm{~m}, 8 \mathrm{H})$. HPLC (Daicel Chiralpak AD, 2-PrOH/hexane $=10: 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}):(2 S, 3 S) 48.3 \mathrm{~min}$, $(2 R, 3 R) 26.3 \mathrm{~min}$.

2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-4,4-dimethoxy-butyraldehyde

 (2f). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [anti-($2 S, 3 R$)-isomer:syn-($\left.2 S^{*}, 3 S^{*}\right)$-isomer $\left.=5: 1\right] \delta 9.88(\mathrm{~s}$, $1 \mathrm{H} \times 5 / 6$), 9.73 ($\mathrm{s}, 1 \mathrm{H} \times 1 / 6$), $7.95-7.70(\mathrm{~m}, 4 \mathrm{H}), 5.22(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H} \times 5 / 6), 5.19(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H} x 1 / 6), 4.63(\mathrm{~m}, 1 \mathrm{H} \times 1 / 6), 4.58(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H} \times 5 / 6), 4.37-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}$ x 5/6), 3.48 (s, $3 \mathrm{H} \times 5 / 6$), $3.45(\mathrm{~s}, 3 \mathrm{H} \times 1 / 6), 3.41$ ($\mathrm{s}, 3 \mathrm{H} \mathrm{x} \mathrm{1/6)}$.2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-4,4-dimethoxy-butyric acid methyl ester (3f). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [anti-($2 S, 3 R$)-isomer:syn-($2 S^{*}, 3 S^{*}$)-isomer $=$ 1:1] $\delta 7.93-7.75(\mathrm{~m}, 4 \mathrm{H}), 5.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{Hx} \mathrm{1/2}), 5.26(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H} \times 1 / 2), 4 / 69(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H} \times 1 / 2), 4.54(\mathrm{~m}, 1 \mathrm{H} \times 1 / 2), 4.45-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=$ 4.7 Hz, 3H), $3.41(\mathrm{~s}, 3 \mathrm{H} \times 1 / 2), 3.36(\mathrm{~s}, 3 \mathrm{H} \times 1 / 2) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [anti-isomer:syn-isomer $=1: 1] \delta 168.6,168.5,168.2,168.0,134.3,131.7,123.8,123.7,104.3,103.9$, $104.3,103.9,71.1,70.3,56.1,55.3,54.7,54.6,54.4,53.9,52.9,52.8$. IR (neat) [anti-isomer:synisomer $=1: 1] 3436,2953,2835,1746,1705,1387,1264,1193,1114,1063,970,718$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$346.0897, found 346.0899. HPLC (Daicel Chiralcel OD-H, 2-PrOH/hexane = 10:90, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm})$: anti-isomers, $(2 S, 3 R) 44.7 \mathrm{~min}$, $(2 R, 3 S) 72.6 \mathrm{~min}$; syn-isomer, $36.8 \mathrm{~min}, 54.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{24}+19.8$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$ [anti-isomer:synisomer $=1: 1$, anti-isomer 86% ee, syn-isomer 68% ee].

4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3-hydroxy-2-isopropyl-butyraldehyde (6a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (anti:syn = 3:1) $\delta 9.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{Hx} 1 / 4), 9.87(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H} \times 3 / 3$), $7.89-7.70(\mathrm{~m}, 4 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H} \times 1 / 4), 4.26(\mathrm{~m}, 1 \mathrm{H} \times 3 / 4), 3.91-3.81(2 \mathrm{H}), 3.27$ (brs, $1 \mathrm{Hx} 3 / 4$), 2.95 (brs, $1 \mathrm{H} \times 1 / 4$), 2.53-2.10 (m, 2H), $1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H} \times 1 / 4), 1.10(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H} \times 3 / 4), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H} \times 1 / 4) .1 .04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H} x 1 / 4) .{ }^{13} \mathrm{C}$ NMR (125
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) (anti-isomer) $\delta 206.0,168.7,134.1,131.7,123.4,69.0,60.6,43.0,27.0,20.8$, 19.7. HPLC (Daicel Chiralcel OD-H, 2-PrOH/hexane $=10: 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): anti-isomer, major 17.0 min , minor 53.1 min .

2-[2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-1-hydroxy-ethyl]-hexanal (6b). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ anti:syn $=3: 1) \delta 9.83(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{x} 1 / 4), 9.77(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{Hx}$ $3 / 4), 7.90-7.75(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H} \times 1 / 4), 4.12(\mathrm{~m}, 1 \mathrm{H} \times 3 / 4), 3.96-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}$ x 3/4), $2.82(\mathrm{~m}, 1 \mathrm{H} \times 1 / 4), 2.57-0.90(\mathrm{~m}, 9 \mathrm{H})$. HPLC (Daicel Chiralcel OD-H, 2-PrOH/hexane $=$ 10:90, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): anti-isomer, major 16.1 min , minor 36.3 min .

References

(S1) M. Palucki, D. H. Hughes, N. Yasuda, C. Yang, P. J. Reider, Tetrahedron Lett. 2001, 42, 6811.
(S2) Aldehyde $\mathbf{1}$ is commercially available in some countries.
(S3) W. Notz, F. Tanaka, S. Watanabe, N. S. Chowdari, J. M. Turner, R. Thayumanavan, C. F. Barbas, III, J. Org. Chem. 2003, 68, 9624.
(S4) Y. Deng, R. G. Salomon, J. Org. Chem. 2000, 65, 6660.
(S5) J. Mulzer, A. Angermann, S. Schubert, C. Seiz, J. Org. Chem. 1986, 51, 5294.
(S6) K. Makino, N. Okamoto, O. Hara, Y. Hamada, Tetrahedron: Asymmetry 2001, 12, 1757.
(S7) Nagamitsu, T. Sunazuka, H. Tanaka, S. Omura, P. A. Sprengeler, A. B. Smith, III, J. Am. Chem. Soc. 1996, 118, 3584.

Compound 3a, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3a, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 7, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Compound 7, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Compound 3b, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3b，${ }^{13} \mathrm{C}$ NMR（ $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

```
0LEルル
0Z9ルレ——
Lカt.OZ
08L`ZZ-
9lG`で
&L6ZG
0&&\vdash๑ - -
```

L8802
ャ8Lとてレ
L6S'レヒレ
\qquad
8カガヤとし
Z99. 291
-
OSS:0LL

Compound 3c, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3c, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3d, anti:syn $=5: 1,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3d, anti:syn $=5: 1,{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3e, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3e, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3f, anti:syn $=1: 1,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 3f, anti:syn $=5: 1,{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound6a, ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 6a, ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

