Supporting Information
 for Design of New Chiral Phase-Transfer Catalysts with Dual-Functions for Highly Enantioselective Epoxidation of α, β-Unsaturated Ketones

Takashi Ooi, Daisuke Ohara, Masazumi Tamura, and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto 606-8502, Japan

Characterization of Chiral Quaternary Ammonium Salts 1a, 1b, 1c and 2

Chiral Ammonium Salt 1a: $[\alpha]_{\mathrm{D}}{ }^{31}+179.7^{\circ}\left(c 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04$ ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.89(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.62(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.47-7.34$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.21(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.08(6 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 6.90-6.84(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.77-6.71(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.09\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $4.83(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.63\left(2 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.10\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.35(2 \mathrm{H}, \mathrm{d}$, $J=12.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,147.2,144.9,144.7,136.3,134.0,131.2$, 131.1, 130.0, 129.7, 128.9, 128.3, 128.1, 127.9, 127.7, 127.6, 127.3, 127.2, 127.0, 126.9, 126.7, 126.6, 82.3, 66.2, 60.2; IR (neat) 3198, 3053, 1595, 1491, 1447, 1356, 1306, 1165, 1047, 1026, 910, 835, 790, 764, $727 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{62} \mathrm{H}_{48} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 838.3680, Found: 838.3672.

Chiral Ammonium Salt 1b: $[\alpha]_{\mathrm{D}}{ }^{30}+135.9^{\circ}\left(c 0.45, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ ($2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.72 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.64 ($2 \mathrm{H}, \mathrm{ddd}, J=7.9,6.4,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.48-7.41 (8H, m, Ar-H), 7.33-7.31 (8H, m, Ar-H), 7.12 ($2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.01-6.97 (8H, m, Ar-H), $6.91(2 \mathrm{H}, \mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.73(2 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 5.02\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $4.42\left(2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}\right), 4.06\left(2 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.26\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9,148.3,145.9,144.9,136.2,133.7,131.1,130.8,130.4,129.7$, $129.5,129.4,129.2,129.1,128.3,128.0,127.6,127.2,127.1,127.0,126.9,126.5,125.1,125.1$, 124.7, 124.7, 122.3, 122.0, 81.8, 66.2, 59.9; ${ }^{19}$ F NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.4,-60.5$; IR (neat) $3184,3061,1616,1410,1323,1167,1123,1069,1016,908,841,816,793,770,735,654 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{66} \mathrm{H}_{44} \mathrm{~F}_{12} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 1110.3175$, Found: 1110.3145.

Chiral Ammonium Salt 1c: $[\alpha]_{\mathrm{D}}{ }^{31}+177.3^{\circ}\left(c 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.92(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.57(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.46-7.33$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $6.91(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.43(4 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 6.35(2 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $6.22(2 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.87\left(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.98\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $4.85\left(4 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}\right.$ and OH$), 4.37\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.96\left(2 \mathrm{H}, \mathrm{d}, J=13.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $3.60\left(12 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.50\left(12 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,160.0,149.0$, $147.8,146.2,144.5,136.3,133.7,131.2,130.7,130.0,129.5,129.0,128.5,128.1,127.6,127.3$, $127.0,126.7,126.3,106.6,104.8,98.9,98.8,82.3,66.7,60.3,55.5,55.2$; IR (neat) 3248, 2938,

2840, 1595, 1458, 1423, 1339, 1290, 1204, 1153, 1053, 922, 839, 754, $733 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{70} \mathrm{H}_{64} \mathrm{NO}_{10}\left(\mathrm{M}^{+}\right): 1078.4525$, Found: 1078.4555.
Chiral Ammonium Salt 2: $[\alpha]_{\mathrm{D}}{ }^{31}+57.4^{\circ}\left(c 0.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ $(4 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.92(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.65(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.50-7.42$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.18-7.10 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.99(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(4 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, ArH), $6.80\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}\right.$, Ar-H), $6.67(8 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{2} \mathrm{CH}\right), 4.68(2 \mathrm{H}, \mathrm{d}$, $\left.J=12.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.46\left(2 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.95(2 \mathrm{H}$, d, $J=12.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,143.4,142.2,141.2,136.5,134.2$, $131.2,131.0,130.6,130.1,129.6,129.1,128.7,128.6,128.5,127.5,127.4,127.3,127.0,126.9$, 126.7, 126.6, 125.6, 63.7, 53.4; IR (neat) 3059, 3024, 2924, 2852, 1595, 1494, 1450, 1377, 1354, 1030, 921, 904, 823, 729, $702 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{62} \mathrm{H}_{48} \mathrm{~N}\left(\mathrm{M}^{+}\right): 806.3781$, Found: 806.3811.

Representative Procedure for the Synthesis of Chiral Ammonium Salts 1d and 1e

Synthesis and Characterization of Secondary Amine 8: A mixture of $\mathbf{3}^{1}(430 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(11.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$, bis(diphenylphosphino)propane (dppp) ($20.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) and $i-$ $\mathrm{Pr}_{2} \mathrm{NEt}(790 \mu \mathrm{~L}, 4.4 \mathrm{mmol})$ in degassed DMSO $(4.0 \mathrm{~mL})$ and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was heated to $120{ }^{\circ} \mathrm{C}$
with stirring for 12 h under CO atmosphere (10 atm). After cooling to room temperature, the resulting mixture was poured into water and extracted with ether. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography on silica gel (ethyl acetate/hexane $=1: 10$ as eluant) to give 4 ($286 \mathrm{mg}, 0.96 \mathrm{mmol}, 96 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ ($2 \mathrm{H}, \mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.29 ($2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.23 ($2 \mathrm{H}, \mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 3.92 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 2.23 ($6 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}$).

Then, a mixture of $4(186 \mathrm{mg}, 0.62 \mathrm{mmol}), N$-bromosuccinimide (NBS) ($222 \mathrm{mg}, 1.24 \mathrm{mmol}$) and 2,2'-azobis(isobutyronitrile) (AIBN) ($10.4 \mathrm{mg}, 10 \mathrm{~mol} \%$) in benzene (4.0 mL) was heated and refluxed for 3 h . After being cooled to room temperature, this mixture was poured into water and extracted with ether. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography on silica gel (ethyl acetate/hexane $=1: 3$ as eluant) to afford 5 ($283 \mathrm{mg}, 0.62 \mathrm{mmol}, 99 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(2 \mathrm{H}, \mathrm{dd}, J=6.8,2.4$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.49-7.43(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.91\left(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.46(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.98\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.

To a solution of 5 thus obtained ($283 \mathrm{mg}, 0.62 \mathrm{mmol}$) in acetonitrile (2.0 mL) was added allylamine ($140 \mu \mathrm{~L}, 1.86 \mathrm{mmol}$) at room temperature. The mixture was then heated to $50^{\circ} \mathrm{C}$ and stirring was continued for 5 h . The resulting mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvents and purification of the residue by flash column chromatography on silica gel (ethyl acetate/hexane $=1: 3$ as eluant) gave 6 ($196 \mathrm{mg}, 0.58 \mathrm{mmol}, 90 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.6$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.58(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.00(1 \mathrm{H}$, dddd, , $J=$ $\left.16.8,10.4,6.4,6.4 \mathrm{~Hz}, \mathrm{C} \underline{H}=\mathrm{CH}_{2}\right), 5.21-5.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.80-4.45\left(2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}\right), 3.94$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.70-2.60\left(4 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{C}=\mathrm{C}\right)$.
To a solution of 3,5-diphenyl-1-bromobenzene ${ }^{2}(1.86 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added a 1.6 M hexane solution of $n-\mathrm{BuLi}(3.75 \mathrm{~mL}, 6.0 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h , then cooled back to $-78{ }^{\circ} \mathrm{C}$. A solution of $6(351 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ was added dropwise with stirring. After the addition was completed, the mixture was again allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred there for 2 h . The resulting mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography on silica gel (ethyl acetate/hexane $=1: 3$ as eluant) to afford $7(1.20 \mathrm{~g}, 1.0 \mathrm{mmol}$, 99% yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$), $7.70(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.66$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-$ H), 7.60-7.53 (20H, m, Ar-H), 7.46 ($2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.41-7.36 (18H, m, Ar-H), 7.33-7.21 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $6.92(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.71(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}$, cis- $\mathrm{CH}=\mathrm{CH}_{2}$), $4.60\left(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}\right.$, trans $\left.-\mathrm{CH}=\mathrm{CH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.37$
$\left(1 \mathrm{H}, \mathrm{dd}, J=13.5,3.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{C}=\right), 2.89\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.71(1 \mathrm{H}, \mathrm{dd}, J=13.5,9.1$ $\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{C}=$).

A mixture of $7(1.09 \mathrm{~g}, 0.9 \mathrm{mmol})$ prepared above, N, N-dimethylbarbituic acid (NDMBA) (453 $\mathrm{mg}, 2.9 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$, triphenylphosphine ($35.4 \mathrm{mg}, 15 \mathrm{~mol} \%$) in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was heated to $35{ }^{\circ} \mathrm{C}$ and stirred overnight under argon atmosphere. After cooling, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum and replaced by ethyl acetate. This mixture was washed twice with saturated NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 10\right.$ as eluant) furnished 8 ($876 \mathrm{mg}, 0.75 \mathrm{mmol}, 83 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(4 \mathrm{H}, \mathrm{dt}, J=5.9$, $1.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.62(8 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.55(16 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{d}, J=7.9$ Hz, Ar-H), 7.41-7.21 (26H, m, Ar-H), 6.91 ($2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.08(2 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 2.95\left(2 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,148.1,145.7$, $143.3,141.2,141.1,140.8,140.7,134.9,129.2,128.5,127.6,127.2,127.1,127.1,127.0,126.3$, $126.0,125.0,124.9,124.8,83.5,45.3$; IR (neat) $3312,3059,3034,1593,1576,1497,1452,1427$, 1412, 1157, 1074, 1032, 907, 881, 758, 729, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{88} \mathrm{H}_{66} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 1168.5088, Found: 1168.5068.

Chiral bis(bromide) $9\left(\mathrm{R}=3,5-\mathrm{Ph}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)$ was synthesized according to the reported procedure. ${ }^{3} 9$ $\left(\mathbf{R}=\mathbf{3 , 5}-\mathbf{P h}_{2}-\mathbf{C}_{6} \mathbf{H}_{3}\right):[\alpha]_{\mathrm{D}}{ }^{28}-50.4^{\circ}\left(c 0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(2 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.97(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.89(4 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.84(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.79(8 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, Ar-H), $7.51(10 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.41(4 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.37-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $4.39\left(4 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{Br}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,141.2,140.8,140.6,133.7,133.5$, $132.8,131.5,128.7,128.6,127.7,127.4,127.2,127.1,126.8,126.6,126.1,125.2,32.6$; IR (KBr) 3059, 3036, 2924, 2851, 1728, 1593, 1497, 1454, 1423, 1373, 1261, 1211, 1076, 1030, 883, 799, $760,698 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{88} \mathrm{H}_{66} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 894.1497$, Found: 894.1498.

Preparation and Characterization of Chiral Quaternary Ammonium Salt 1d: A mixture of 8 ($117 \mathrm{mg}, 0.1 \mathrm{mmol}$), $9(59.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(34.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ in acetonitrile (4.0 mL) was heated to reflux and stirring was maintained for 10 h . The resulting mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 10\right.$ as eluant) to give $\mathbf{1 d}(111 \mathrm{mg}, 0.077 \mathrm{mmol}, 77 \%$ yield $):[\alpha]_{\mathrm{D}}{ }^{30}+430.5^{\circ}\left(c 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(2 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.67(2 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.55(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, 7.53 ($2 \mathrm{H}, \mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.51-7.41 (30H, m, Ar-H), 7.39 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.36 ($2 \mathrm{H}, \mathrm{m}$, Ar-H), 7.32 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.22-7.27 (10H, m, Ar-H), 7.19 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.09 (2H, d, J $=8.7 \mathrm{~Hz}$, Ar-H), $6.99(4 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.16\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.90(2 \mathrm{H}, \mathrm{d}, J=$ $\left.13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.77\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.96\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,146.7,146.2,145.6,144.7,141.8,141.5,141.2,140.7,140.6,140.2$, $140.1,140.0,139.9,135.7,134.6,132.1,131.8,131.2,130.4,129.0,128.6,128.4,128.4,127.9$, $127.7,127.4,127.3,127.1,127.0,126.9,126.8,126.4,126.1,125.6,125.5,125.0,124.3,124.1$, 124.1, 67.4, 65.7, 60.7; IR (KBr) 3057, 1593, 1499, 1427, 1304, 1160, 1030, 880, 816, 760, $696 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) Calcd for $\mathrm{C}_{110} \mathrm{H}_{80} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 1446.6184, Found: 1446.6189.

Chiral Ammonium Salt 1e: 1e was prepared in a similar manner as described above. (84% yield): $[\alpha]_{\mathrm{D}}{ }^{27}+43.2^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 7.83 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$), 7.63-7.58 (12H, m, Ar-H), 7.50 ($10 \mathrm{H}, \mathrm{m}, ~ \mathrm{Ar}-\mathrm{H}$), 7.40-7.34 (24H, m, Ar-H), 7.24-7.17 (30H, m, Ar-H), 7.11-7.08 (14H, m, Ar-H), 5.73 ($2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}$), 4.51 ($2 \mathrm{H}, \mathrm{d}$, $\left.J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.39\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.33\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,146.5,145.9,144.9,142.1,141.8,141.4,140.9,140.8,140.4,140.3$, $140.2,135.9,135.7,132.3,132.0,131.5,130.6,128.8,128.6,127.9,127.6,127.4,127.2,127.0$, 125.8, 125.2, 124.3, 65.9; IR (KBr) 3061, 3036, 2926, 1593, 1578, 1496, 1427, 1217, 1030, 840, $758,698 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{146} \mathrm{H}_{104} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 1902.8062$, Found: 1902.8079.

X-ray Structure Determination

Chiral Ammonium Salt 1e-PF \mathbf{F}_{6} : Usual anion exchange of $\mathbf{1 e - B r}$ using Amberlyst-A26 $\left(\mathrm{OH}^{-}\right.$ form) gave $\mathbf{1 e}-\mathrm{OH}$. A methanolic solution of $\mathbf{1 e}-\mathrm{OH}$ was then treated with $60 \% \mathrm{HPF}_{6}$ aqueous solution at $0{ }^{\circ} \mathrm{C}$. The resulting precipitate was collected by filtration and washed with water to afford $\mathbf{1 e}-\mathrm{PF}_{6}$ which was recrystallized from acetone/ether/hexane solvents system at $0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.72(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.49-7.48(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, 7.43-7.35 (10H, m, Ar-H), 7.29-7.23 (20H, m, Ar-H), 7.12-7.09 (30H, m, Ar-H), 7.01-5.97 (10H, m, $\operatorname{Ar}-\mathrm{H}), 5.63\left(2 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.40\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.28(2 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 4.23\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$.

The single crystal thus obtained was mounted on a CryoLoop (Hampton Research Co. Ltd.). Data of X-ray diffraction were collected by Rigaku RAXIS-RAPID Imaging Plate two-dimensional area detector using graphite-monochromated $\operatorname{MoK} \alpha$ radiation $(\lambda=0.71070 \AA$) to a maximum 2θ value of 63.0°. All of the crystallographic calculation were performed using CrystalStructure software package of the Rigaku Corporation and Molecular Structure Corporation. The crystal structure was solved by the direct methods and refined by the full-matrix least squared using SIR2002. All non-hydrogen atoms and hydrogen atoms were refined anisoropically and isotropically, respectively. The crystallographic data were summarized in the following table.

$$
\text { Chiral Ammonium Salt } \mathbf{1 e}-\mathrm{PF}_{6}
$$

empirical formula formula weight crystal system
$\mathrm{C}_{152} \mathrm{H}_{112.5} \mathrm{~F}_{6} \mathrm{NO}_{4.25} \mathrm{P}$
2166.03

Orthorhombic

space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}($ No. 19 $)$
a, \AA	17.311
b, \AA	18.198
c, \AA	40.790
V, \AA^{3}	12849.9
Z	4.0
$D_{\text {calc }}, \mathrm{g}^{3} / \mathrm{cm}^{3}$	1.120
$T,{ }^{\circ} \mathrm{C}$	-150
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	0.084
no. of reflns meased	161437
no. of reflns obsd	18992
no. of reflns variable	1528
R	0.0810
R_{w}	0.1200
goodness of fit	1.00

ORTEP Diagram of Chiral Quaternary Ammonium Salt 1e-PF ${ }_{6}$ (from binaphthyl side; The solvent molecules (acetone and $\mathrm{H}_{2} \mathrm{O}$) and all hydrogen atoms are omitted for clarity.)

Stereo View of $1 \mathrm{e}-\mathrm{PF}_{6}$

General Procedure for Enantioselective Epoxidation of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Ketones. To a mixture of enone (0.10 mmol) and chiral quaternary ammonium salt $\mathbf{1 e}(6 \mathrm{mg}, 0.003 \mathrm{mmol}, 3$ $\mathrm{mol} \%$) in toluene (0.3 mL) was added 13% aqueous sodium hypochlorite ($\mathrm{NaOCl}, 0.15 \mathrm{~mL}$) and the mixture was stirred for several hours at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The resulting mixture was diluted with water and organic phase was separated. The aqueous phase was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated and the residual oil was purified by flash column chromatography on silica gel (ethyl acetate/hexane as eluant) to afford the corresponding epoxy ketone. An optical purity of the epoxy ketone was determined by chiral stationary-phase HPLC analysis. Table 1 shows the HPLC conditions and retention time for each epoxy ketone.

Table 1. HPLC Conditions for Epoxy Ketones.

$R^{1} \begin{gathered} \text { epoxy ketone } \\ R^{2} \end{gathered}$		chiral column	eluants (hexane/2-propanol)	flow rate (mL/min)	retention $(\alpha S, \beta R)$	$\begin{aligned} & \operatorname{me}(\min) \\ & (\alpha R, \beta S) \end{aligned}$	ref.	
Ph $\quad \beta$-Np		CHIRALCEL OD	50:1	0.5	50.9	62.8	4	
$\mathrm{Ph} \quad p$-Cl-C	$p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$				44.0	48.1		
$\mathrm{Ph} \quad p-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$					49.8	57.4		
$p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \quad \mathrm{Ph}$					43.1	41.2	5	
$p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \quad n$ - Hex		CHIRALCEL OD-H	95:5		(13.3	17.1)		
$t-\mathrm{Bu} \quad \mathrm{Ph}$		CHIRALCEL AD	20:1 (hexane/EtOH)	1.0	8.1	11.6	6	
$\begin{array}{ll} t \text {-Bu } & c \text { - } \mathrm{Hex} \\ t \text {-Bu } & n \text {-Hex } \end{array}$		CHIRALPAK AS	100:1	0.5	(17.5	20.5)		
		(11.7			16.6)			
	$\mathrm{n}=1$		CHIRALCEL AD		10:1	27.0	30.8	
	$\mathrm{n}=2$	9:1			27.9	23.3		

Results of the Epoxidation of Chalcone with Structurally Rigid Hetero- and Homochiral Quaternary Ammonium Bromides 10 and 11 as Catalysts.

69 \%, 54 \%ee ($2 S, 3 R$)

(S)

33 \%, 56 \%ee ($2 S, 3 R$)
S-7

53 \%, 37 \%ee $(2 S, 3 R)$

Structurally rigid, heterochiral quaternary ammonium bromide 10a was prepared and evaluated in the epoxidation of chalcone; this revealed that 10a exerted adequate catalytic activity to gave epoxy chalcone in good yield with promising enantioselectivity, though it was not as good as that with catalyst 1a. It was of interest that our attempt to prepare homochiral 10b by the quarternization of secondary amine $\mathbf{1 2}$ with bis(bromide) $\mathbf{1 3}$ turned out to be unsuccessful, resulting in the total recovery of the starting materials even under relatively harsh conditions.

This is probably due to the steric demand of the diphenylhydroxymethyl functionality. Since we were able to prepare hetero- and homochiral ammonium bromides 11a and 11b having dimethylhydroxymethyl group, comparison of their chiral efficiency was made in the epoxidation, demonstrating that heterochiral 11a afforded higher enantioselectivity. This is in contrast to the tendency observed in the alkylation of glycinate Schiff base. ${ }^{8}$

Characterization of Chiral Quaternary Ammonium Salts 10a, 11a and 11b

Chiral Ammonium Salt 10a: $[\alpha]_{D}{ }^{31}+99.3^{\circ}\left(c 0.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.89(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.62(2 \mathrm{H}, \mathrm{t}$, $J=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48-7.38(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.29-7.22(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.15(4 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-$ H), $6.97(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.92(4 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $6.70(4 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.31(2 \mathrm{H}, \mathrm{br}$ s, OH$), 5.02\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.26(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.10\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.27\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5,144.2,142.8,139.9,136.2,133.8,132.2,131.1,131.0,129.5$, 128.7, 128.2, 128.0, 127.7, 127.6, 127.5, 127.1, 127.0, 126.9, 126.9, 126.8, 126.4, 82.1, 65.5, 60.7; IR (neat) 3196, 3055, 2926, 1595, 1490, 1447, 1342, 1254, 1217, 1167, 1051, 1026, 893, 864, 818, 746, $702 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{70} \mathrm{H}_{52} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 938.3993, Found: 938.4001.
Chiral Ammonium Salt 11a: $[\alpha]_{D}{ }^{29}+83.0^{\circ}\left(c 0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$), $7.99(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.98(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.96(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.70(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.58-7.52(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.46$ ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.33(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.24(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.88$ $\left(2 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.77\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $4.36\left(2 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.42(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.90\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.1,140.0,136.8,134.1,133.2,131.2,130.8,129.6,128.7,128.5,128.0$,
$127.8,127.6,127.4,127.0,127.0,126.8,126.6,126.4,125.5,73.0,66.1,60.2,34.3,31.8$; IR (neat) 3265, 3053, 2976, 2191, 1593, 1464, 1364, 1163, 920, 868, 816, 750, $729 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 690.3367$, Found: 690.3388 .
Chiral Ammonium Salt 11b: $[\alpha]_{D}{ }^{31}-8.52{ }^{\circ}\left(c 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 8.17(2 \mathrm{H}, \mathrm{s}, \operatorname{Ar}-\mathrm{H}), 8.16(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.01(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.98(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.52(4 \mathrm{H}, \mathrm{dd}, J=15.8,8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.25-7.12(6 \mathrm{H}, \mathrm{m}$, Ar-H), $6.75(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.36\left(2 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.83(2 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 4.37(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.28\left(2 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.77\left(2 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.28$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.44\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,139.3,136.8,134.0,132.9$, 131.1, 129.6, 128.9, 128.3, 128.1, 127.5, 127.3, 127.2, 126.7, 126.5, 126.3, 126.3, 125.8, 125.7, $73.8,63.5,60.1,35.2,31.5$; IR (neat) $3260,3051,2972,2926,2853,2193,1724,1595,1454,1362$, $1163,1150,1032,953,920,837,750,729,652 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 690.3367, Found: 690.3366.

Catalyst Recycles in the Epoxidation of Chalcone

To a mixture of chalcone ($20.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) and chiral quaternary ammonium salt $\mathbf{1 e}(6.0 \mathrm{mg}$, $0.003 \mathrm{mmol}, 3 \mathrm{~mol} \%$) in toluene $(0.3 \mathrm{~mL})$ was added 13% aqueous sodium hypochlorite $(0.3 \mathrm{~mL})$ and the mixture was stirred for 24 hours at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The resulting mixture was directly purified by flash column chromatography on silica gel (ethyl acetate/hexane $=1: 3$ as eluant) to afford epoxy chalcone, and subsequent elution with methanol/dichloromethane (1:5) gave chiral quaternary ammonium salt 1e quantitatively.

Table 2. Epoxidation of Chalcone with Catalyst 1e.

number of cycle	catalyst recovery yield (\%)	yield (\%)	ee (\%) (config) b
1	99	99	$96(\alpha S, \beta R)$
2	99	99	$96(\alpha S, \beta R)$
3	99	99	$95(\alpha S, \beta R)$
4	99	99	$96(\alpha S, \beta R)$
5	99	99	$94(\alpha S, \beta R)$

${ }^{a}$ Isolated yield. ${ }^{b}$ Enantiomeric excess was determined by HPLC analysis using a chiral column (DAICEL Chiralcel OD-H, i $\mathrm{PrOH} /$ hexane $=5: 95, \lambda=254 \mathrm{~nm}, \quad$ flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=$ $24.3 \mathrm{~min}(\alpha S, \beta R)$ and $26.3 \mathrm{~min}(\alpha R, \beta S) .{ }^{c}$ Absolute configuration was determined by comparison of the retention time with that reported. ${ }^{9}$

Characterization of Substrates and Epoxy Ketones.

1-(4-Chlorophenyl)-3-decen-2-one: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, ArH), $7.44(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{dt}, J=15.4,6.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 6.83(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}$, $\mathrm{COCH}=\mathrm{C}), 2.32\left(2 \mathrm{H}, \mathrm{dt}, J=7.2,6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.55-1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.39-1.26\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3,150.6,138.8,136.2,129.8$, 128.7, 125.3, 33.0, 31.7, 29.0, 28.2, 22.6, 14.1; IR (neat) 2930, 2856, 2120, 1672, 1620, 1589, 1400, 1300, 1225, 1092, 1013, 972, 818, $729 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClO}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$251.1197, Found: 251.1206.

5-Cyclohexyl-2,2-dimethyl-4-penten-3-one: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5$, $6.7 \mathrm{~Hz}, \mathrm{COC}=\mathrm{CH}), 6.44(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{COCH}=\mathrm{C}), 2.17-2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.77-1.75(4 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.35-1.16 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.15(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,152.3$, $121.4,43.0,40.8,32.0,26.3,26.0,25.8$; IR (neat) 3013, 2932, 2855, 2118, 1684, 1620, 1477, 1450, 1367, 1072, 1009, 983, $964 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 217.1563$, Found: 217.1573.
(2S,3R)-Epoxy-1-chlorophenyldecan-1-one: $[\alpha]_{D}{ }^{30}+6.6^{\circ}\left[c 0.58, \mathrm{CHCl}_{3}(96 \%\right.$ ee) $] ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.97(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.47$ ($2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 3.94 ($1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}, \mathrm{COCH}-\mathrm{O}), 3.14(1 \mathrm{H}, \mathrm{dt}, J=5.5,2.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 1.79-1.26\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J=$ $7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.5,140.2,133.7,129.6,129.0,60.0,57.6,32.0$, 31.7, 29.1, 25.9, 22.6, 14.1; IR (neat) 2924, 2855, 1686, 1622, 1591, 1543, 1467, 1437, 1286, 1232, 1092, 1012, 1002, 897, 839, $745 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 267.1146$, Found: 267.1156. Absolute configuration was determined by Mosher's Method after derivatization to 1-phenylnonan-3-ol ${ }^{10}$ with $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ in methanol; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26(2 \mathrm{H}, \mathrm{m}$, Ar-H), 7.23-7.16 (3H, m, Ar-H), 3.66-3.60 (1H, m, $\underline{\mathrm{HCOH}}$), 2.83-2.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), 2.71-2.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), 1.84-1.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.56(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.49-1.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.28-1.25(8 \mathrm{H}$, br, CH_{2}), $0.88\left(3 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,128.3,125.7,71.4$, $39.2,37.7,32.2,31.9,29.4,25.7,22.7,14.2$; IR (neat) 3350, 2927, 2856, 1603, 1497, 1454, 1377, 1126, 1088, 1040, 1028, 1014, 914, 745, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 243.1717, Found: 243.1719.
(R)-MTPA Ester of 1-Phenylnonan-3-ol: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(2 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}$, Ar-H), 7.41-7.39 (3H, m, Ar-H), 7.30-7.26 (2H, m, Ar-H), 7.20 ($1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.14 (2 H , d, $J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.16-5.13(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O}), 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.66-2.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02-$ $1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.59\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 1.26-1.19\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
(S)-MTPA Ester of 1-Phenylnonan-3-ol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, 7.42-7.40 (3H, m, Ar-H), 7.28-7.14 (3H, m, Ar-H), 7.06 ($2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \operatorname{Ar-H}$), 5.15-5.11 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}-\mathrm{O}), 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.57-2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.92-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70-1.58(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2}\right), 1.30-1.20\left(8 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
trans-Epoxy-5-cyclohexyl-2,2-dimethylpentan-3-one: $[\alpha]_{\mathrm{D}}{ }^{29}+36.6^{\circ}\left[c 0.50, \mathrm{CHCl}_{3}\right.$ ($96 \% \mathrm{ee}$)]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.69(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{COCH}-\mathrm{O}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=6.7,2.0 \mathrm{~Hz}$, CH-O), 1.89-1.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 1.78-1.67 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.23(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.36-1.07\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,64.4,54.4,43.7,40.2,29.7,28.8,26.2,26.0,25.6,25.5$; IR (KBr) 2928, 2853, 1713, 1477, 1450, 1396, 1367, 1227, 1072, 1005, 964, 926, 905, 880, $789 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$233.1512, Found: 233.1513.
trans-Epoxy-2,2-dimethylundecan-3-one: $[\alpha]_{\mathrm{D}}{ }^{26}+20.4^{\circ}\left[c \quad 0.94, \mathrm{CHCl}_{3}\right.$ (91% ee) $] ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 3.61(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{COCH}-\mathrm{O}), 2.93$ ($1 \mathrm{H}, \mathrm{dt}, J=5.5,2.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}$), 1.64 $\left(2 \mathrm{H}, \mathrm{dt}, J=7.5,5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.50-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.39-1.26\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.23(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,60.1,55.4,43.6,32.0,31.7$, 29.1, 25.9, 25.8, 22.6, 14.1; IR (liquid film) 2991, 2960, 2858, 1716, 1477, 1429, 1367, 1261, 1084, 1016, $901 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 235.1669$, Found: 235.1668.

References

(1) (a) Maruoka, K. Jpn. Kokai Tokkyo Koho 2002, JP 2002326992. (b) Jaquinod, L.; Prévot, L.; Fischer, J.; Weiss, R. Inorg. Chem. 1998, 37, 1142. (c) Dibazo, P.; Mouneyrac, M. F. Bull. Soc. Chim. Fr. 1968, 2958.
(2) Du, C.-J. F.; Hart, H.; Ng, K.-K. D. J. Org. Chem. 1986, 51, 3162.
(3) Hashimoto, T.; Maruoka, K. Tetrahedron Lett. 2003, 44, 3313.
(4) Corey, E. J.; Zhang, F.-Y. Org. Lett. 1999, $1,1287$.
(5) Ye, J.; Wang, Y.; Liu, R.; Zhang, G.; Zhang, Q.; Chen, J.; Liang, X. Chem. Commun. 2003, 2714.
(6) Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2725.
(7) Arai, S.; Shirai, Y.; Ishida, T; Shioiri, T. Tetrahedron 1999, 55, 6375.
(8) Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Angew. Chem. Int. Ed. 2002, 41, 1551.
(9) Arai, S.; Tsuge, H.; Oku, M.; Miura, M.; Shioiri, T. Tetrahedron 2002, 58, 1623.
(10) (a) Marsman, B.; Wynberg, H. J. Org. Chem. 1979, 44, 2312. (b) Aquino, M; Cardani, S.; Fronza, G.; Fuganti, C; Fernandez, R. P.; Tagliani, A. Tetrahedron 1991, 47, 7887.

