Selective Mono-O-acylation of the $\mathbf{C}_{2 v}$-Symmetrical Calix[4]arenediols with Acylisocyanates

Anton V. Yakovenko, ${ }^{\dagger}$ Vyacheslav I. Boyko, ${ }^{\dagger}$ Oleg V. Kushnir, ${ }^{\dagger}$ Ivan F. Tsymbal, ${ }^{\dagger}$ Janusz Lipkowski, ${ }^{\dagger}$ Alexander Shivanyuk, ${ }^{\dagger}$ Vitaly I. Kalchenko ${ }^{\dagger}{ }^{\dagger}$ *
Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 02094 Kyiv 02660, Murmanska str. 5, Ukraine. Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224, Warsaw, Poland.
E-mail: vik@bpci.kiev.ua.

5,11,17,23-Tetrakis-tert-butyl-25,27-dimethoxy-26-trifluoroacetylaminocarbonyl-28-

hydroxycalix[4]arene (4a). Yield 75%. M. p. $130-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: $0.76(\mathrm{~s}, 18 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 3.31(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 4.14(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.51\left(\mathrm{~d}, J_{H-H}^{4}=4.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 6.55(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 10.76(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \delta$, ppm.: -76.9. IR $\left(\mathrm{CCl}_{4}\right), \mathrm{cm}^{-1}: 1745\left(\mathrm{CF}_{3} \mathrm{C}=\mathrm{O}\right), 1815(\mathrm{O}-\mathrm{C}=\mathrm{O}), 3245,3410(\mathrm{NH})$, 3300 (ass OH). Calculated for $\mathrm{C}_{49} \mathrm{H}_{60} \mathrm{~F}_{3} \mathrm{NO}_{6}$: $\mathrm{C} 72.12, \mathrm{H} 7.41$, found: $\mathrm{C} 72.09, \mathrm{H} 7.42$.

5,11,17,23-Tetrakis-tert-butyl-25,27-dimethoxy-26-benzoylaminocarbonyl-28-
hydroxycalix[4]arene (4c). Yield 50%. M. p. $195{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$ $\left.d_{6}\right), \delta, \mathrm{ppm}: 0.80(\mathrm{~s}, 18 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 3.37(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=13.5$ $\mathrm{H}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 3.97(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, 2H), 6.70 (d, J = $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (s, 2H), 7.35 (s, 2H), 7.49 (s, 1H), 7.62 (m, 3H), 8.32 (d, 2H), $10.40(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{IR}\left(\mathrm{CCl}_{4}\right), \mathrm{cm}^{-1}: 1701(\mathrm{Ph}-\mathrm{C}=\mathrm{O}), 1794(\mathrm{O}-\mathrm{C}=\mathrm{O}), 3365(\mathrm{NH}$ and OH$)$. Calculated for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{NO}_{6}$: C 78.70, H 7.95, N 1.70, found: C 79.09, H 7.72, N 2.20.

5,11,17,23-Tetrakis-tert-butyl-25,27-dimethoxy-26-(p-tolyl)sulfonylaminocarbonyl-28-

 hydroxycalix[4]arene (4d). Yield 44%. M. p. $251-254^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: $0.80(\mathrm{~s}, 18 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J$ $=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 4.07(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}) .7 .37$ and $8.15(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 9.93(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{IR}\left(\mathrm{CCl}_{4}\right), \mathrm{cm}^{-1}: 1765(\mathrm{O}-\mathrm{C}=\mathrm{O}), 3240(\mathrm{NH}), 3300(\mathrm{OH})$. Calculated for $\mathrm{C}_{54} \mathrm{H}_{67} \mathrm{NO}_{7} \mathrm{~S}$: C 74.19, H 7.73, N 1.60, found: C 74.62, H 8.03, N 1.98 .
5,11,17,23-tetra-tert-butyl-25,27-dipropoxy-26-trifluoroacetylaminocarbonyloxy-28-

hydroxycalix[4]arene (4e). To a solution of calixarene $\mathbf{3 b}(0.4 \mathrm{~g}, 0.546 \mathrm{mmol})$ in 5 ml of dried benzene was added drop wise a solution of trifluoroacetylisocyanate ($0.45 \mathrm{~g}, 3.276 \mathrm{mmol}$) in 3 ml of benzene and 2 drops of $\mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was stirred overnight at room temperature. Then the solution was evaporated in vacuo. The product was crystallized from acetonitrile-methanol mixture. The compound $\mathbf{4 e}$ (colorless crystals) was filtered off and dried in vacuo. Yield 55\%. ${ }^{1} \mathrm{H}$ NMR $\left(C D C l_{3}\right), \delta$, ppm.: $0.81(\mathrm{~s}, 18 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.35(\mathrm{~s}$, $9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H}), 3.297$ and $3.34(2 \mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 3.78(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, 4H) 4.14 and $4.24(2 \mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 6.53$ and $6.55(2 \mathrm{bs}, 2 \mathrm{H}$ each $), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.12$ (bs, 2H), $7.23(\mathrm{bs}, 2 \mathrm{H}), 10.50(\mathrm{bs}, 1 \mathrm{H})$.

25,27-dimethoxy-26-trifluoroacetylaminocarbonyloxy-28-hydroxycalix[4]arene 4f. To a solution of calixarene $\mathbf{3 c}(0.120 \mathrm{~g}, 0.265 \mathrm{mmol})$ in 5 ml of dried dichloromethane was added drop wise a solution of trifluoroacetylisocyanate $(0.29 \mathrm{~g}, 0.212 \mathrm{mmol})$ in 3 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 drops of $\mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was stirred overnight at room temperature. Then the solution was evaporated in vacuo. The obtained residue was dissolved in minimal volume of
dichloromethane on precipitated with diethyl ether. The compound $\mathbf{4 f}$ (colorless crystals) was filtered off and dried in vacuo. Yield 50%. M.p. decomp $>120^{\circ} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm.: 3.40 and $3.41(2 \mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 3.81(\mathrm{~s}, 6 \mathrm{H}), 4.23(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.55-6.80(\mathrm{~m}$, 7H) , 7.01 (s, 1H), 7.11 (bs, 1H), 7.13 (bs, 1H), 7.24 (bs, 1H), 7.26 (bs, 1H), 7.35 (bs, 1H) 10.94 (bs, 1H). ${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm.: -77.56.

