Supporting Information

Chemoselective Silylzincation Reaction to Functionalized Terminal Alkynes Using Dianion-type Zincate (SiBNOL-Zn-ate): Regio-controlled Synthesis of Vinylsilanes

Shinji Nakamura,⁺Masanobu Uchiyama,^{*,†,‡} Tomohiko Ohwada⁺

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

General Methods. Proton (400MHz) NMR spectra were measured on a JEOL Caliber-GX400 NMR spectrometer with TMS as an internal reference in $CDCl_3$ as the solvent. Chemical shifts are shown in ppm. Coupling constants are given in hertz. Low-resolution mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded on a JEOL JMS-O1SG-2 sprecrtometer. All experiments were done under Ar atmosphere. Flash column chromatography was carried out on silica gel (silica gel 60 (40-63 μ m), Merck).

Materials. Unless otherwise noted, materials were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and were used after appropriate purification (distillation or recrystalization). 'BuLi in n-pentane and 'BuMgCl in THF were obtained from Kanto Chemical Co. Ltd. The concentrations 'BuLi were determined by titration prior to use.¹


^{*} To whom correspondence should be addressed.

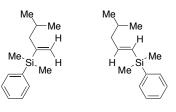
⁺ The University of Tokyo

^{*} PRESTO, Japan Science and Technology Agency (JST)

Silylzincation of SiBNOL-Zn-ate to 1-octyne (1a); Typical Procedure

To a mixture of 2,2'-biphenol (186.2 mg, 1.0 mmol) in 5 mL of dry THF and 2.2 mL of ZnCl₂ (0.5M solution in THF, 1.1 mmol), 3.3 mL of ^tBuMgCl (1.0 M solution in THF, 3.3 mmol) and 1.34 mL of dimethylphenylsilyllithium (0.82 M solution in THF,

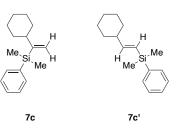
1.1 mmol) were added at –78°C. The solution was stirred at 0°C for 30 minutes. After that, 1-octyne (110.2 mg, 1.0 mmol) was added dropwise to the solution at -78°C. The mixture was stirred at room temperature for 12 hours. Dropping sat. NH₄Cl quenched the reaction, and the mixture was extracted with Et₂O, dried over MgSO₄, and evaporated under reduced pressure. Then it was purified by silica-gel chromatography (eluent; n-hexane) and 246.5 mg of a mixture of 2-Dimethylphenylsilyl-1-octene (**7a**) and (*E*)-1-Dimethylphenylsilyl-1-octene (**7a'**) was obtained as colorless oil (100% yield). 400 MHz ¹H-NMR (CDCl₃/TMS) δ (ppm):² 2- Dimethylphenylsilyl-1-octene (**7a**): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.67 (1H, dt, *J* = 2.8, 2 Hz), 5.38 (1H, d, *J* = 2.8 Hz), 2.1 (2H, m), 1.2-1.42 (8H, m), 0.88 (3H, t, *J* = 7 Hz), 0.36 (6H, s).


(*E*)-1-Dimethylphenylsilyl-1-octene (**7a'**): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.12 (1H, dt, *J* = 18, 6 Hz), 5.75 (1H, dt, *J* = 18, 1.5 Hz), 2.1 (2H, tdd, *J* = 7, 6, 1.5 Hz), 1.2-1.42 (8H, m), 0.88 (3H, t, *J* = 7 Hz), 0.3 (6H, s).

MS *m*/*z*: 246 (M⁺). HRMS Calcd for C₁₆H₂₆Si:246.1802. Found:246.1789.

Experimental Details of Table 2

(Entry 1)


7b: Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.497.53 (2H, m), 7.31-7.34 (3H, m), 5.64 (1H, d, J = 3.2 Hz),
5.43 (1H, d, J = 3.2 Hz), 2.0 (2H, d, J = 7.2 Hz), 1.6 (1H, m),
0.80 (6H, d, J = 6.4 Hz), 0.35 (6H, s).

7b': Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): **7b 7b'** 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.12 (1H, dt, J = 18.4, 7.2 Hz), 5.7 (1H, dt, J = 18.4, 1.6 Hz), 2.0 (2H, dd, J = 7.2, 1.6 Hz), 1.6 (1H, m), 0.88 (6H, d, J = 6.8 Hz), 0.32 (6H, s). MS *m*/*z*: 218 (M⁺). HRMS Calcd for C₁₄H₂₂Si:218.1491. Found:218.1472.

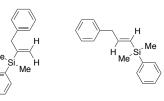
(Entry 2)³

7c : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.497.53 (2H, m), 7.31-7.34 (3H, m), 5.71 (1H, td, *J* = 2.8, 1.6 Hz),
5.40 (1H, td, *J* = 2.8, 1.2 Hz), 2.0 (1H, m), 1.55-1.73 (4H, m),
1.06-1.25 (6H, m), 0.37 (6H, s).

7c' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-

7.53 (2H, m), 7.31-7.34 (3H, m), 6.09 (1H, dd, *J* = 18.8, 6.0 Hz), 5.66-5.72 (1H, dd, *J* = 18.8, 1.2 Hz), 2.0 (1H, m), 1.55-1.73 (4H, m), 1.06-1.25 (6H, m), 0.31 (6H, s).

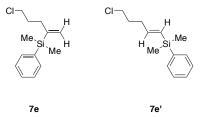
MS *m*/*z*: 244 (M⁺). HRMS Calcd for C₁₆H₂₄Si:244.1647. Found:244.1650.


(Entry 3)

 7d : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49

 7.53 (2H, m), 7.31-7.34 (3H, m), 7.03-7.30 (5H, m), 5.55

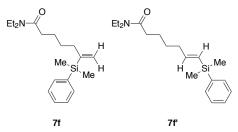
 (1H, dt, J = 2.8, 1.2 Hz), 5.48 (1H, dt, J = 2.8, 1.2 Hz), 3.41


 (2H, d, J = 1.2 Hz), 0.25 (6H, s).

7**d'** : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7**d** 7**d'** 7**d'** 7**d'** 7.53 (2H, m), 7.31-7.34 (3H, m), 7.03-7.30 (5H, m), 6.2 (1H, dt, *J* = 18.4, 6 Hz), 5.82 (1H, dt, *J* = 18.4, 1.6 Hz), 3.45 (2H, dd, *J* = 6.0, 1.6 Hz), 0.32 (6H, s). MS *m*/*z*: 252 (M⁺). HRMS Calcd for C₁₇H₂₀Si:252.1334. Found:252.1321.

(Entry 4)

7e : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.68 (1H, d, *J* = 1.6 Hz), 5.43 (1H, d, *J* = 1.6 Hz), 3.40 (2H, t, *J* = 6.8 Hz), 2.13 (2H, t, *J* = 7.6 Hz), 1.65 (2H, m, 8.0 Hz), 1.45 (2H, m, 8.0 Hz), 0.37 (6H, s).

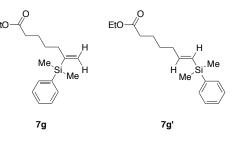

7e' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.12 (1H, dt, *J* = 18.4, 6.4 Hz), 5.7 (1H, d, *J* = 18 Hz), 3.50 (2H, t, *J* = 6.8 Hz), 2.20 (2H, t, *J* = 7.2 Hz), 1.75 (2H, m, 7.2 Hz), 1.55 (2H, m, 8.0 Hz), 0.32 (6H, s).

MS m/z: 223 (M⁺-Me). HRMS Calcd for C₁₂H₁₆³⁵ClSi:223.0710. Found:223.0674.

(Entry 5)

7f : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m),

5.68 (1H, dt, *J* = 2.8, 1.6 Hz), 5.4 (1H, d, *J* = 2.8 Hz), 3.20-3.39 (4H, dq, *J* = 26.8, 6.8 Hz), 2.17 (2H, t, *J* = 7.6 Hz), 2.13 (2H, t, *J* = 7.6 Hz), 1.59 (2H, m), 1.39 (2H, m), 1.07-1.17 (6H, dt, *J* = 26.8, 6.8 Hz), 0.35 (6H, s)

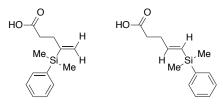


7f' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.10 (1H, dt, *J* = 18.8, 6 Hz), 5.73-5.79 (1H, dt, *J* = 18.8, 1.6 Hz), 3.20-3.39 (4H, dq, *J* = 26.8, 6.8 Hz), 2.29 (2H, t, *J* = 7.6 Hz), 2.1 (2H, t, *J* = 7.6 Hz), 1.66 (2H, m), 1.46 (2H, m), 1.07-1.17 (6H, dt, *J* = 26.8, 6.8 Hz), 0.31 (6H, s).

MS *m*/*z*: 317 (M⁺). HRMS Calcd for C₁₉H₃₁NOSi:317.2175. Found:317.2168.

(Entry 6)

7g : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.77 (1H, td, *J* = 2.8, 1.6 Hz), 5.40 (1H, td, *J* = 2.8, 1.2 Hz), 4.09 (2H, q, *J* = 6.8 Hz), 2.2 (2H, t, *J* = 8.0 Hz), 2.1 (2H, tdd, *J* = 8.0, 1.6, 1.2 Hz), 1.55 (2H, m), 1.36 (2H, m), 1.25 (3H, t, *J* = 6.8 Hz), 0.36 (6H, s).



7g' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.08 (1H, dt, *J* = 18.8, 6.0 Hz), 5.73-5.79 (1H, dt, *J* = 18.8, 1.6 Hz), 4.09 (2H, q, *J* = 7.2 Hz), 2.29 (2H, t, *J* = 8.0 Hz), 2.1 (2H,m), 1.55 (2H, m), 1.36 (2H, m), 1.25 (3H, t, *J* = 7.2 Hz), 0.31 (6H, s).

MS *m*/*z*: 290 (M⁺). HRMS Calcd for C₁₇H₂₆O₂Si:290.1702. Found:290.1707.

(Entry 7)

7h : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.65 (1H, d, *J* = 1.2 Hz), 5.42 (1H, d, *J* = 1.2 Hz), 2.32-2.44 (4H, m), 0.35 (6H, s).

7h' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): **7h 7h'** 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.2 (1H, dt, *J* = 18.8, 5.2 Hz), 5.9 (1H, dt, *J* = 18.8, 1.6 Hz), 2.32-2.44 (4H, m), 0.30 (6H, s).

MS *m*/*z*: 234 (M⁺). HRMS Calcd for C₁₃H₁₈O₂Si:234.1075. Found:234.1025.

(Entry 8)⁴

7i : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49- **HO 7.53** (2H, m), 7.31-7.34 (3H, m), 5.7 (1H, dt, J = 2.4, 1.6 Hz), 5.4 (1H, dt, J = 2.4, 1.6 Hz), 3.5 (2H, t, J = 8.0 Hz), **7i 7i 7i**

3.60 (2H, t, *J* = 6.4 Hz), 2.2 (2H, m), 1.67 (2H, m), 0.31 (6H, s).

MS *m*/*z*: 220 (M⁺), 205 (M⁺-Me). HRMS Calcd for C₁₂H₁₇OSi:205.1049. Found:205.1050.

(Entry 9)⁵

7j': Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m),
7.31-7.34 (3H, m), 6.70 (2H, s), 0.32 (6H, s), 0.06 (9H, s).
MS *m*/*z*: 234 (M⁺), HRMS Calcd for C₁₃H₂₂Si₂:234.1260. Found:234.1242.

Si^{Me}H H H Me^{Si}Me

7j'

(Entry 10)⁶

 7k: Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49

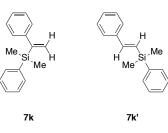
 7.53 (2H, m), 7.21-7.45 (5H, m), 7.31-7.34 (3H, m), 5.98 (1H,

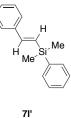
 d, J = 1.2 Hz), 5.68 (1H, d, J = 1.2 Hz), 0.39 (6H, s).

 7k': Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49

 7.53 (2H, m), 7.21-7.45 (5H, m), 7.31-7.34 (3H, m), 6.95 (1H,

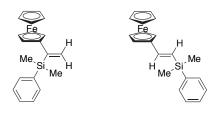
 d, J = 18.4 Hz), 6.60 (1H, d, J = 18.4 Hz), 0.42 (6H, s).


 MS m/z: 238 (M⁺). HRMS Calcd for C₁₂H₁₆³⁵ClSi:238.1177. Found:238.1178.



Purified by SiO₂ column chromatography using hexane: ethylacetate (6 : 1) as an eluent.

7l' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 8.55 (1H, s), 8.45 (1H, d, *J* = 4 Hz), 7.74 (1H, dt, *J* = 8.0, 2.4 Hz), 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 7.2 (1H, dt, *J* = 8.0 Hz), 6.9 (1H, d, *J* = 18.4 Hz), 6.6 (1H, d, *J* = 18.4 Hz), 0.45 (6H, s).


MS *m*/*z*: 239 (M⁺). HRMS Calcd for C₁₅H₁₇NSi: 239.1130. Found: 239.1130.

(Entry 12)

7m : Red oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.18 (1H, d, *J* = 2.4 Hz), 5.4 (1H, d, *J* = 2.4 Hz), 4.23 (2H, m), 4.11 (2H, m), 3.91 (5H, s), 0.47 (6H, s).

7m' : Red oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 **7m 7m'** (2H, m), 7.31-7.34 (3H, m), 6.7 (1H, d, *J* = 18.8 Hz), 6.1 (1H, d, *J* = 18.8 Hz), 4.37 (2H, m), 4.2 (2H, m), 4.06 (5H, s), 0.38 (6H, s).

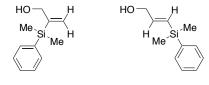
MS *m*/*z*: 346 (M⁺). HRMS Calcd for C₂₀H₂₂FeSi: 346.0840. Found: 346.0832.

(Entry 13)⁷

 7h : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): MeO
 H
 MeO

 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.88 (1H, dt, J = 2.8,
 MeSi MeH
 H

 2 Hz), 5.48 (1H, d, J = 2.8 Hz), 3.98 (2H, d, J = 2 Hz),
 3.25 (3H, s), 0.79 (6H, s).
 7n


 7h' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm):
 7n
 7n'

7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.1 (1H, dt, J = 18, 4.4 Hz), 6.0 (1H, d, J = 18Hz), 3.97 (2H, t, J = 4.4 Hz), 3.35 (3H, s), 0.35 (6H, s).

MS *m*/*z*: 206 (M⁺), 191 (M⁺-Me). HRMS Calcd for C₁₁H₁₅OSi: 191.0892. Found: 191.0874.

(Entry 14)⁵

7o : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.88 (1H, dt, *J* = 2.0, 1.6 Hz), 5.47 (1H, dt, *J* = 2.0, 1.6 Hz), 4.2 (2H, t, *J* = 1.6 Hz), 0.39 (6H, s).

70

7o' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.2 (1H, dt, *J* = 19.2, 4 Hz), 6.0 (1H, dt, *J* = 19.2, 1.6 Hz), 4.15 (2H, t, *J* = 1.6 Hz), 0.35 (6H, s).

MS 177 (M⁺-Me). HRMS Calcd for C₁₀H₁₃OSi: 177.0736. Found: 177.0701.

70

(Entry 15)

 7p: Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): H₂N

 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.80 (1H, d, J = 2.4

 Hz), 5.45 (1H, d, J = 2.4 Hz), 3.2 (2H, s), 2.0 (2H, br),

 0.36 (6H, s).

7**p'** : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.2 (1H, dt, *J* = 18.8, 5.2 Hz), 5.9 (1H, dt, *J* = 18.8, 1.6 Hz), 3.35 (2H, dd, *J* = 5.2, 1.6 Hz), 2.0 (2H, br), 0.29 (6H, s).

Ме

7p

MS *m*/*z*: 219 (M⁺). HRMS Calcd for C₁₃H₂₁NSi: 219.1442. Found: 219.1438.

(Entry 16)

7q' : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.1 (1H, dt, J = 18.8, 5.6 Hz), 5.9 (1H, dt, J = 18.8, 1.2Hz), 3.35 (2H, dd, J = 5.6, 1.2 Hz), 2.2 (6H, s), 0.34 (6H, s). MS m/z: 191 (M⁺). HRMS Calcd for C₁₁H₁₇NSi: 191.1130. Found: 191.1096.

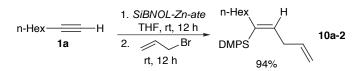
Experimental Details of Scheme 1

Internal alkyne⁸

8 : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.77 (1H, t, *J* = 7.2 Hz), 2.1 (4H, m), 1.0 (3H, t, *J* = 7.6 Hz), 0.8 (3H, t, *J* = 7.6 Hz), 0.32 (6H, s). MS *m*/*z*: 218 (M⁺). HRMS Calcd for C₁₄H₂₂Si: 218.1491. Found: 219.1480.

Terminal-internal mixed diyne

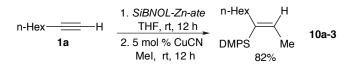
9 : Colorless oil. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.1 (1H, dt, *J* = 18.4, 2.4 Hz), 5.8 (1H, d, *J* = 18.4 Hz), 2.1-2.3 (6H, m), 1.34-1.45 (4H, m), 0.89 (3H, t, *J* = 7.2 Hz), 0.32 (6H, s). MS *m*/*z*: 270 (M⁺). HRMS Calcd for C₁₈H₂₆Si: 270.1804. Found: 270.1801.


Electrophilic Trapping of the Intermediate (2a) Generated In Situ by Silylzincation of 1-Octyne (1a) Using SiBNOL-Zn-ate

Trapping with Deuterium-oxideⁱⁱ

The vinylzinc species (2a) was quenched with 1 mL of deuterium-oxide and the mixture was extracted with Et₂O, dried over MgSO₄, and evaporated under reduced pressure. Then it was purified by silica-gel chromatography (eluent; n-hexane) and 245.0 mg of a regio-mixture (93:7) of the vinylsilane was obtained as colorless oil (99% yield). **10a-1** : ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 5.67 (1H, t, *J* = 2 Hz), 2.1 (2H, td, *J* = 7.2, 1.2 Hz), 1.2-1.42 (8H, m), 0.88 (3H, t, *J* = 7.2 Hz), 0.36 (6H, s).

MS *m*/*z*: 247 (M⁺). HRMS Calcd for C₁₅H₂₅DSi: 247.1866. Found: 247.1851.


Coupling with 3-Bromo-propene

3-Bromo-propene (145.2 mg, 1.2 mmol) was added to the vinylzinc species (**2a**) at –78°C and the mixture was stirred at room temperature for 12 hours. The mixture was extracted with Et_2O , dried over MgSO₄, and evaporated under reduced pressure. Then it was purified by silica-gel chromatography (eluent; n-hexane) and 283.4 mg of a regio-mixture (94:6) of the vinylsilane was obtained as colorless oil (99% yield). **10a-2** : ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.04 (1H, tt, *J* = 7.2, 2 Hz), 5.6 (1H, m), 4.8 (2H, m), 2.6 (2H, t, *J* = 7.2 Hz), 2.1 (2H, m), 1.2-1.42 (8H, m), 0.88 (3H, t, *J* = 7.2 Hz), 0.38 (6H, s).

MS *m*/*z*: 286 (M⁺), 271 (M⁺-Me). HRMS. Calcd for C₁₉H₁₅Si: 271.0943. Found: 271.0952.

Coupling with Iodomethane

To a mixture of CuCN (4.5 mg, 0.05 mmol) in 5 mL of dry THF and iodomethane (212.9 mg, 1.5 mmol), the vinylzinc species (**2a**) was added dropwise at –78°C. The mixture

was stirred at room temperature for 12 hours. The mixture was extracted with Et₂O, dried over MgSO₄, and evaporated under reduced pressure. Then it was purified by silica-gel chromatography (eluent; n-hexane) and 234.4 mg of a regio-mixture (91:9) of the vinylsilane was obtained as colorless oil (90% yield). **10a-3** : ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.31-7.34 (3H, m), 6.15 (1H, q, *J* = 6.8 Hz), 2.1 (2H, m), 2.1 (3H, d, *J* = 6.8 Hz), 1.2-1.42 (8H, m), 0.88 (3H, t, *J* = 7 Hz), 0.87 (6H, s). MS *m*/*z*: 260 (M⁺). HRMS Calcd for C₁₇H₂₈Si: 260.1959. Found: 260.1928.

Coupling with Iodo-benzene

To the vinylzinc species (**2a**), Pd(PPh₃)₄ (57.8 mg, 0.05 mmol) in 10 mL of dry THF and iodo-benzene (244.9 mg, 1.2 mmol) were added at –78°C. The mixture was stirred at room temperature for 12 hours. The mixture was extracted with Et₂O, dried over MgSO₄, and evaporated under reduced pressure. Then it was purified by silica-gel chromatography (eluent; n-hexane) and 306.3 mg of a regio-mixture (93:7) of the vinylsilane was obtained as colorless oil (95% yield). **10a-4** : ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.49-7.53 (2H, m), 7.49-7.53 (2H, m), 7.31-7.34 (4H, m), 7.08-7.18 (5H, m), 2.27 (2H, td, *J* = 6.4, 1.2 Hz), 1.2-1.42 (8H, m), 0.88 (3H, t, *J* = 7 Hz), 0.17 (6H, s). MS *m*/*z*: 322 (M⁺). HRMS Calcd for C₂₂H₃₀Si: 322.2115. Found: 322.2112.

NMR Spectroscopic Analyses of Organometallic Species.

¹H, ¹³C, and ⁷Li NMR spectra were obtained on a JEOL ECA-500 spectrometer, operating at 500.160, 125.765 and 194.381 MHz, respectively. All samples were run in THF solution at -100 °C. The capillary tube contained THF- d_8 used as the ¹³C chemical shift reference and lock solvent. ¹H NMR spectra were referenced to a solvent signal (3.58 ppm). ¹³C NMR spectra were referenced to a THF- d_8 signal (67.4 ppm). ⁷Li NMR spectra were referenced to external 0.5 M LiBr in THF- d_8 at the temperature at which each sample was run (0.0 ppm). Complete ¹H and ¹³C NMR chemical shift assignments were made on the basis of decoupled 1D NMR and DEPT experiments.

^{*t*}Bu₄ZnLi₂ (a model highly crowded zincate)

 $^{t}Bu_{2}Zn$ were prepared by using a modification of the literature method:⁹ A solution of ^tBuLi in pentane (1.32 M, 22.5 ml, 30 mmol) and zinc chloride in THF (0.5 M, 30 ml, 15 mmol) was stirred at 0°C for 30 minutes. The solution was distilled (34-35°C/ 9 mmHg) to give ^tBu₂Zn (no lithium ion was detected by ⁷Li NMR).

Table. ¹H, ¹³C, and ⁷Li NMR Spectroscopic Data for ^tBuLi, ^tBu₂Zn, and ^tBu₄ZnLi₂ at -100°C

	1 H (δ , ppm)	¹³ C (δ, ppm)	⁷ Li (δ, ppm)
^t BuLi	$0.74 (0.74)^a$	17.0 (17.1) ^{<i>a</i>} , 40.6 (40.4) ^{<i>a</i>}	$0.82 (0.26)^a$
^t Bu ₂ Zn	0.85	22.7 $(28.43)^b$, 34.4 $(31.03)^b$	-
^t Bu ₄ ZnLi ₂	0.69	24.2, 36.7	-0.32

^{*a*} Reported data for ^{*b*}BuLi in THF-*d*₈; ref.10. ^{*b*} Reported NMR data for ^{*b*}Bu₂Zn in benzene-*d*₆; ref.11.

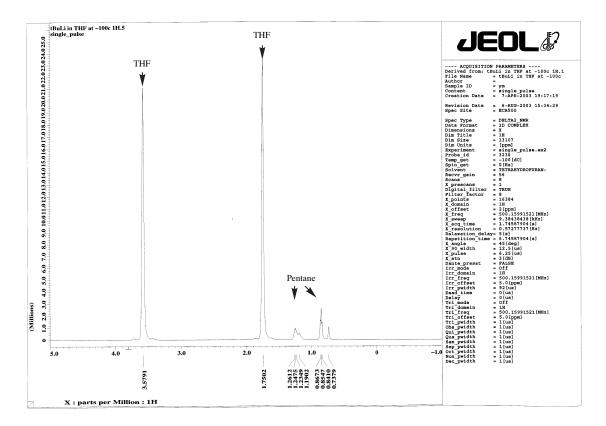


Figure S-1. ¹H NMR Spectrum of ^tBuLi in THF at -100°C

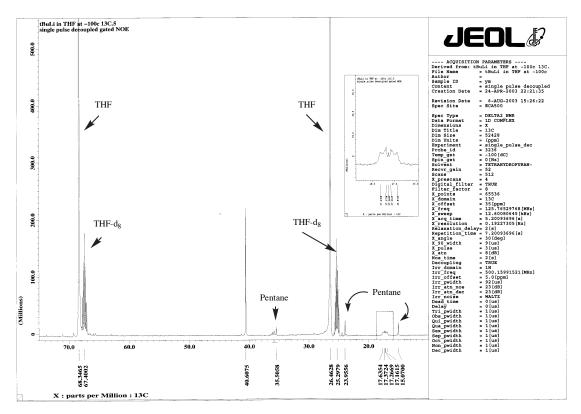
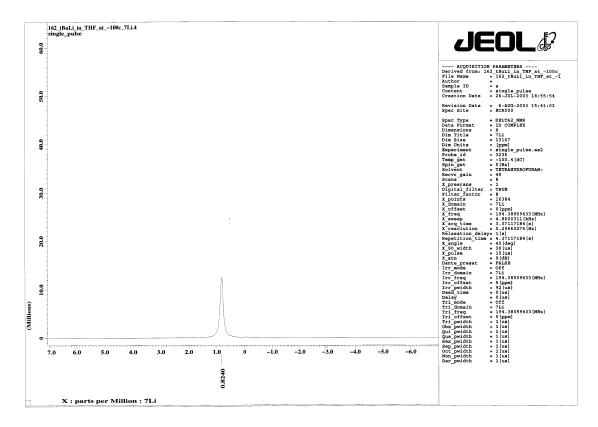
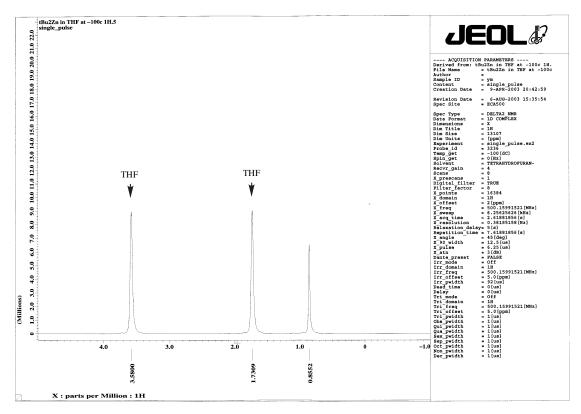
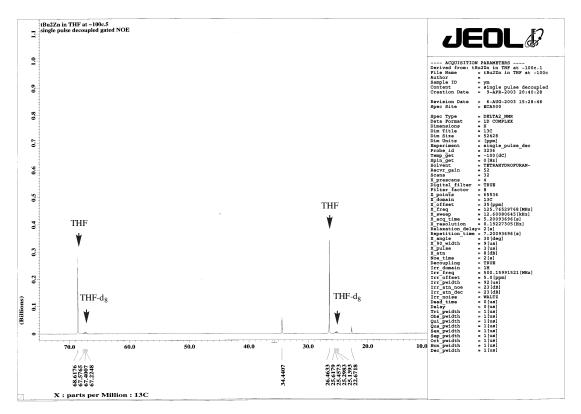
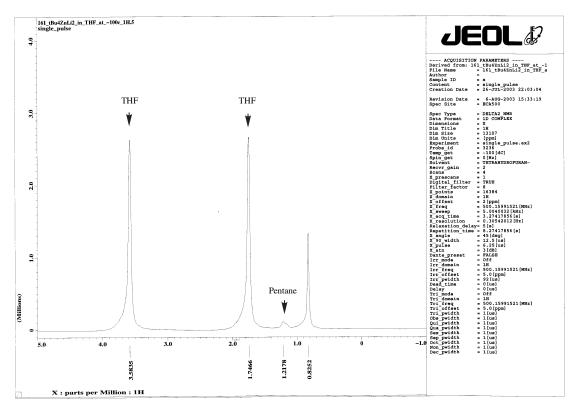
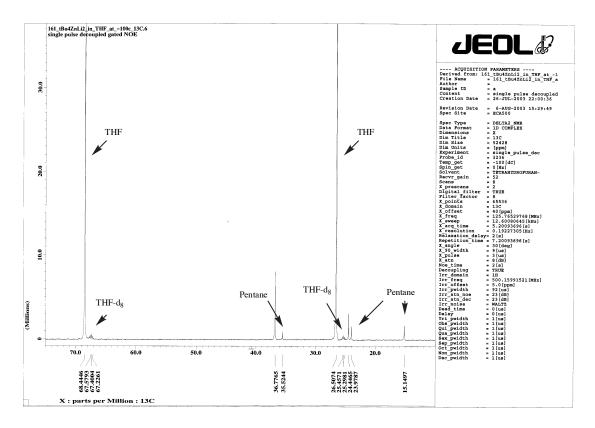
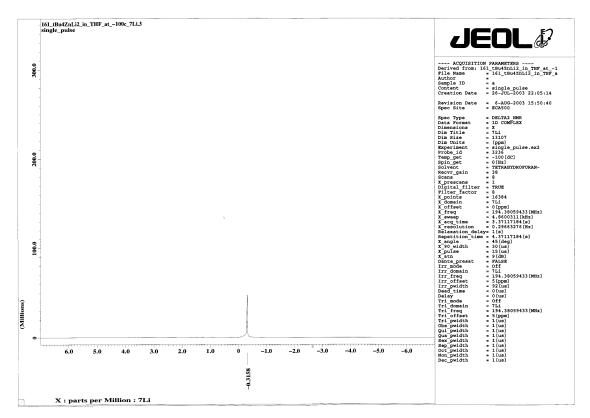


Figure S-2. ¹³C NMR Spectrum of 'BuLi in THF at -100°C


Figure S-3. ⁷Li NMR Spectrum of ^tBuLi in THF at -100°C


Figure S-4. ¹H NMR Spectrum of ^{*t*}Bu₂Zn in THF at -100°C


Figure S-5. ¹³C NMR Spectrum of ^{*t*}Bu₂Zn in THF at -100°C

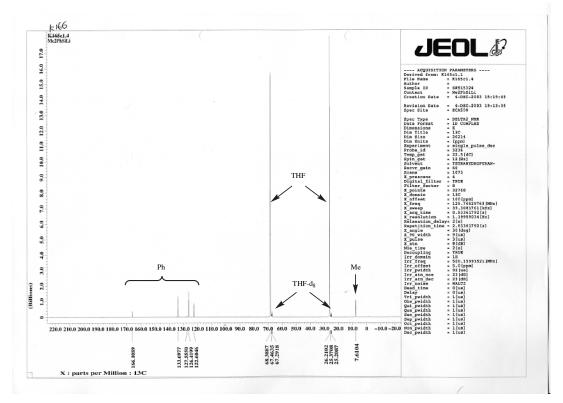

Figure S-6. ¹H NMR Spectrum of ^{*t*}Bu₄ZnLi₂ in THF at -100°C

Figure S-7. ¹³C NMR Spectrum of ^{*t*}Bu₄ZnLi₂ in THF at -100°C

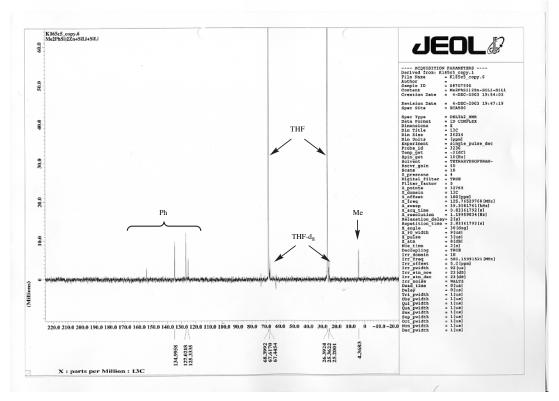


Figure S-8. ⁷Li NMR Spectrum of ^{*i*}Bu₄ZnLi₂ in THF at -100°C

(Me₂PhSi)₄ZnLi₂ (the most crowded zincate in this study; Table 1 entry 3)

Figure S-9. ¹³C NMR Spectrum of Me₂PhSiLi in THF at -100°C

Figure S-10. ¹³C NMR Spectrum of (Me₂PhSi)₄ZnLi₂ in THF at -100°C

References

1

1	(a) Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 46, 1879-1880; (b) Watson, S. C.; Eastham, J.
	F. J. Organomet. Chem. 1967, 9, 165-168.
2	Sharma, S.; Oehlschlager, A. C. Tetrahedron 1989, 45, 557-568.
3	Jun, CH.; Crabtree, R. H. J. Organomet. Chem. 1993, 447(2), 177-187.
4	Fleming, I.; Rowley, M. Tetrahedron, 1989, 45, 413-424.
5	Wakamatsu, K.; Nonaka, T.; Okuda, Y.; Tückmantel, W.; Oshima, K.; Nozaki, H. Tetrahedron, 1986,
	42, 4427-4436.
6	Green, M.; Spencer, J. L.; Stone, F. G. A.; Tsipis, C. A. J. Chem. Soc., Dalton Trans. 1977, 1525-1529.
7	Lukevics, E.; Sturkovich, R. Ya.; Pudava, O. A. J. Organomet. Chem. 1985, 292(1-2), 151-158.
8	Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Peri, F.; Ricci, A. J. Chem. Soc., Prekin
	Trans. 1 1996, 2803-2809.
9	a) M. H. Abraham, J. Chem. Soc. 1960, 4130. b) G. E. Coates, P. D. Roberts, A. J. Downs, J.
	Chem. Soc. (A), Inorg. Phys. Theor. 1967, 1085.

- ¹⁰ M. Bauer, W. R. Winchester, P. v. R. Schleyer, *Organometallics* **1987**, *6*, 2371.
- ¹¹ H. Mueller, L. Roesch, W. Erb, R. Zeisberg, J. Organomet. Chem. **1977**, 140, C17.